Joint Measurements of PM2.5 and Light-Absorptive PM in Woodsmoke-Dominated Ambient and Plume Environments

Total Page:16

File Type:pdf, Size:1020Kb

Joint Measurements of PM2.5 and Light-Absorptive PM in Woodsmoke-Dominated Ambient and Plume Environments Atmos. Chem. Phys., 17, 11441–11452, 2017 https://doi.org/10.5194/acp-17-11441-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Joint measurements of PM2:5 and light-absorptive PM in woodsmoke-dominated ambient and plume environments K. Max Zhang1, George Allen2, Bo Yang1, Geng Chen1,3, Jiajun Gu1, James Schwab4, Dirk Felton5, and Oliver Rattigan5 1Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA 2Northeast States for Coordinated Air Use Management, Boston, MA, USA 3Faculty of Maritime Transportation, Ningbo University, Ningbo, Zhejiang Province, China 4Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA 5Division of Air Resources, New York State Department of Environmental Conservation, Albany, NY, USA Correspondence to: K. Max Zhang ([email protected]) Received: 8 March 2017 – Discussion started: 2 May 2017 Revised: 18 August 2017 – Accepted: 21 August 2017 – Published: 26 September 2017 Abstract. DC, also referred to as Delta-C, measures en- demand. While we observed reproducible PM2:5–DC rela- hanced light absorption of particulate matter (PM) samples tionships in similar woodsmoke-dominated ambient environ- at the near-ultraviolet (UV) range relative to the near-infrared ments, those relationships differ significantly with different range, which has been proposed previously as a woodsmoke environments, and among individual woodsmoke sources. marker due to the presence of enhanced UV light-absorbing Our analysis also indicates the potential for PM2:5–DC re- materials from wood combustion. In this paper, we further lationships to be utilized to distinguish different combustion evaluated the applications and limitations of using DC as and operating conditions of woodsmoke sources, and that both a qualitative and semi-quantitative woodsmoke marker DC–heating-demand relationships could be adopted to es- via joint continuous measurements of PM2:5 (by nephelome- timate woodsmoke emissions. However, future studies are ter pDR-1500) and light-absorptive PM (by 2-wavelength needed to elucidate those relationships. and 7-wavelength Aethalometer®) in three northeastern US cities/towns including Rutland, VT; Saranac Lake, NY and Ithaca, NY. Residential wood combustion has shown to be the predominant source of wintertime primary PM2:5 emis- 1 Introduction sions in both Rutland and Saranac Lake, where we conducted ambient measurements. In Ithaca, we performed woodsmoke Woodsmoke resulting from anthropogenic activities is a plume measurements. We compared the pDR-1500 against widespread air pollution problem in many parts of the a FEM PM2:5 sampler (BAM 1020), and identified a close world. For example, residential woodsmoke is estimated agreement between the two instruments in a woodsmoke- to account for 20 % of total stationary and mobile poly- dominated ambient environment. The analysis of seasonal cyclic organic matter emissions, and 50 % of all area- and diurnal trends of DC, black carbon (BC, 880 nm) and source air-toxic cancer risks according to the 2011 National PM2:5 concentrations supports the use of DC as an adequate Air Toxics Assessment in the US (https://www.epa.gov/ qualitative marker. The strong linear relationships between national-air-toxics-assessment). It is reported that around PM2:5 and DC in both woodsmoke-dominated ambient and 35 % of total fine particulate matter (PM2:5) emissions in the plume environments suggest that DC can reasonably serve as United Kingdom came from domestic wood burning in 2015, a semi-quantitative woodsmoke marker. We propose a DC- while road transport only contributed around 13 % of the to- based indicator for woodsmoke emission, which has shown tal PM2:5 emissions (DEFRA, 2016). In addition to its con- to exhibit a relatively strong linear relationship with heating tribution to regional air quality, residential woodsmoke may cause significant near-source air-quality impacts due to rela- Published by Copernicus Publications on behalf of the European Geosciences Union. 11442 K. M. Zhang et al.: Joint measurements of PM2:5 and light-absorptive PM tively low stack heights and low exhaust temperatures. While The concept of DC (also referred to as Delta-C) originated in some sense wood burning products may be considered nat- from using the level of UV enhancement as a marker for ural substances, the health effects of wood smoke are found woodsmoke PM (Allen et al., 2004). Traditionally, DC was to be comparable to those of fossil-fuel combustion sources calculated by the difference between the 370 and 880 nm sig- (Naeher et al., 2007). nals, i.e., DC D BC (370 nm) – BC (880 nm), due to the avail- Chemicals that are enriched in woodsmoke relative to ability of two-channel Aethalometer models. But the con- other sources have been used to quantify woodsmoke impacts cept is not limited to those two particular wavelengths. Fig- on ambient PM. Among them, levoglucosan, a sugar anhy- ure1a indicates that woodsmoke UV enhancement starts ap- dride derived from the pyrolysis of the major wood polymer pearing at 660 nm, and more enhancement can be expected cellulose, has been used extensively as a molecular marker at even shorter wavelength (than 370 nm) not available in for woodsmoke because it is emitted at high concentrations current Aethalometer models. Studies show that woodsmoke and is relatively stable in the atmosphere (Fine et al., 2001; enhancement peaks at ∼ 300 nm (Kirchstetter et al., 2004; Simoneit et al., 1999). However, detecting levoglucosan in Kirchstetter and Thatcher, 2012). It is possible that includ- PM samples at present requires detailed chemical analysis, ing shorter wavelengths in future instrumentation would im- and the related information is not widely available. prove the sensitivity to woodsmoke PM (Olson et al., 2015). The widely deployed Aethalometer® has made possi- Another approach taking advantage of UV enhancement (or ble continuous aerosol light-absorption measurements, com- wavelength dependence of the aerosol absorption coefficient monly referred to as black carbon (BC), at either two wave- in general), as reported by Sandradewi et al.(2008a), de- lengths (880 and 370 nm) or seven wavelengths (370, 470, rives light absorption Ångström exponents (AAE, or α) from 520, 590, 660, 880 and 950 nm). Allen et al.(2004) first multi-wavelength Aethalometer readings. α is close to 1 proposed using enhanced light absorption of ambient par- for traffic sources, and varies for woodsmoke, but is gener- ticulate matter (PM) at 370 nm relative to 880 nm, due to ally much larger than 1. Assuming a certain value of α for the presence of light-absorbing materials from wood com- woodsmoke, Sandradewi et al.(2008b) conducted a quantita- bustion near the ultraviolet (UV) range, as a marker for tive analysis of source contributions to PM. This approach of- woodsmoke PM. Figure1 depicts the distinct responses of a ten requires light-absorption measurements at multiple wave- seven-wavelength Aethalometer (Magee Scientific AE-33) to lengths to have a reliable estimate for α (Chen et al., 2015). woodsmoke (Fig.1a) and diesel (Fig.1b) plumes, providing Sandradewi et al.(2008b) showed that using different pairs a context for our discussions in this paper. The source of the of wavelengths led to different values of α for woodsmoke. diesel plume was a backup diesel generator, and the measure- Since the ambient data to be presented in this paper were ment was conducted in 2015. The woodsmoke plume data collected by a two-wavelength Aethalometer and given the was collected near a residential woodstove source in early uncertainties associated with values of α for woodsmoke, we 2016. Note that the purpose of Fig.1 is to reveal the qualita- did not perform a direct source apportionment analysis sim- tive differences between the two sources rather than making ilar to that presented by Sandradewi et al.(2008a), but pre- a quantitative comparison. sented a qualitative analysis to be presented later (Sect. 3.2). The wavelength-dependent responses to woodsmoke were Wang et al.(2011) reported a strong correlation between clearly shown in Fig.1a. At longer wavelengths, there DC and woodsmoke markers such as levoglucosan during the were virtually no differences in the signals from the 880 heating season, and no statistically significant correlation be- and 950 nm channels. At shorter wavelengths, the 370 nm tween DC and vehicle exhaust markers based on field data channel recorded the highest reading. We refer to the aug- collected in Rochester, NY. A follow-up study from the same mented responses at shorter wavelengths compared to the research group used DC as an input variable in source appor- 880 and 950 nm as “UV enhancement”. In contrast, virtu- tionment models, where it was found to play an important ally no wavelength-dependence (i.e., no UV enhancement) role in separating traffic emissions (especially diesel) from was observed for diesel exhaust (Fig.1b). There are some wood combustion emissions (Wang et al., 2012). Allen et al. slight discrepancies among the different wavelength chan- (2011) adopted DC as a woodsmoke marker for their fixed- nels, likely due to the limitations of the real-time dynamic site measurements in northern New York State, and revealed spot loading correction used by the AE-33 Aethalometer. temporally and spatially resolved patterns of woodsmoke PM The patterns of the wavelength-dependent responses shown (Fuller et al., 2014). However, Harrison et al.(2013) ana- in Fig.1 were consistent with the findings from several previ- lyzed data for DC from an Aethalometer network in the UK ous studies, which suggested that UV absorbing compounds and suggested the presence of other UV absorbing contrib- are enriched in biomass-combustion PM but scarce in diesel utors (such as coal burning) to the DC signal. Laboratory PM (Chen et al., 2015; Olson et al., 2015) or traffic-related experiments conducted by Olson et al.(2015) showed that PM (Kirchstetter et al., 2004).
Recommended publications
  • Aethalometer Is Located, Data from the Aethalometer Will Also Be Compared to the Sunset Semi-Continuous Analyzer
    Sunset Carbon Evaluation Project QA Project Plan, Version 1, September 27, 2011 Sunset Carbon Evaluation Project Quality Assurance Project Plan (QAPP) QA Level IV U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Ambient Air Monitoring Group September 27, 2011 Page 1 of 41 Sunset Carbon Evaluation Project QA Project Plan, Version 1, September 27, 2011 Page 2 of 41 Sunset Carbon Evaluation Project QA Project Plan, Version 1, September 27, 2011 DISTRIBUTION LIST The following individuals have been provided with copies of this QAPP. Lewis Weinstock EPA Group Lead U.S. Environmental Protection Agency, Office of Air quality Planning and Standards, Research Triangle Park, NC Elizabeth Landis EPA Project Lead U.S. Environmental Protection Agency, Office of Air quality Planning and Standards, Research Triangle Park, NC Mike Papp QA EPA QA Officer U.S. Environmental Protection Agency, Office of Air quality Planning and Standards, Research Triangle Park, NC Joann Rice EPA Technical Advisor U.S. Environmental Protection Agency, Office of Air quality Planning and Standards, Research Triangle Park, NC Page 4 of 41 Sunset Carbon Evaluation Project QA Project Plan, Version 1, September 27, 2011 1.0 Introduction This is a level IV Quality Assurance Project Plan (QAPP) that covers an Environmental Data Operation (EDO) conducted by the EPA’s Office of Air Quality Planning and Standards (OAQPS) Ambient Air Monitoring Group (AAMG) and State and local monitoring agencies to collect field data at seven (7) sites across the United States. The selection of participating sites is in progress, and to date, monitoring agencies at 3 sites have agreed to participate.
    [Show full text]
  • Are Black Carbon and Soot the Same? Title Page
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 24821–24846, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/24821/2012/ Chemistry ACPD doi:10.5194/acpd-12-24821-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions 12, 24821–24846, 2012 This discussion paper is/has been under review for the journal Atmospheric Chemistry Are black carbon and Physics (ACP). Please refer to the corresponding final paper in ACP if available. and soot the same? P. R. Buseck et al. Are black carbon and soot the same? Title Page P. R. Buseck1,2, K. Adachi1,2,3, A. Gelencser´ 4, E.´ Tompa4, and M. Posfai´ 4 Abstract Introduction 1School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85282, USA Conclusions References 2 Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85282, USA Tables Figures 3Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, Tsukuba, Ibaraki, Japan 4Department of Earth and Environmental Sciences, University of Pannonia, Veszprem,´ J I Hungary J I Received: 1 September 2012 – Accepted: 3 September 2012 – Published: 21 September 2012 Back Close Correspondence to: P. R. Buseck ([email protected]) Full Screen / Esc Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 24821 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract ACPD The climate change and environmental literature, including that on aerosols, is replete with mention of black carbon (BC), but neither reliable samples nor standards exist. 12, 24821–24846, 2012 Thus, there is uncertainty about its exact nature.
    [Show full text]
  • Guidance for Using Continuous Monitors in Pm Monitoring
    United States Office of Air Quality EPA-454/R-98-012 Environmental Protection Planning and Standards May 1998 Agency Research Triangle Park, NC 27711 Air GUIDANCE FOR USING CONTINUOUS MONITORS IN PM2.5 MONITORING NETWORKS GUIDANCE FOR USING CONTINUOUS MONITORS IN PM2.5 MONITORING NETWORKS May 29, 1998 PREPARED BY John G. Watson1 Judith C. Chow1 Hans Moosmüller1 Mark Green1 Neil Frank2 Marc Pitchford3 PREPARED FOR Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, NC 27711 1Desert Research Institute, University and Community College System of Nevada, PO Box 60220, Reno, NV 89506 2U.S. EPA/OAQPS, Research Triangle Park, NC, 27711 3National Oceanic and Atmospheric Administration, 755 E. Flamingo, Las Vegas, NV 89119 DISCLAIMER The development of this document has been funded by the U.S. Environmental Protection Agency, under cooperative agreement CX824291-01-1, and by the Desert Research Institute of the University and Community College System of Nevada. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This draft has not been subject to the Agency’s peer and administrative review, and does not necessarily represent Agency policy or guidance. ii ABSTRACT This guidance provides a survey of alternatives for continuous in-situ measurements of suspended particles, their chemical components, and their gaseous precursors. Recent and anticipated advances in measurement technology provide reliable and practical instruments for particle quantification over averaging times ranging from minutes to hours. These devices provide instantaneous, telemetered results and can use limited manpower more efficiently than manual, filter-based methods.
    [Show full text]
  • Monitoring for Fine Particulate Matter
    Monitoring for Fine Particulate Matter Elisa Eiseman Critical Technologies Institute R The research described in this report was conducted by RAND’s Critical Technologies Institute. ISBN: 0-8330-2618-6 RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND’s publications do not necessarily reflect the opinions or policies of its research sponsors. © Copyright 1998 RAND All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from RAND. Cover design: Elisa Eiseman Published 1998 by RAND 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 1333 H St., N.W., Washington, D.C. 20005-4707 RAND URL: http://www.rand.org/ To order RAND documents or to obtain additional information, contact Distribution Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Internet: [email protected] This document is available on the World Wide Web at http://www.rand.org/publications/MR/MR974 PREFACE In accordance with the Clean Air Act, the United States Environmen- tal Protection Agency (EPA) has reviewed the National Ambient Air Quality Standards (NAAQS) for particulate matter (PM) and set new standards for fine particulate matter with a diameter less than or μ equal to 2.5 m (PM2.5). This document reviews the new Federal Ref- erence Method (FRM) developed by the EPA for monitoring PM2.5, which is a manual method that will be used to ensure national con- sistency in PM2.5 monitoring and compliance with the EPA’s new standards for PM.
    [Show full text]
  • Comparison of Different Aethalometer Correction Schemes and a Reference Multi-Wavelength Absorption Technique for Ambient Aerosol Data
    Atmos. Meas. Tech., 10, 2837–2850, 2017 https://doi.org/10.5194/amt-10-2837-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data Jorge Saturno1, Christopher Pöhlker1, Dario Massabò2, Joel Brito3, Samara Carbone4, Yafang Cheng1, Xuguang Chi5, Florian Ditas1, Isabella Hrabeˇ de Angelis1, Daniel Morán-Zuloaga1, Mira L. Pöhlker1, Luciana V. Rizzo6, David Walter1, Qiaoqiao Wang1, Paulo Artaxo7, Paolo Prati2, and Meinrat O. Andreae1,8,9 1Biogeochemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, P.O. Box 3060, 55020 Mainz, Germany 2Department of Physics & INFN, University of Genoa, via Dodecaneso 33, 16146, Genoa, Italy 3Laboratory for Meteorological Physics, University Blaise Pascal, Clermont-Ferrand, France 4Institute of Agrarian Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil 5Institute for Climate and Global Change and School of Atmospheric Sciences, Nanjing University, Nanjing, China 6Department of Earth and Exact Sciences, Institute of Environmental, Chemical and Pharmaceutics Sciences, Federal University of São Paulo, São Paulo, Brazil 7Department of Applied Physics, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R, 187, CEP 05508-900, São Paulo, SP, Brazil 8Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92098, USA 9Geology and Geophysics Department, King Saud University, Riyadh, Saudi Arabia Correspondence to: Jorge Saturno ([email protected]) Received: 31 October 2016 – Discussion started: 13 December 2016 Revised: 19 February 2017 – Accepted: 12 July 2017 – Published: 9 August 2017 Abstract. Deriving absorption coefficients from Aethalome- increase the short-wavelength absorption coefficients.
    [Show full text]
  • Training Course: Magee AE33 / TAPI-633
    Aethalometer® Training Course: Magee AE33 / TAPI-633 Instructor: George Allen, NESCAUM gallen (at) nescaum . org Portions of this material are from Aerosol and TAPI manuals and service documents Updated: November 5, 2015 Course Overview Magee AE33 and TAPI 633 are the same instrument. Made at Aerosol in Slovenia Method principle and history Routine Operation and Maintenance, Things you need to know Troubleshooting and Repair Data Logging, Processing and Validation, Data Mashers Discussion/Q&A All Training Materials: tinyurl.com/AethTraining 2 Black Carbon (BC): what is it? EPA Report to Congress on Black Carbon (2012): “BC is defined as the carbonaceous component of particulate matter that absorbs all wavelengths of solar radiation” http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryID=240148 (388 pages...) “Stuff that looks black” when collected on a filter or impaction surface (think FRM WINS): Source in ambient air: Primary product of combustion (example: diesel) Directly emitted - not secondary Nearly all BC mass < 1 µm diameter 3 BC is related to “elemental carbon” (EC) Usually highly correlated Relationship is EC method dependent (TOR/TOT, NIOSH-5040, ...) CSN/STN TOR EC: ~ Aethalometer BC Sunset/NIOSH EC: ~ 1/2 Aethalometer BC Similar to classic Coefficient of Haze (COH) measurement: Average black carbon concentration as a function of coefficient of haze. The circles represent the average BC concentration at each COH level, and the error bars represent the standard error. Only COH levels which occurred three times or more during the study period are included. Regression of average BC on COH (dotted line) yields an R2 of 0.988, a slope of 5.66, and an intercept of -0.26.
    [Show full text]
  • 2019 Annual Air Quality Report
    AIR QUALIT Y ANNUAL REPORT 2019 Michigan Department of Environment, Great Lakes, and Energy Michigan.gov/EGLE | 800-662-9278 Air Quality Annual Report 2019 Executive summary This report gives an overview of the air quality for 2019. Current data for Michigan can be found on MIAir (www.deqmiair.org) and Air Quality alerts can be delivered directly to email by signing up for the Michigan EnviroFlash program (http://miair.enviroflash.info/). In April 2019, by the Governor’s executive order, the Michigan Department of Environmental Quality (MDEQ) became the Michigan Department of Environment, Great Lakes, and Energy (EGLE). While the data in this report was partly collected in 2019 under the agency name of MDEQ, this report will use EGLE. The federal Clean Air Act (CAA) requires the United States Environmental Protection Agency (USEPA) to establish National Ambient Air Quality Standards (NAAQS) for six criteria pollutants considered harmful to public health and the environment. The six pollutants monitored by EGLE, Air Quality Division (AQD) are: 1. Carbon monoxide (CO) 2. Lead (Pb) 3. Nitrogen dioxide (NO2) 4. Ozone (O3) 5. Particulate matter smaller than 10 and 2.5 microns in diameter (PM10 and PM2.5, respectively) 6. Sulfur dioxide (SO2) EGLE has established a network of more than 40 monitoring sites throughout the state that monitor for one or more of the criteria pollutants (Figure 1.1 and Table 1.3). Congress passed the CAA in 1970; however, Michigan has had a long-standing history of environmental awareness well before the Act was established. In 1887, Detroit was the first city in Michigan to adopt an air quality ordinance, which declared that the dense smoke from burning coal was a public nuisance.
    [Show full text]
  • On Aethalometer Measurement Uncertainties and Multiple Scattering Enhancement in the Arctic
    Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-294, 2016 Manuscript under review for journal Atmos. Meas. Tech. Published: 8 December 2016 c Author(s) 2016. CC-BY 3.0 License. On Aethalometer measurement uncertainties and multiple scattering enhancement in the Arctic John Backman1, Lauren Schmeisser2,*, Aki Virkkula1, John A. Ogren2,3, Eija Asmi1, Sandra Starkweather2,3, Sangeeta Sharma4, Konstantinos Eleftheriadis5, Taneil Uttal3, Anne Jefferson2, 5 Michael Bergin6, Alexander Makshtas7 1Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland 2University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, USA 3National Oceanic and Atmospheric Administration, Earth System Research Laboratory, 10 Boulder, USA 4Environment and Climate Change Canada, Climate Research Division, Downsview, Canada 5Institute of Nuclear and Radiological Science & Technology, Energy & Safety, Environmental Radioactivity Laboratory, NCSR "Demokritos", Athens, Greece 6Duke University, Civil and Environmental Engineering, Durham, USA 15 7Russian Federal Service for Hydrometeorology and Environmental Monitoring, Arctic and Antarctic Research Institute, St. Petersburg, Russia *Now at University of Washington, Department of Atmospheric Sciences, Seattle, USA Correspondence to: John Backman ([email protected]) Abstract. Several types of filter-based instruments are used to estimate aerosol light absorption 20 coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic station from 2012–2014. First, an alternative method of post-processing the Aethalometer data is presented which reduces measurement noise and lowers the detection limit of the instrument more effectively than boxcar averaging. The biggest benefit of this approach can be achieved if instrument drift is minimized. Moreover, by using an attenuation threshold criterion for data post-processing, the 25 relative uncertainty from the electronic noise the instrument is kept constant.
    [Show full text]
  • 2015 Air Quality Data Summary
    1904 Third Avenue, Suite 105 Seattle, Washington 98101 www.pscleanair.org 2015 Air Quality Data Summary August 2015 Working Together for Clean Air 2015 Air Quality Data Summary Table of Contents Table of Contents ....................................................................................................................................... i List of Figures ............................................................................................................................................ ii List of Maps .............................................................................................................................................. iii List of Tables ............................................................................................................................................ iii Appendix – Data Tables .......................................................................................................................... iii Executive Summary .................................................................................................................................. 1 Monitoring Network ................................................................................................................................. 3 Air Quality Index ...................................................................................................................................... 6 Particulate Matter ....................................................................................................................................
    [Show full text]
  • \(2017\) General BC
    “Unde Fuligo?” Aerosol Black Carbon Tony Hansen Magee Scientific, Berkeley, CA Why are atmospheric aerosols important? • Public health – disease & death • Climate change – local, regional and global • Precipitation – reduction of rainfall • Visibility – also, reduction of sunlight for agriculture • Damage to cultural heritage (buildings, monuments, art) 2 U.S. Government Agency Declarations • Public Health Diesel Particulate Matter is a listed Air Toxic • Climate Change Black Carbon is a listed Greenhouse Agent 3 Official Recognition UK 2011 OECD 2016 USA 2012 WHO 2016 EU 2013 CCAC 2013 4 Good Public Policy requires Good Scientific Data 5 Why are atmospheric aerosols important? • Public health – disease & death • Climate change – local, regional and global • Precipitation – reduction of rainfall • Visibility – also, reduction of sunlight for agriculture • Damage to cultural heritage (buildings, monuments, art) 6 Loss of life expectancy in Europe CAFE Report, EU Commission, 2000 7 Health impact of Fine Particulates If 2 areas of Central and Southern California would simply meet existing Air Quality Standards : savings $28,000,000,000 per year ( $2,000 / person ) • 3,860 fewer premature deaths among those age 30 and older • 13 fewer premature deaths in infants • 1,950 fewer new cases of adult onset chronic bronchitis • 3,517,720 fewer days of reduced activity in adults • 2,760 fewer hospital admissions • 141,370 fewer asthma attacks • 1,259,840 fewer days of school absence • 16,110 fewer cases of acute bronchitis in children • 466,880 fewer lost days of work • 2,078,300 fewer days of respiratory symptoms in children • 2,800 fewer emergency hospital visits More premature death in Los Angeles from Air Pollution than Car Accidents Hall et al., Cal State University Fullerton, Nov.
    [Show full text]
  • An Overview of Particulate Matter Measurement Instruments
    Atmosphere 2015, 6, 1327-1345; doi:10.3390/atmos6091327 OPEN ACCESS atmosphere ISSN 2073-4433 www.mdpi.com/journal/atmosphere Review An Overview of Particulate Matter Measurement Instruments Simone Simões Amaral 1, João Andrade de Carvalho Jr. 1,*, Maria Angélica Martins Costa 2 and Cleverson Pinheiro 3 1 Department of Energy, UNESP—Univ Estadual Paulista, Guaratinguetá , SP 12516-410, Brazil; E-Mail: [email protected] 2 Department of Biochemistry and Chemical Technology, Institute of Chemistry, UNESP—Univ Estadual Paulista, Araraquara, SP 14800-060, Brazil; E-Mail: [email protected] 3 Department of Logistic, Federal Institute of Education, Science and Technology of São Paulo, Jacareí, SP 12322-030, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-12-3123-2838; Fax: +55-12-3123-2835. Academic Editor: Pasquale Avino Received: 27 June 2015 / Accepted: 1 September 2015 / Published: 9 September 2015 Abstract: This review article presents an overview of instruments available on the market for measurement of particulate matter. The main instruments and methods of measuring concentration (gravimetric, optical, and microbalance) and size distribution Scanning Mobility Particle Sizer (SMPS), Electrical Low Pressure Impactor (ELPI), and others were described and compared. The aim of this work was to help researchers choose the most suitable equipment to measure particulate matter. When choosing a measuring instrument, a researcher must clearly define the purpose of the study and determine whether it meets the main specifications of the equipment. ELPI and SMPS are the suitable devices for measuring fine particles; the ELPI works in real time.
    [Show full text]
  • The Absorption Ångström Exponent of Black Carbon: from Numerical Aspects
    Atmos. Chem. Phys., 18, 6259–6273, 2018 https://doi.org/10.5194/acp-18-6259-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. The absorption Ångström exponent of black carbon: from numerical aspects Chao Liu1,2, Chul Eddy Chung3, Yan Yin1,2, and Martin Schnaiter4 1Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China 2Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China 3Desert Research Institute, Reno 89512, USA 4Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, 76021 Karlsruhe, Germany Correspondence: Chao Liu ([email protected]) Received: 7 September 2017 – Discussion started: 4 October 2017 Revised: 15 March 2018 – Accepted: 10 April 2018 – Published: 4 May 2018 Abstract. The absorption Ångström exponent (AAE) is an with observational backing, the BC AAE may show an even important aerosol optical parameter used for aerosol charac- wider range. For different BC morphologies, we derive sim- terization and apportionment studies. The AAE of black car- ple empirical equations on BC AAE based on our numerical bon (BC) particles is widely accepted to be 1.0, although ob- results, which can serve as a guide for the response of BC servational estimates give quite a wide range of 0.6–1.3. With AAE to BC size and refractive index. Due to its complex in- considerable uncertainties related to observations, a numeri- fluences, the effects of BC geometry is better to be discussed cal study is a powerful method, if not the only one, to provide at certain BC properties, i.e., known size and refractive index.
    [Show full text]