Polymorphisms in the SULF1 Gene Are Associated with Early Age of Onset and Survival of Ovarian Cancer Chan Han, Emory University Yu-Jing Huang, M

Total Page:16

File Type:pdf, Size:1020Kb

Polymorphisms in the SULF1 Gene Are Associated with Early Age of Onset and Survival of Ovarian Cancer Chan Han, Emory University Yu-Jing Huang, M Polymorphisms in the SULF1 gene are associated with early age of onset and survival of ovarian cancer Chan Han, Emory University Yu-Jing Huang, M. D. Anderson Cancer Center Karen H Lu, M. D. Anderson Cancer Center Zhensheng Liu, M. D. Anderson Cancer Center Gordon B Mills, M. D. Anderson Cancer Center Qingyi Wei, M. D. Anderson Cancer Center Li-E Wang, M. D. Anderson Cancer Center Journal Title: Journal of Experimental and Clinical Cancer Research Volume: Volume 30, Number 1 Publisher: BioMed Central | 2011-01-07, Pages 5-5 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1186/1756-9966-30-5 Permanent URL: https://pid.emory.edu/ark:/25593/rg4xv Final published version: http://dx.doi.org/10.1186/1756-9966-30-5 Copyright information: © 2011 Han et al. licensee BioMed Central Ltd. This is an Open Access work distributed under the terms of the Creative Commons Attribution 2.0 Generic License (http://creativecommons.org/licenses/by/2.0/). Accessed September 29, 2021 4:50 AM EDT Han et al. Journal of Experimental & Clinical Cancer Research 2011, 30:5 http://www.jeccr.com/content/30/1/5 RESEARCH Open Access Polymorphisms in the SULF1 gene are associated with early age of onset and survival of ovarian cancer Chan H Han1, Yu-Jing Huang1, Karen H Lu2, Zhensheng Liu1, Gordon B Mills3, Qingyi Wei1, Li-E Wang1* Abstract Background: SULF1 (sulfatase 1) selectively removes the 6-O-sulphate group from heparan sulfate, changing the binding sites for extracellular growth factors. SULF1 expression has been reported to be decreased in various cancers, including ovarian cancer. We hypothesized that single nucleotide polymorphisms (SNPs) of SULF1 would impact clinicopathologic characteristics. Methods: We genotyped five common (minor allele frequency>0.05) regulatory SNPs with predicted functionalities (rs2623047 G>A, rs13264163 A>G, rs6990375 G>A, rs3802278 G>A, and rs3087714 C>T) in 168 patients with primary epithelial ovarian cancer, using the polymerase chain reaction-restriction fragment length polymorphism method. Results: We found that rs2623047 G>A was significantly associated with an early age of onset of ovarian cancer in the G allele dose-response manner (P = 0.027; Ptrend = 0.007) and that rs2623047 GG/GA genotypes were associated with longer progression-free survival; rs6990375 G>A was also associated with the early age of onset in the A allele dose-response manner (P = 0.013; Ptrend= 0.009). The significant differences in age of disease onset persisted among carriers of haplotypes of rs2623047 and rs6990375 (P = 0.014; Ptrend = 0.004). In luciferase reporter gene assays, rs2623047 G allele showed a slightly higher promoter activity than the A allele in the SKOV3 tumorigenic cell line. Conclusions: These findings suggest that genetic variations in SULF1 may play a role in ovarian cancer onset and prognosis. Further studies with large sample sizes and of the mechanistic relevance of SULF1 SNPs are warranted. Background with numerous mediators including growth factors, cyto- SULF1 is a newly identified human sulfatase with kines, chemokines, and adhesion molecules, HSGAGs are aryl-sulfatase activities, which can influence the sulfation involved in a wide array of biological processes, such as status and biological function of heparan sulfate proteo- homeostasis, anticoagulation, angiogenesis, embryogen- glycans (HSPGs) [1]. This heparan sulfate 6-O-endosulfa- esis, as well as in oncogenic transformation of normal tase selectively removes 6-O-sulphate group and alters cells to tumor cells [5-10]. the binding sites of signaling molecules [2]. HSPGs are The correlation between SULF1 and cancer risk has protein-conjugated forms of heparin sulfate glycosamino- mainly been studied in terms of gene expression. SULF1 glycans (HSGAGs) in vivo and major constituents of the expression is decreased in multiple malignant lineages, extracellular matrix (ECM).HSGAGsintheECMinter- and its re-expression is known to be associated with act with many signaling molecules, regulate their biologi- decreased signaling of heparin-binding growth factors, cal activities, and express profound effects on cell growth cell proliferation, and the invasiveness of cancer cells kinetics and metastasis of tumor cells [3,4]. By interacting [11-14]. In ovarian cancer, decreased expression of SULF1 and its correlation with decreased sensitivity to * Correspondence: [email protected] cisplatin (a standard chemotherapeutic agent) were also 1 Department of Epidemiology, The University of Texas M. D. Anderson reported [12,15]. Cancer Center, Houston, TX 77030, USA Full list of author information is available at the end of the article © 2011 Han et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Han et al. Journal of Experimental & Clinical Cancer Research 2011, 30:5 Page 2 of 7 http://www.jeccr.com/content/30/1/5 Loss of heterozygosity or hypermethylation of the pro- SNP Selection and Genotyping moter region has been suggested as potential mechan- Using SULF1 gene position from International HapMap isms for SULF1 down-regulation in ovarian cancer [14]. project http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/ Besides, genetic variation has been implicated in altered hapmap28_B36/#search with the extension of 2 kb at both gene expression, especially those regulatory polymorph- sides to cover near gene regions (chr8:70539427.. isms that are located in promoter regions [16,17]. How- 70737701), we found that five of 355 SNPs were common ever, genetic variation in SULF1 has not been explored in HapMap Caucasian population with one of following in ovarian cancer. In this study, we genotyped five com- predicted functionalities at the SNP Function Prediction mon (i.e. minor allele frequency>0.05) single nucleotide website http://snpinfo.niehs.nih.gov/snpfunc.htm: (1) polymorphisms (SNPs) with predicted functionalities affecting transcription factor binding sites (TFBS) activity (rs2623047 G>A, rs13264163 A>G, rs6990375 G>A, in the putative promoter region, (2) affecting splicing rs3802278 G>A, and rs3087714 C>T ) to evaluate asso- activity, or (3) affecting the microRNA binding sites activ- ciations between these potentially functional SULF1 ity. Therefore, we genotyped all of these five SNPs: SNPs and clinical outcomes in 168 ovarian cancer rs2623047 G>A, rs13264163 A>G, rs6990375 G>A, patients whose DNA and clinic variables were available, rs3802278 G>A, and rs3087714 C>T. and investigated whether the promoter activity of The genotyping was performed by the polymerase rs2623047 A>G may be underlying the functional chain reaction-restriction fragment length polymorphism significance. method (PCR-RFLP) using genomic DNA. Table 1 shows the primers and PCR information for each SNP. The Methods PCR conditions consisted of an initial melting step of 95° Study Population C for 5 min, followed by 35 cycles of denaturation (95 °C The study population and data collection were described for 30 seconds), annealing (52 - 55 °C for 45 sec accord- previously [18]. Briefly, the 168 patients were registered ing to SNPs), and extension (72°C for 1 min), and a final at The University of Texas M. D. Anderson Cancer extension step of 72°C for 10 min. The digested products Center between 2000 and 2007 and diagnosed with his- were checked on a 3% MetaPhor agarose gel containing topathologically confirmed primary epithelial ovarian ethidium bromide. The gene structure, SNP location, pre- cancer. Patients had been treated with chemotherapy, a dicted functionality of SNPs, and electrophoresis gel pic- combination of platinum (carboplatin, cisplatin) and tax- tures are shown in Figure 1A. The genotypes were anes (taxol, docetaxel) following optimal debulking or double-checked by two people for quality control, and cyto-reductive surgery. Available demographic character- any uncertain results were repeated to reach a 100% con- istics included age at diagnosis and race, and clinico- cordance. Genotyping of 10% of samples were randomly pathologic characteristics including tumor stage, cell performed twice, and no discrepancy was observed. type and grade, optimality of the primary debulking operation, chemotherapy regimen, number of che- Construction of Reporter Plasmids motherapies, disease recurrence, and response of tumors Reporter constructs were prepared for rs2623047 G>A to chemotherapy. The optimal debulking or cyto-reduc- by amplifying 1803 bp of the SULF1 promoter region tive surgery is defined as the largest residual tumor (from -1784 to +18 relative to the transcription start nodule measuring 1 cm or less, according to the Gyneco- site) with either rs2623047 G or A allele by using a pair logic Oncology Group [19]. The response evaluation of primers 5’-AAGAGCTCTTGGGAATGCCTCATA- criteria in solid tumors (RECIST) [20] were used to GACAG-3’ (forward) and 5’-AAGCTAGCGGTCTGA- define the response of tumors to treatment. GAACTCCCAGTCAA-3’ (reverse). SacI and NheI Overall survival (OS) and progression-free survival restriction enzymes (New England BioLabs, Beverly, (PFS) were calculated as the date of disease diagnosis to MA) were used to cleave the amplicons, and the pGL4 the date of death or last contact or the date of recur- vector (Promega, Madison, WI) and T4 DNA ligase rence or progression, accordingly. Disease recurrence (New England BioLabs) were used for ligation. was defined as the reappearance of any lesion that had previously disappeared or the appearance of a new Transient Transfection and Luciferase Reporter Gene lesion that was histopathologically confirmed by a Assay biopsy. Information about the date of last contact and The ovarian cancer cell lines OVCA429 and SKOV-3 status of patients at the last contact was obtained from were cultured in 1x McCoy’s 5A modified medium and the M. D. Anderson Tumor Registry and Social Security minimum essential medium, and the human cervical Death Index, when this information was missing from cancer cell line HeLa was cultured in Dulbecco’smodi- the medical records.
Recommended publications
  • Role of Sulfs in Colorectal Cancer Cells Original Article Enhanced
    Author Manuscript Published OnlineFirst on December 4, 2014; DOI: 10.1158/1541-7786.MCR-14-0372 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Running Title: Role of SULFs in colorectal cancer cells Original Article Enhanced Tumorigenic Potential of Colorectal Cancer Cells by Extracellular Sulfatases Carolina M Vicente1, Marcelo A Lima1,2, Edwin A Yates2,1, Helena B Nader1, Leny Toma1* 1Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, Brazil 2Institute of Integrative Biology, Department of Biochemistry, University of Liverpool, Liverpool, UK *Corresponding author: Leny Toma, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, UNIFESP, Rua Três de Maio, 100 – 4º andar, Vila Clementino, CEP 04044-020, São Paulo, SP, Brazil. E-mail: [email protected], [email protected], Tel (+55) (11) 55793175; FAX (+55) (11) 55736407. Disclosure of Potential Conflicts of Interest No potential conflicts of interest were disclosed by the authors. Downloaded from mcr.aacrjournals.org on September 24, 2021. © 2014 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 4, 2014; DOI: 10.1158/1541-7786.MCR-14-0372 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Heparan sulfate endosulfatase-1 and -2 (SULF1 and SULF2) are two important extracellular 6-O-endosulfatases that remove 6-O sulfate groups of N-glucosamine along heparan sulfate (HS) proteoglycan chains often found in the extracellular matrix (ECM). The HS sulfation pattern influences signaling events at the cell surface, which are critical for interactions with growth factors and their receptors.
    [Show full text]
  • Gene Section Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST -CNRS Gene Section Review SULF1 (sulfatase 1) Jérôme Moreaux INSERM U1040, institut de recherche en biotherapie, CHRU Saint Eloi, 80 Av Augustain Fliche, 34295 Montpellier CEDEX 5, France (JM) Published in Atlas Database: March 2012 Online updated version : http://AtlasGeneticsOncology.org/Genes/SULF1ID44378ch8q13.html DOI: 10.4267/2042/47490 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2012 Atlas of Genetics and Cytogenetics in Oncology and Haematology - Homo sapiens sulfatase 1 (SULF1), transcript variant Identity 3, mRNA, 5710 bp Other names: HSULF-1, SULF-1 Accession: NM_015170.2 GI: 189571635 HGNC (Hugo): SULF1 - Homo sapiens sulfatase 1 (SULF1), transcript variant 4, mRNA, 5548 bp Location: 8q13.2 Accession: NM_001128204.1 GI: 189571637 DNA/RNA Protein Note Note The sulfation pattern of heparan sulfate chains Sulfs are sulfatases that edit the sulfation status of influences signaling events mediated by heparan sulfate heparan sulfate proteoglycans on the outside of cells proteoglycans located on cell surface. SULF1 is an and regulate a number of critical signaling pathways. endosulfatase able to cleave specific 6-O sulfate groups The Sulfs are dysregulated in many cancers. within the heparan chains. The Sulfs are synthesized as pre-proproteins. This action can modulate signaling processes, The signal sequence is removed and the pro-protein is modulating the effects of heparan sulfate by altering cleaved by a furin-type proteinase. binding sites for signaling molecules. Sulfs mature proteins are secreted as well as retained Description on the cell surface.
    [Show full text]
  • Sulf1 Influences the Shh Morphogen Gradient During the Dorsal Ventral Patterning of the Neural Tube in Xenopus Tropicalis
    Ramsbottom SA, Maguire RJ, Fellgett SW, Pownall ME. Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis. Developmental Biology 2014, 39(391), 207-218. Copyright: © 2014 Elsevier Inc. All rights reserved. Published under an Elsevier user license DOI link to article: http://dx.doi.org/10.1016/j.ydbio.2014.04.010 Date deposited: 22/09/2016 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk Developmental Biology 391 (2014) 207–218 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis Simon A. Ramsbottom, Richard J. Maguire, Simon W. Fellgett, Mary Elizabeth Pownall n Biology Department, University of York, York YO10 5YW, United Kingdom article info abstract Article history: Genetic studies have established that heparan sulphate proteoglycans (HSPGs) are required for signalling Received 1 November 2013 by key developmental regulators, including Hedgehog, Wnt/Wg, FGF, and BMP/Dpp. Post-synthetic Received in revised form remodelling of heparan sulphate (HS) by Sulf1 has been shown to modulate these same signalling 11 April 2014 pathways. Sulf1 codes for an N-acetylglucosamine 6-O-endosulfatase, an enzyme that specifically Accepted 15 April 2014 removes the 6-O sulphate group from glucosamine in highly sulfated regions of HS chains. One striking Available online 24 April 2014 aspect of Sulf1 expression in all vertebrates is its co-localisation with that of Sonic hedgehog in the floor Keywords: plate of the neural tube.
    [Show full text]
  • Heparan Sulfate Proteoglycan
    Cellular Signalling 54 (2019) 115–121 Contents lists available at ScienceDirect Cellular Signalling journal homepage: www.elsevier.com/locate/cellsig Heparan sulfate proteoglycan – A common receptor for diverse cytokines T ⁎ Meng Xiea, Jin-ping Lib, a Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden b Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden ARTICLE INFO ABSTRACT Keywords: Heparan sulfate proteoglycans (HSPG) are macromolecular glyco-conjugates expressed ubiquitously on the cell Heparan sulfate proteoglycan surface and in the extracellular matrix where they interact with a wide range of ligands to regulate many aspects Cytokines of cellular function. The capacity of the side glycosaminoglycan chain heparan sulfate (HS) being able to interact Cellular signaling with diverse protein ligands relies on its complex structure that is generated by a controlled biosynthesis process, Heparin involving the actions of glycosyl-transferases, sulfotransferases and the glucuronyl C5-epimerase. It is believed that activities of the modification enzymes control the HS structures that are designed to serve the biological functions in a given cell or biological status. In this review, we briefly discuss recent understandings on the roles of HSPG in cytokine stimulated cellular signaling, focusing on FGF, TGF-β, Wnt, Hh, HGF and VEGF. 1. Introduction 2. Biosynthesis of HS Heparan sulfate proteoglycans (HSPGs) are macromolecules, typi- The capacity of HS to interact with a wide diversity of cytokines is cally composed of a core protein, to which several heparan sulfate (HS) attributed to its complex structures that are formed by a controlled glycosaminoglycan chains are covalently attached [1,2].
    [Show full text]
  • Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use
    Molecules 2015, 20, 6342-6388; doi:10.3390/molecules20046342 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use Paola Chiodelli, Antonella Bugatti, Chiara Urbinati and Marco Rusnati * Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy; E-Mails: [email protected] (P.C.); [email protected] (A.B.); [email protected] (C.U.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-030-371-7315; Fax: +39-030-371-7747. Academic Editor: Els Van Damme Received: 26 February 2015 / Accepted: 1 April 2015 / Published: 10 April 2015 Abstract: Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called “angiogenesis glycomic interactome”.
    [Show full text]
  • WT1-Dependent Sulfatase Expression Maintains the Normal Glomerular Filtration Barrier
    BASIC RESEARCH www.jasn.org WT1-Dependent Sulfatase Expression Maintains the Normal Glomerular Filtration Barrier Vale´rie A. Schumacher,*† Ursula Schlo¨tzer-Schrehardt,‡ S. Ananth Karumanchi,§ ʈ ʈ Xiaofeng Shi, Joseph Zaia, Stefanie Jeruschke,† Dongsheng Zhang,§ Hermann Pavenstädt,¶ Astrid Drenckhan,† Kerstin Amann,** Carrie Ng,* Sunny Hartwig,* Kar-Hui Ng,* Jacqueline Ho,* Jordan A. Kreidberg,* Mary Taglienti,* Brigitte Royer-Pokora,† and Xingbin Ai†† *Department of Medicine, Children’s Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; †Institute of Human Genetics, University of Du¨sseldorf, Du¨sseldorf, Germany; ‡Department of Ophthalmology and **Institute for Pathology, University of Erlangen-Nu¨rnberg, Nu¨rnberg, Germany; §Beth Israel ʈ Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Biochemistry and ††The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; and ¶Department of Medicine D, University of Mu¨nster, Mu¨nster, Germany ABSTRACT Paracrine signaling between podocytes and glomerular endothelial cells through vascular endothelial growth factor A (VEGFA) maintains a functional glomerular filtration barrier. Heparan sulfate proteogly- cans (HSPGs), located on the cell surface or in the extracellular matrix, bind signaling molecules such as VEGFA and affect their local concentrations, but whether modulation of these moieties promotes normal crosstalk between podocytes and endothelial cells is unknown. Here, we found that the transcription factor Wilms’ Tumor 1 (WT1) modulates VEGFA and FGF2 signaling by increasing the expression of the 6-O-endosulfatases Sulf1 and Sulf2, which remodel the heparan sulfate 6-O-sulfation pattern in the extracellular matrix. Mice deficient in both Sulf1 and Sulf2 developed age-dependent proteinuria as a result of ultrastructural abnormalities in podocytes and endothelial cells, a phenotype similar to that ϩ/Ϫ observed in children with WT1 mutations and in Wt1 mice.
    [Show full text]
  • Differential Expression Profile Prioritization of Positional Candidate Glaucoma Genes the GLC1C Locus
    LABORATORY SCIENCES Differential Expression Profile Prioritization of Positional Candidate Glaucoma Genes The GLC1C Locus Frank W. Rozsa, PhD; Kathleen M. Scott, BS; Hemant Pawar, PhD; John R. Samples, MD; Mary K. Wirtz, PhD; Julia E. Richards, PhD Objectives: To develop and apply a model for priori- est because of moderate expression and changes in tization of candidate glaucoma genes. expression. Transcription factor ZBTB38 emerges as an interesting candidate gene because of the overall expres- Methods: This Affymetrix GeneChip (Affymetrix, Santa sion level, differential expression, and function. Clara, Calif) study of gene expression in primary cul- ture human trabecular meshwork cells uses a positional Conclusions: Only1geneintheGLC1C interval fits our differential expression profile model for prioritization of model for differential expression under multiple glau- candidate genes within the GLC1C genetic inclusion in- coma risk conditions. The use of multiple prioritization terval. models resulted in filtering 7 candidate genes of higher interest out of the 41 known genes in the region. Results: Sixteen genes were expressed under all condi- tions within the GLC1C interval. TMEM22 was the only Clinical Relevance: This study identified a small sub- gene within the interval with differential expression in set of genes that are most likely to harbor mutations that the same direction under both conditions tested. Two cause glaucoma linked to GLC1C. genes, ATP1B3 and COPB2, are of interest in the con- text of a protein-misfolding model for candidate selec- tion. SLC25A36, PCCB, and FNDC6 are of lesser inter- Arch Ophthalmol. 2007;125:117-127 IGH PREVALENCE AND PO- identification of additional GLC1C fami- tential for severe out- lies7,18-20 who provide optimal samples for come combine to make screening candidate genes for muta- adult-onset primary tions.7,18,20 The existence of 2 distinct open-angle glaucoma GLC1C haplotypes suggests that muta- (POAG) a significant public health prob- tions will not be limited to rare descen- H1 lem.
    [Show full text]
  • Expression and Role of Heparan Sulfated Proteoglycans in Pancreatic Cancer
    REVIEW published: 25 June 2021 doi: 10.3389/fonc.2021.695858 Expression and Role of Heparan Sulfated Proteoglycans in Pancreatic Cancer Simone Furini and Chiara Falciani* Department of Medical Biotechnologies, University of Siena, Siena, Italy Pancreatic cancer is a lethal condition with poor outcomes and an increasing incidence. The unfavourable prognosis is due to the lack of early symptoms and consequent late diagnosis. An effective method for the early diagnosis of pancreatic cancer is therefore sought by many researchers in the field. Heparan sulfated proteoglycan-related genes are often expressed differently in tumors than in normal tissues. Alteration of the tumor microenvironment is correlated with the ability of heparan sulfated proteoglycans to bind cytokines and growth factors and eventually to influence tumor progression. Here we discuss the importance of glypicans, syndecans, perlecan and extracellular matrix modifying enzymes, such as heparanases and sulfatases, as potential diagnostics in Edited by: pancreatic cancer. We also ran an analysis on a multidimensional cancer genomics Manuela Viola, database for heparan sulfated proteoglycan-related genes, and report altered expression University of Insubria, Italy Reviewed by: of some of them. Sherif Ibrahim, Keywords: heparan sulfated proteoglycans, pancreatic cancer, prognosis, cancer genomics, screening, Cairo University, Egypt precision medicine Valeria De Pasquale, University of Naples Federico II, Italy *Correspondence: Chiara Falciani INTRODUCTION [email protected] Pancreatic cancer is a lethal condition with poor outcomes and an increasing incidence. It has a 5‐ Specialty section: year survival of 9% (1), the poor prognosis being due to absence of early symptoms and consequent This article was submitted to late diagnosis.
    [Show full text]
  • SULF1 Suppresses Wnt3a-Driven Growth of Bone Metastatic
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.969485; this version posted February 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models Fabio Henrique Brasil da Costa1,2, Michael Lewis3, Anna Truong4, Daniel Carson1,5, Mary Farach-Carson1,2,6,¤,* 1 Biosciences Department, Rice University, Houston, TX, USA 2 Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center School of Dentistry, Houston, TX, USA 3 Department of Pathology and Medicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA 4 Department of Chemistry, Rice University, Houston, TX, USA 5 Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 6 Department of Bioengineering, Rice University, Houston, TX, USA ¤Current Address: Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center School of Dentistry, Houston, TX, USA * [email protected] Abstract Bone marrow stroma influences metastatic prostate cancer (PCa) progression, latency, and recurrence. At sites of PCa bone metastasis, cancer-associated fibroblasts and tumor-associated macrophages interact to establish a perlecan-rich desmoplastic stroma. As a heparan sulfate proteoglycan, perlecan (HSPG2 ) stores and stabilizes growth factors, including heparin-binding Wnt3A, a positive regulator of PCa cell growth. Because PCa cells alone do not induce CAF production of perlecan in the desmoplastic stroma, we sought to discover the sources of perlecan and its growth factor-releasing modifiers SULF1, SULF2, and heparanase in PCa cells and xenografts, bone marrow fibroblasts, and macrophages.
    [Show full text]
  • The Structure, Function and Evolution of the Extracellular Matrix: a Systems-Level Analysis
    The Structure, Function and Evolution of the Extracellular Matrix: A Systems-Level Analysis by Graham L. Cromar A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Graham L. Cromar 2014 ii The Structure, Function and Evolution of the Extracellular Matrix: A Systems-Level Analysis Graham L. Cromar Doctor of Philosophy Department of Molecular Genetics University of Toronto 2014 Abstract The extracellular matrix (ECM) is a three-dimensional meshwork of proteins, proteoglycans and polysaccharides imparting structure and mechanical stability to tissues. ECM dysfunction has been implicated in a number of debilitating conditions including cancer, atherosclerosis, asthma, fibrosis and arthritis. Identifying the components that comprise the ECM and understanding how they are organised within the matrix is key to uncovering its role in health and disease. This study defines a rigorous protocol for the rapid categorization of proteins comprising a biological system. Beginning with over 2000 candidate extracellular proteins, 357 core ECM genes and 524 functionally related (non-ECM) genes are identified. A network of high quality protein-protein interactions constructed from these core genes reveals the ECM is organised into biologically relevant functional modules whose components exhibit a mosaic of expression and conservation patterns. This suggests module innovations were widespread and evolved in parallel to convey tissue specific functionality on otherwise broadly expressed modules. Phylogenetic profiles of ECM proteins highlight components restricted and/or expanded in metazoans, vertebrates and mammals, indicating taxon-specific tissue innovations. Modules enriched for medical subject headings illustrate the potential for systems based analyses to predict new functional and disease associations on the basis of network topology.
    [Show full text]
  • Sulf1a and HGF Regulate Satellite-Cell Growth
    Research Article 1873 Sulf1A and HGF regulate satellite-cell growth Roop Gill, Laura Hitchins, Fenella Fletcher and Gurtej K. Dhoot* Department of Basic Sciences, The Royal Veterinary College, University of London, Royal College Street, London, NW1 0TU, UK *Author for correspondence ([email protected]) Accepted 9 March 2010 Journal of Cell Science 123, 1873-1883 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jcs.061242 Summary The role of Sulf1A, sulfation and hepatocyte growth factor (HGF) in satellite-cell growth was examined in an in vitro model of dissociated whole skeletal muscle fibres. Pax7-positive quiescent satellite cells express little or no Sulf1A but show rapid re-expression in regenerating myoblasts and myotubes, similar to embryonic muscle and in vitro satellite cells preceding asynchronous MyoD activation. Once activated, Sulf1A and MyoD re-expression persists up to 72 hours in most satellite cells under normal culture conditions and following moderate changes in sulfation, whereas Sulf1A neutralisation by antibodies not only enhances satellite-cell proliferation but also downregulates MyoD and Pax7 expression in a large proportion of the satellite cells. The HGF exposure also induces similar but even more pronounced changes characterised by variable sulfation levels and rapid downregulation of MyoD and Pax7 without myogenin activation in a sub-set of cells. This Pax7-MyoD-myogenin-negative sub-population expresses Sulf1A and Myf5. The transfer of all such satellite-cell progenies onto gelatin-coated-substratum re-activates MyoD and Pax7 gene expression in all cells, thus detecting a distinct sub-population of satellite cells. We conclude that HGF and fine-tuned sulfation levels are major contributory factors controlling satellite-cell growth by regulating the relative activities of actively proliferating and differentiating cells.
    [Show full text]
  • Sulf2a Controls Shh-Dependent Neural Fate Specification in the Developing Spinal Cord
    www.nature.com/scientificreports OPEN Sulf2a controls Shh‑dependent neural fate specifcation in the developing spinal cord Cathy Danesin*, Romain Darche‑Gabinaud, Nathalie Escalas, Vanessa Bouguetoch, Philippe Cochard, Amir Al Oustah, David Ohayon, Bruno Glise & Cathy Soula Sulf2a belongs to the Sulf family of extracellular sulfatases which selectively remove 6‑O‑sulfate groups from heparan sulfates, a critical regulation level for their role in modulating the activity of signalling molecules. Data presented here defne Sulf2a as a novel player in the control of Sonic Hedgehog (Shh)‑mediated cell type specifcation during spinal cord development. We show that Sulf2a depletion in zebrafsh results in overproduction of V3 interneurons at the expense of motor neurons and also impedes generation of oligodendrocyte precursor cells (OPCs), three cell types that depend on Shh for their generation. We provide evidence that Sulf2a, expressed in a spatially restricted progenitor domain, acts by maintaining the correct patterning and specifcation of ventral progenitors. More specifcally, Sulf2a prevents Olig2 progenitors to activate high‑threshold Shh response and, thereby, to adopt a V3 interneuron fate, thus ensuring proper production of motor neurons and OPCs. We propose a model in which Sulf2a reduces Shh signalling levels in responding cells by decreasing their sensitivity to the morphogen factor. More generally, our work, revealing that, in contrast to its paralog Sulf1, Sulf2a regulates neural fate specifcation in Shh target cells, provides direct evidence of non‑redundant functions of Sulfs in the developing spinal cord. Sulf protein family, comprising Sulf1 and Sulf2, are heparan sulfate (HS) proteoglycan-editing enzymes that regulate a large number of signalling pathways1,2.
    [Show full text]