Tectono-Stratigraphic Evolution of Deep-Marine Clastic Systems in the Eocene Ainsa and Jaca Basins, Spanish Pyrenees: Petrographic and Geochemical Constraints

Total Page:16

File Type:pdf, Size:1020Kb

Tectono-Stratigraphic Evolution of Deep-Marine Clastic Systems in the Eocene Ainsa and Jaca Basins, Spanish Pyrenees: Petrographic and Geochemical Constraints Tectono-stratigraphic evolution of deep-marine clastic systems in the Eocene Ainsa and Jaca basins, Spanish Pyrenees: petrographic and geochemical constraints Kanchan DAS GUPTA Department of Earth Sciences University College London Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of London October 2008 UMI Number: U592597 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U592597 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract The Early-Middle Eocene deep-marine siliciclastic systems of the Ainsa and Jaca foreland basins, Spanish Pyrenees, have been used to develop and support generic models for deep-marine deposits, from process-based to system-based perspectives, and these ideas have been applied globally by academics and industry alike. Despite the considerable amount of research into many aspects of sedimentology of the Ainsa and Jaca basins, the widely-adopted stratigraphic correlation of sandstone systems in the Ainsa and Jaca basins is very poorly-constrained, although the stratigraphy and accurate correlation of sandstone bodies along the basin are paramount to any depositional models that arise from any studies in the Ainsa and Jaca basins. This study used petrography, geochronology, major and trace element geochemistry to better constrain and understand the evolution of the basinal sediments and fingerprint the sandstone bodies within the Ainsa - Jaca basin as a means of correlation. An additional pilot study was carried out on carbon and oxygen isotopic signatures of larger foraminifera from the outcrops. Three discrete sediment sources are recognised for the deep-marine Early to Mid-Eocene sandstone bodies in the Ainsa and Jaca basins. The arenite composition in the Ainsa and Jaca basins is interpreted to be mainly controlled by synsedimentary tectonic processes that led to changes in sediment sources during basin evolution. Comprehensive petrography data shows that each system of the Ainsa and Jaca basins has a characteristic petrofacies. Three main petrofacies are recognised and on the basis of these petrofacies, a revised correlation of the sandy systems is proposed between the more proximal Ainsa basin, and the more distal Jaca basin sediments, now separated by the Boltana anticline, across which it is impossible to actually trace out individual beds or sandstone packages between both basins. The new correlation scheme, along with the newly identified sediment provenances, changes the current (published) understanding of the Ainsa and Jaca basins evolution and palaeogeography. 2 Acknowledgement Several people have helped me to achieve the goal of completing this PhD, and making this thesis possible. First of all, I would like to express sincere gratitude to my supervisors Prof Kevin T Pickering and Prof Tony Hurford for their encouragement and comments during all stages of my work. I am also indebted to their help regarding matters of academic and non-academic concerns. Special thanks must be given to Dr Andy Carter for his continuous guidance and assistance with the geochronology work. Furthermore, this thesis benefited immensely from the constructive criticism of Prof Rob Hall and Dr Sarah Davies. I greatly appreciate the help received from several people during data generation for this research. Thanks to UCL deep-water research group members, Tom, Nicole and Clare, for helping me out with the fieldwork. Thanks to the staff and lab in-charge of the following laboratories for assisting me with different laboratory techniques: Wolfson Laboratory for Environmental Geochemistry, UCL for carbon analyses; Bloomsbury Environmental Isotope Facility, UCL and Stable Isotope Laboratories, Royal Holloway University of London (RHUL) for stable isotope analyses; Wolfson Archaeological Science Laboratories, UCL for CL imaging; X-Ray Fluorescence Laboratory, RHUL for XRF analyses. A very special note of thanks is due to Dr Joachim Thomas for helping me with the sample collection in Jaca area. This PhD project was jointly funded by the Natural Environmental Research Council (NERC) and Scottish Power under the “Dorothy Hodgkin Postgraduate Award” scheme. Additional financial assistance from Prof Tony Hurford, the UCL Graduate School and the International Association of Sedimentologists (IAS) towards laboratory costs and conference expenses are gratefully acknowledged. Finally, cheers to all my friends in India, Germany and London, who have stood by me through the good and bad times during my PhD, and who have made my stay in UCL (especially Heather, Simon, Tom DJ and Seb) a memorable experience. Last, but not the least, I acknowledge my family for their constant encouragement, enthusiasm and moral support. 3 Table of Contents Page No. Abstract 2 Acknowledgment 3 Table of contents 4 List of figures 8 List of tables 12 List of abbreviations 13 Chapter 1 Introduction 14-20 1.1 Objectives 16 1.2 Methods 19 1.3 Organisation of the thesis 19 Chapter 2 Geology of the Study Area 21-42 2.1 The Eocene - an overview 21 2.2 The Pyrenees 29 2.3 The Ainsa-Jaca basin 33 2.3.1 Stratigraphy and palaeogeography of the Ainsa basin 36 2.3.2 Stratigraphy and palaeogeography of the Jaca basin 38 2.3.3 Correlation framework in the Ainsa and Jaca basins 40 Chapter 3 Materials and Methods 43-75 3.1 Sample acquisitions 43 3.2 Petrography techniques 64 3.3 Geochronology techniques 65 3.3.1 Heavy mineral separation 67 3.3.2 Fission track chronometry 67 3.3.3 U-Pb analysis 71 3.4 Geochemical Techniques 72 4 3.4.1 X-ray fluorescence (XRF) analysis 72 3.4.2 Stable isotope analysis 74 3.4.3 Carbon analysis 74 Chapter 4 Petrography of the Ainsa and Jaca basins 76-111 4.1 Introduction 76 4.2 Framework grains 78 4.2.1 Non-Carbonate Extrabasinal (NCE) 78 4.2.2 Non-Carbonate Intrabasinal (NCI) 78 4.2.3 Carbonate Extrabasinal (CE) 81 4.2.4 Carbonate Intrabasinal (Cl) 81 4.3 Petrography of the Ainsa basin systems 89 4.3.1 Fosado system 89 4.3.2 Arro system 89 4.3.3 Gerbe system 90 4.3.4 Banaston system 91 4.3.5 Ainsa system 91 4.3.6 Morillo system 92 4.3.7 Guaso system 93 4.4 Petrography of the Jaca basin systems 93 4.4.1 Torla system 93 4.4.2 Broto system 94 4.4.3 Cotefablo system 94 4.4.4 Banaston system 95 4.4.5 Jaca system 95 4.5 Diagenesis 96 4.6 Petrofacies 99 4.7 Compositional trends 105 4.8 Corrections for indistinguishable limeclasts 109 5 Chapter 5 Geochronology and Geochemistry of the proximal Ainsa basin 112-142 5.1 Introduction 112 5.2 Geochemistry 113 5.2.1 Major element composition 113 5.2.2 Trace element composition 124 5.3 Geochronology 131 5.3.1 Fission Track (FT) data 131 5.3.2 U-Pb data 135 5.3.3 Zircon structure 139 Chapter 6 Isotopic Signatures of Foraminifera 143-155 6.1 Introduction 143 6.2 Results 144 6.3 Preservation of isotopic signal 149 6.4 Ainsa basin vs. global isotopic signal 152 6.5 Summary 155 Chapter 7 Discussion 156-182 7.1 Tectonic setting 15 6 7.2 Provenance 159 7.3 Hinterland evolution and sediment dispersal 163 7.4 Evolution of basinal sediments 169 7.4.1 Ainsa basin 169 7.4.2 Jaca basin 171 7.5 Revised correlation of sandy systems of the Ainsa and Jaca basins 174 Chapter 8 Conclusions 183-187 8.1 Provenance and evolution 183 8.2 Correlation and palaeogeography 185 8.3 Recommendation for future work 186 6 References 188 Appendix I U-Pb geochronologic analyses of the Ainsa basin 216 detrital zircons Appendix II Fission-Track age calculation 230 List of publications 236 7 List of Figures Chapter I Page No. Figure 1.1 Diagram illustrating the range of processes and their 15 interaction in deep water environments. Figure 1.2 World map showing principal frontier areas for 16 hydrocarbon exploration. Chapter 2 Figure 2.1 Relief map of the Iberian Peninsula. 22 Figure 2.2 An overview of the main bio-, magneto-, chemo-, and 23 other events in the Eocene epoch. Figure 2.3 World palaeogeography during initiation and culmination 23 of the Eocene epoch. Figure 2.4 Simplified palaeogeographic map of south-western 26 Europe during the Early to Middle Ypresian (55-51 Ma). Figure 2.5 Simplified palaeogeographic map of south-western 27 Europe during the Late Lutetian (44-41 Ma). Figure 2.6 Simplified palaeogeographic map of south-western 29 Europe during the Late Rupelian (32-29 Ma). Figure 2.7 (A) Structural cross section along the ECORS Pyrenees 31 line. (B) Simplified structural map of the Pyrenees showing the main tectonic zones. Figure 2.8 Simplified geological map of the Pyrenees and southern 34 foreland basins, also showing location of the study area. Figure 2.9 Palaeogeographic reconstructions of the Ainsa and Jaca 35 basins and surrounding areas during the early Lutetian. Figure 2.10 General stratigraphy of the Ainsa basin. 37 Figure 2.11 Stratigraphy of the Jaca basin. 39 Figure 2.12 Schematic diagram showing different correlations 41 proposed for the turbidite systems of the Ainsa and Jaca basins. Figure 2.13 Correlation framework of the sandstone (turbidite) 42 systems in the Ainsa and Jaca basins prior to this thesis.
Recommended publications
  • And Ordovician (Sardic) Felsic Magmatic Events in South-Western Europe: Underplating of Hot Mafic Magmas Linked to the Opening of the Rheic Ocean
    Solid Earth, 11, 2377–2409, 2020 https://doi.org/10.5194/se-11-2377-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean J. Javier Álvaro1, Teresa Sánchez-García2, Claudia Puddu3, Josep Maria Casas4, Alejandro Díez-Montes5, Montserrat Liesa6, and Giacomo Oggiano7 1Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain 2Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain 3Dpt. Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain 4Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 5Instituto Geológico y Minero de España, Plaza de la Constitución 1, 37001 Salamanca, Spain 6Dpt. de Mineralogia, Petrologia i Geologia aplicada, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 7Dipartimento di Scienze della Natura e del Territorio, 07100 Sassari, Italy Correspondence: J. Javier Álvaro ([email protected]) Received: 1 April 2020 – Discussion started: 20 April 2020 Revised: 14 October 2020 – Accepted: 19 October 2020 – Published: 11 December 2020 Abstract. A geochemical comparison of early Palaeo- neither metamorphism nor penetrative deformation; on the zoic felsic magmatic episodes throughout the south- contrary, their unconformities are associated with foliation- western European margin of Gondwana is made and in- free open folds subsequently affected by the Variscan defor- cludes (i) Furongian–Early Ordovician (Toledanian) activ- mation.
    [Show full text]
  • Reseña Histórica
    RESEÑA HISTÓRICA EL NOMBRE: Varios historiadores mencionan que este lugar era citado por primera vez en el año de 1108 como Iassa o Jassa, pero parece lógico reconocer su existencia en tiempo anterior que se remonta a los años anteriores a 1035, en que en que la zona pirenaica de Jaca se convirtió en Reino de Aragón regentado por Ramiro I. LOS TIEMPOS REMOTOS: Se afirma que el valle del río Osia debió de ser poblado desde tiempos prehistóricos como atestiguan diversos restos identificados en el valle, como el dolmen de Lizara. Ya en el siglo VIII con la invasión musulmana, de la Hispania visigoda surgen diversos reductos cristianos de resistencia al Islam, entre ellos el que sería futuro embrión del solar de Aragón. En el siglo IX un reducido territorio ubicado entre los valles de Canfranc y Hecho tutelado por el reino pamplonés y protegido por los carolingios tomó el nombre del río Aragón —denominación que está documentada por primera vez en el año 828—; y con el paso del tiempo este pequeño reducto iría ampliando sus fronteras durante los siglos, constituyéndose primero en Condado y luego en Reino con unos límites territoriales que se han conservado luego hasta la actualidad. El matrimonio de Andregoto - hija del conde aragonés Galindo II Aznárez - con el rey García Sánchez I de Navarra condujo a la unión de ambas entidades políticas, si bien la aragonesa siguió conservando una cierta personalidad, reforzada por el renacer de la vida monástica y la organización de una diócesis coincidente con los límites del condado. SIGLOS I AL X: En el año 1035, Ramiro I - hijo natural de Sancho III de Navarra y Baiulus del condado de Aragón -, incorpora a este último los condados de Sobrarbe y Ribagorza que habían estado bajo el gobierno de su hermanastro Gonzalo.
    [Show full text]
  • Sector De Huesca 2004
    MAPA SANITARIO DE LA COMUNIDAD AUTÓNOMA DE ARAGÓN SECTOR DE HUESCA DIRECCIÓN DEL DOCUMENTO MANUEL GARCÍA ENCABO Director General de Planificación y Aseguramiento Departamento de Salud y Consumo JULIÁN DE LA BÁRCENA GUALLAR Jefe de Servicio de Ordenación y Planificación Sanitaria Dirección General de Planificación y Aseguramiento Departamento de Salud y Consumo ELABORACIÓN MARÍA JOSÉ AMORÍN CALZADA Servicio de Planificación y Ordenación Sanitaria Dirección General de Planificación y Aseguramiento Departamento de Salud y Consumo OLGA MARTÍNEZ ARANTEGUI Servicio de Planificación y Ordenación Sanitaria Dirección General de Planificación y Aseguramiento Departamento de Salud y Consumo DIEGO JÚDEZ LEGARISTI Médico Interno Residente de Medicina Preventiva y Salud Pública Hospital Clínico Universitario Lozano Blesa AGRADECIMIENTOS Se agradece la colaboración prestada en la revisión de este documento a Javier Quíntin Gracia de la Dirección de Atención Primaria del Servicio Aragonés de Salud, y a María Luisa Gavín Lanzuela del Instituto Aragonés de Estadística. Además, este documento pretende ser continuación de la labor iniciada hace años por compañeros de la actual Dirección de Atención Primaria del Servicio Aragonés de Salud. Zaragoza, septiembre de 2004 Mapa Sanitario de Aragón Sector de Huesca 3 ÍNDICE INFORMACIÓN GENERAL............................................................................. 5 ZONA DE SALUD DE ALMUDÉVAR .............................................................. 13 ZONA DE SALUD DE AYERBE.....................................................................
    [Show full text]
  • New Insights on the Marseille-Aubagne Oligocene Basins (France)
    Nury, D., Villeneuve, M., Arlhac, P., Gärtner, A., Linnemann, U., Châteauneuf, J.J., Riveline, J. and Hippolyte, J.C., 2016. New insights on the Marsei- lle-Aubagne Oligocene basins (France). Boletín Geológico y Minero, 127 (2/3): 483-498 ISSN: 0366-0176 New insights on the Marseille-Aubagne Oligocene basins (France) D. Nury(1), M. Villeneuve(2), P. Arlhac(3), A. Gärtner(4), U. Linnemann(4), J.J. Châteauneuf(5), J. Riveline(6) and J.C. Hippolyte(2) (1) MCF honoraire, 48, impasse des Micocoules, 13390, Auriol, France. [email protected] (2) Cerege, case 67, 3 place Victor Hugo, 13331, Marseille, France. [email protected] (3) MCF honoraire, 2208, chemin de Cuges, 83740, La Cadière d’Azur. [email protected] (4) Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Königsbrücker Landstrasse 159, D 01109, Dresden, Germany. Email:[email protected] [email protected] (5) BRGM. 8, Quai du Chatelet, 45000 , Orléans, France. [email protected] (6) UPMC – ISTEP UMR 7193, laboratoire de biominéralisations et environnements sédimentaires, case 116, 4, Place Jussieu, 75252 Paris Cedex 05. [email protected] ABSTRACT The Marseille-Aubagne Basins, which extend from Marseille to Roquevaire, occupy more than fifty per cent of the Marseille-Aubagne geological map, with approximately one million people living in this area. Despite this geological importance they are still poorly known. The first synthetic view was delivered in the 1935 geological map. Studied by Bonifay, the Quaternary deposits have been included in the 1969 geological map. Nevertheless, the Oligocene formations remained unmodified until Nury, who provided a lot of very detailed stratigraphic data.
    [Show full text]
  • Alpine Orogeny the Geologic Development of the Mediterranean
    Alpine Orogeny The geologic development of the Mediterranean region is driven by the Alpine-Himalayan orogeny, a suturing of Gondwana-derived terranes with the Eurasion craton. In broad terms, this is a Mesozoic and Cenozoic convergent zone that extends from the Spain to Southeastern Asia and may extend along the southwest Pacific as far as New Zealand (Rosenbaum and Lister, 2002). The Alpine orogeny was caused by the convergence of the African and European plates (Frisch, 1979; Tricart, 1984; Haas et al., 1995) with peak collisional phases occurring at different times: Cretaceous in the Eastern Alps and Tertiary in the Western Alps (Schmid et al., 2004). Note: prior to the opening of the Paleotethys sea, the Variscan orogenic belt developed in central Europe then the Laurussian and Gondwana converged in the Devonian and Late Carboniferous. Although the location of the suture Extent of the Alpine-Himalayan orogenic belt is not clear, the orogenic belt was extensive, (Rosenbaum and Lister, 2002). running from the Bohemian Massif to the Alpine-Carpathian-Dinarides belt (). The Paleotethys sea existed in the Triassic but closed in the early Mesozoic due to convergence along the Cimmerian (and Indosinian) suture zone. The Paleotethys (or Tethys I) has been described as a wedge- shaped ocean that opened to the east, separating Eurasia from Africa, India, and Australia (Laurasia and Gondwana). Very little evidence of the Paleotethys exists today which has caused some to question its existence (Meyerhoff and Eremenko, 1976) The Tethys opened as Pangea broke up in the Early Jurassic and Africa moved east relative to Europe.
    [Show full text]
  • Fomento Licita El Proyecto Del Tramo Puente La Reina De Jaca-Fago De La Autovía A-21, En Huesca
    OFICINA DE INFORMACIÓN MINISTERIO DE FOMENTO El tramo tiene unos 11,68 kilómetros de longitud Fomento licita el proyecto del tramo Puente la Reina de Jaca-Fago de la Autovía A-21, en Huesca rensa • El presupuesto de licitación asciende a 1.180.007,33 € p 08 de abril de 2005. El Ministerio de Fomento ha licitado, con su publicación oficial en el Boletín Oficial del Estado la redacción del proyecto de construcción del tramo Puente la Reina de Jaca-Fago de la Autovía A-21. El presupuesto de licitación que asciende a 1.180.007,33 euros. El proyecto, cuya licitación se publica hoy en el Boletín Oficial del estado, licitado corresponde a un tramo de aproximadamente 11,68 kilómetros de longitud desde Puente de la Reina de Jaca hasta el límite Nota de entre las provincias de Huesca y Zaragoza. Discurre por los municipios de Puente La Reina de Jaca, Canal de Berdún y Sigüés. Características Técnicas: El tramo comienza en las inmediaciones de Puente la Reina de Jaca, a unos 300 metros al norte de la N-240. De acuerdo con la Declaración de Impacto Ambiental, al inicio del tramo se ha ajustado el trazado para minimizar la afección a los encinares existentes en la zona. A continuación, atraviesa los barrancos de las Bergueras y de la Fuente mediante sendos viaductos, para evitar la afección a las masas de encinares que se forman en sus laderas. Posteriormente, en el punto kilométrico 3,00, el trazado cruza la actual N-240, disponiéndose al Sur de la misma, atravesando el barranco de Artosa y de Linas donde confluyen ambos.
    [Show full text]
  • Jaca Excursions 8 Propositions Pour Connaître Les Parages De Jaca 3 Santa Cilia De Fago Et Majones
    Jaca Excursions 8 propositions pour connaître les parages de Jaca 3 Santa Cilia de Fago et Majones. Ce dernier possède une église Ensemble historico-artistique. Chemin de Saint-Jacques. romane à abside trilobée et tour défensive du XVe s. Église de San Salvador, XVIIe et XVIIIe s. Foz de Biniés Puente la Reina de Jaca Paysage surprenant, avec un passage creusé par la Important nœud de communications. rivière Veral. Embún Berdún Église paroissiale du XVIe s. Typiques «boliches» L’un des villages les plus photographiés des (petits haricots blancs). Musée du Palotiau y la Pyrénées. Autrefois forteresse, Berdún en a Farrería (installé dans l’ancienne Forge). conservé l’une des anciennes portes d’entrée. Église du gothique aragonais du XVIe s., avec Hecho orgue baroque. Grandes demeures aristocratiques. Au pied de la Peñaforca et du Castillo de Acher, Ermitage roman. À proximité du barrage de Yesa se jouxtant la Voie romaine Saragosse–Lescar (France) et traversant trouvent Sigüés, avec une église romane du XIIe s., et Salvatierra de le col du Palo. Berceau du Comté d’Aragon. Très belles maisons avec Escá, qui forme un bel ensemble historique. d’imposantes cheminées et de sveltes balcons. Musée ethnologique et Musée de sculpture en plein air. Artieda Église d’origine médiévale ayant subi plusieurs transformations 1 Siresa au XVIe s.. Point important du Chemin de St Jacques à son passage Monastère de San Pedro créé vers 833 par Galindo Aznárez, fondateur en Aragon. de la Maison des comtes d’Aragon. Beaux paysages et magnifiques Vallées Occidentales forêts entre la Boca del Infierno et la Selva de Oza et Guarrinza.
    [Show full text]
  • Anuncio De La Apertura De Cobranza
    7 Julio 2020 Boletín Oficial de la Provincia de Huesca Nº 128 SELLO ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE HUESCA 07/07/2020 TESORERÍA RECAUDACION DE TRIBUTOS SERVICIOS CENTRALES Publicado en tablón de edictos 2335 ANUNCIO APERTURA DE COBRANZA DEL IMPUESTO SOBRE VEHÍCULOS DE TRACCIÓN MECÁNICA, IMPUESTO SOBRE BIENES INMUEBLES DE NATURALEZA URBANA Y DE CARACTERÍSTICAS ESPECIALES, AÑO 2020 Y TASAS Y PRECIOS PÚBLICOS, SEGUNDO PERÍODO DE RECAUDACIÓN AÑO 2020 . De conformidad con los artículos 23 y 24 del Reglamento General de Recaudación, aprobado por Real Decreto 939/2005, de 29 de julio, se pone en conocimiento de los contribuyentes, que desde el próximo día 15 de julio y hasta el día 19 de octubre de 2020, se con ambos inclusive, tendrá lugar la cobranza anual, por recibo, en período voluntario, del firma Sede no la IMPUESTO SOBRE VEHÍCULOS DE TRACCIÓN MECÁNICA (AÑO 2020), IMPUESTO una que en y SOBRE BIENES INMUEBLES DE NATURALEZA URBANA Y DE CARACTERÍSTICAS documento CSV menos ESPECIALES (AÑO 2020) Y DE TASAS Y PRECIOS PÚBLICOS de los conceptos, el el al períodos y ayuntamientos que se especifican, con arreglo al calendario que se publica en el con Electrónica Boletín Oficial de la Provincia y en los Edictos que se remitirán por el Servicio Provincial de obtener contiene Recaudación de Tributos Locales para su exposición en el Tablón de anuncios de los Sede acceda la respectivos Ayuntamientos. necesita de original Si originales, Ayuntamientos de los que se realiza el cobro del fuera Impuesto sobre Vehículos de Tracción validar. Mecánica (año 2020): documento firmas El realizada pudo las Electrónica.
    [Show full text]
  • Aragüés Del Puerto Hasta El Límite Con Navarra
    El GR 15 es un sendero de gran recorrido aragonés que atravie- sa de este a oeste el norte de la provincia de Huesca, en parale- lo al trazado de los Pirineos, desde Bonansa (límite con Lérida) Aragüés del Puerto hasta el límite con Navarra. El itinerario discurre a lo largo de las agrestes sierras prepirenaicas, entramado geológico singu- lar que propicia una excepcional diversidad de ambientes y GR 15 Huesca ecosistemas. Las localidades del camino preservan una genuina Aragüés Castiello Aso de Yosa de San Martín San Feliu El Pont cultura tradicional, ligada a la montaña, además de destacadas Acumuer Bestué Algaraieta (vértice)Fago Ansó Hecho Urdués del PuertoJasa Aísa Esposa Borau de Jaca Sobremonte Sobremonte Biescas Gavín Yésero Broto Buesa Fanlo Buisán Nerín San Úrbez Escuaín Arinzué Tella Lafortunada Saravillo Barbaruens Seira Gabás de Veri de Veri Abella Espés Alins Bonansa Cirés de Suert Zaragoza HUESCA manifestaciones artísticas y monumentales cuyo momento de GR 15.1 Teruel mayor esplendor se remonta hasta el Medievo. Buerba Vio The GR 15 is an Aragonese long-distance footpath which crosses the north of the province of Huesca from east to west, parallel to the route of the Pyrenees, from Bonansa (border N with Lerida) to the border with Navarre. The itinerary runs through the rugged Pre-Pyrenean Ranges, a singular GR 15 geological structure that propitiates an exceptional diversity of environments and ecosystems. The localities of the road maintain a genuine traditional culture, linked to the mountains, as well as outstanding artistic and monumental manifestations, whose moment of greatest splendour dates back to the medieval era.
    [Show full text]
  • Kinematic and Petrologic Analysis of Alpine Structures in the Axial Zone of the Pyrenees, Spain
    Kinematic and petrologic analysis of Alpine structures in the Axial Zone of the Pyrenees, Spain Kuiper, M.E. Department of Earth Sciences Utrecht University, Utrecht, The Netherlands MSc-thesis under supervision of Dr. E. Willingshofer & Prof. Dr. M.R. Drury Abstract In the Axial-Zone of the Pyrenees, in the Pallars Sobirà, Northern Pallars Jussà and Alta Ribargorça regions, a field research has been conducted in order to understand the difference in kinematics between the Variscan and Alpine orogenies, respectively. Structural mapping has been complemented with microstructural and petrologic investigations of Paleozoic rocks from the Axial Zone in order to constrain pressure and temperature conditions during deformation. Furthermore, measurements have been taken of faults and foliations in the studied area. This data has been plotted in stereographic projections to compare the two major deformation phases which have affected the Axial Zone of the Pyrenees. From this study it can be concluded that there is a slight difference in the kinematics of the Variscan and Alpine orogeny. There are three deformation event recognized. An old deformation phase resulting in a penetrative S1 foliation which has been crenulated by a younger C1 structure. These structures have been deformed by the youngest deformation phase reactivating faults and creating an antiformal stack in the central Pyrenees. Small difference in the orientation of the shortening direction between the two orogenies to be found in the studied area. The Variscan orogeny shows general shortening in the NNE-SSW direction, whereas the Alpine orogeny is more N-S. From the petrologic analysis of the thin sections, it can be concluded from analyzing the twinning structures in the calcite minerals, that the pressure and temperature conditions during the Variscan orogeny for the currently exposed rocks near Llavorsi lie around 107 MPa and 300°C.
    [Show full text]
  • Page Numbers in Italic, Eg 305, Refer to Figures
    Index Page numbers in italic, e.g. 305, refer to figures. Page numbers in bold, e.g. 99, signify entries in tables. Aalen, modelled subsidence curves 305 Bourneville Ahun Basin 59 air-loaded tectonic subsidence curves 303 Albacete 466 modelled subsidence curves 304 Albarracin 466 Bowland Basin 45 Alcoroches 468 Brande Graben 77 Ales/Cevennes Basin 59 Bray Fault 337 Alps, Stephanian-Autunian magmatism 57 Bremen 51 Altmark 14 Bresse Graben 290 Anayet 442, 443 Brive Basin 59 Ancenis 104 Bronchales 468 Andross Fault 46, 53 Brousse Basin 59 Arag6n-Subordfi. Basin 442, 443 Burgundy Trough 296, 302 Aranaz 442 Burntisland 196 Armorica-Barrandia Terrane 2 Bute 196 Armorican Composite Terrane 43 Buxton 47 Armorican Massif 43, 95 age and thickness of strata 99, 100 Caherconlish 48 Carboniferous basins 104 Calatayud 468 transect 105-107 Caledonian Deformation Front 14, 140 Arran 196 Campanil 442 Arthur's Seat, Edinburgh 43, 44 Campsie Fells 196, 220 Asker Group sediments 17 Canfranc 442 Asta Graben 77, 160 Cardigan Bay/St George's Channel Basin, age and thickness Ateca 468 of strata 103 Atienza 466, 468, 469 Carlisle 196 Avalonia terrane 2, 14, 244 Castell6n de la Plana 466 Ayr 196, 200 Castleton 47 Central Graben, North Sea 14, 77, 160 Bad Kreuznach 56 age determinations 17 Bad Liebenstein 321 Central Irish Sea Basin 108 Bad Sachsa 55 age and thickness of strata 103 Bad Salzungen 321 Champotran, modelled subsidence curves 304 Bakewell 47 Chantonnay Basin 104 Ballybrood 48 Chart6w 394 Baltic Sea 261 Chateaulin 104 Baltic Shield 14 Cheshire Basin
    [Show full text]
  • Detrital Zircons from the Ordovician Rocks of the Pyrenees: Geochronological Constraints and Provenance
    TECTO-127007; No of Pages 11 Tectonophysics xxx (2016) xxx–xxx Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Detrital zircons from the Ordovician rocks of the Pyrenees: Geochronological constraints and provenance Aina Margalef a,⁎, Pedro Castiñeiras b, Josep Maria Casas c,MarinaNavidadb, Montserrat Liesa d, Ulf Linnemann e, Mandy Hofmann e, Andreas Gärtner e a Centre d'Estudis de la Neu i de la Muntanya d'Andorra, Institut d'Estudis Andorrans, Andorra b Departamento de Petrología y Geoquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain c Departament de Geodinàmica i Geofísica-Institut de Recerca GEOMODELS, Universitat de Barcelona (UB), Martí i Franquès s/n, Barcelona 08028, Spain d Departament de Geoquímica, Petrologia i Prospecció Geològica, Universitat de Barcelona (UB), Martí i Franquès s/n, Barcelona 08028, Spain e Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, Königsbrücker Landstraße 159, D-01109 Dresden, Germany article info abstract Article history: The first LA-ICP-MS U–Pb detrital zircon ages from quartzites located below (three samples) and above (one Received 31 August 2015 sample) the Upper Ordovician unconformity in the Central Pyrenees (the Rabassa Dome, Andorra) were investi- Received in revised form 9 March 2016 gated. The maximum depositional age for the Jújols Group, below the unconformity, based on the youngest Accepted 14 March 2016 detrital zircon population, is around 475 Ma (Early Ordovician), whereas for the Bar Quartzite Fm., above the Available online xxxx unconformity, the presence of only two zircons of 442 and 443 Ma precludes obtaining a precise maximum sed- Keywords: imentation age.
    [Show full text]