Plant Communities of Capitol Reef National Park, Utah

Total Page:16

File Type:pdf, Size:1020Kb

Plant Communities of Capitol Reef National Park, Utah Plant Communities of Capitol Reef National Park, Utah William H. Romme, Kenneth D. Heil, J. Mark Porter, and Rich Fleming Technical Report NPS/NAUCARE/NRTR-93/02 National Park Service Cooperative Park Studies Unit U.S. Department of the Interior at Northern Arizona University National Park Service Cooperative Park Studies Unit Northern Arizona University The National Park Service (NPS) Cooperative Park Studies Unit (CPSU) at Northern Arizona University (NAU) is unique in that it was conceptualized for operation on an ecosystem basis, rather than being restrained by state or NPS boundaries. The CPSU was established to provide research for the 33 NPS units located within the Colorado Plateau, an ecosystem that shares similar resources and their associated management problems. Utilizing the university's physical resources and faculty expertise, the CPSU facilitates multidisciplinary research in NPS units on the Colorado Plateau, which encompasses four states and three NPS regions—Rocky Mountain, Southwest, and Western. The CPSU provides scientific and technical guidance for effective management of natural and cultural resources within those NPS units. The National Park Service disseminates the results of biological, physical, and social science research through the Colorado Plateau Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of techni­ cal workshops and conferences are also disseminated through this series. Unit Staff Charles van Riper, III, Unit Leader Peter G. Rowlands, Research Scientist Henry E. McCutchen, Research Scientist Mark K. Sogge, Ecologist Charles Drost, Zoologist Elena T. Deshler, Biological Technician Paul R. Deshler, Technical Information Specialist Connie C. Cole, Editor Margaret Rasmussen, Administrative Clerk Jennifer Henderson, Secretary National Park Service Review Documents in this series contain information of a preliminary nature and are prepared primarily for internal use within the National Park Service. This information is not intended for use in open literature. This report has been reviewed and approved for dissemination by the National Park Service. Approval does not signify that the contents necessarily reflect the views and policies of the National Park Service nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Copies of this report are available from the following. To order from the National Park Service, Technical Information Center, use the reference number on the bottom of the report's inside back cover. National Park Service National Park Service Cooperative Park Studies Unit Technical Information Center Northern Arizona University Denver Service Center P. O. Box 5614 P. O. Box 25287 Flagstaff, AZ 86011-5614 Denver, CO 80225-0287 (602) 556-7466 (303) 969-2130 Plant Communities of Capitol Reef National Park, Utah William H. Romme1 Kenneth D. Heil2, J. Mark Porter3, and Rich Fleming2 'Fort Lewis College, Durango, Colorado 2San Juan College, Farmington, New Mexico 3Rancho Santa Ana Botanic Garden, Claremont, California Technical Report NPS/NAUCARE/NRTR-93/02 September 1993 National Park Service Cooperative Park Studies Unit U.S. Department of the Interior at Northern Arizona University Capitol Reef National Park was established in 1971 as a 241,000 acre park in the heart of the Colorado Plateau. The law creating the park called for the immediate phase-out of livestock grazing. In 1982, controversy surrounding the required phase-out precipitated the passage of a second law which called for an extension of grazing activities. This law also called for the establishment of a comprehensive grazing research program, initially overseen by the National Academy of Sciences, to determine the effects of the activity on the park's natural and cultural resources. By 1991, with NPS funding, the Division of Resource Management and Science at Capitol Reef National Park eventually shepherded to completion 11 separate studies as part of this effort. This document is the second report to be published as part of this grazing research series. Norman R. Henderson Chief, Resource Management and Science Capitol Reef National Park Table of Contents List of Tables iv Abstract 1 Introduction 1 Part I: Description of the Plant Communities and Phases 3 Part II: Fitting CARE's Plant Communities into the Brown-Lowe-Pase System 21 Part III: Producing a Vegetation Map for CARE Using GIS 27 Acknowledgements 29 Literature Cited 31 Appendix 1: Key to Plant Communities in Capitol Reef National Park 35 iii List of Tables Table 1. Summary of community types and phases in Capitol Reef National Park 2 Table 2. Summary of plant community types and phases in Capitol Reef National Park (CARE) and comparable vegetation units that have been described in systematic classifications elsewhere on the Colorado Plateau 21 Table 3. Preliminary classification of plant communities and phases in CARE according to the Brown, Lowe, and Pase (1979) system 24 Table 4. Boolean combinations of existing data layers in the GIS to produce the vegetation map as a new map layer 27 Table 5. Definitions of complexes on the vegetation map 29 IV Plant Communities of Capitol Reef National Park, Utah Abstract Thirty-four community types and thirteen region. Of the 34 community types in CARE, phases were identified and described in 23 comparable types have been described in Capitol Reef National Park (CARE). A com­ surrounding areas, and the remaining 11 munity was defined as a more or less unique either are unique to CARE or simply have not and repeated assemblage of plant species been described elsewhere. Those communities occupying sites characterized by a more or that to date have been described only from less unique combination of elevation and soil CARE include the hopsage badlands, sage- texture conditions. A phase is a recognizable brush-bitterbrush, bristlecone pine-cushion subunit of a community type, characterized by plant, mesic montane woodland, cottonwood- a somewhat unusual assemblage of species rabbifbrush woodland, waterpocket, alder- and occupying a portion of the usual habitat birch, dogwood-spruce, hornbeam-boxelder- for that community type with no recognizably oak woodland, cultivated orchards and settle­ unique environmental conditions. Phases may ments, and perennial wetland communities. reflect subtle, unrecognized patterns in under­ Several of the community types in CARE do lying environmental gradients; or unique not readily fit any of the units in the original historical events of dispersal, establishment, BLP system, suggesting that some new or disturbance; or both. They cannot be subassociations, associations, series, and mapped reliably, but they contribute to the formations may be needed to accommodate park's biological diversity. A dichotomous key the distinctive plant communities of the is provided for field identification of commu­ Colorado Plateau. nities and phases in CARE. A map of CARE vegetation can be pro­ The system of communities and phases duced by overlaying existing data layers using developed for CARE was compared with a geographic information system (GIS). Detailed other classification systems developed else­ instructions are provided for making a map where on the Colorado Plateau, and with based on the combinations of elevation, sub­ the Brown-Lowe-Pase (BLP) system being strate, slope aspect, and physiognomic vegeta­ adopted in all National Park units in the tion class associated with each community type. Introduction The vegetation of Capitol Reef National vegetation types that already exists in the Park (CARE) is complex and diverse. Heil et park's geographic information system (GIS). al. (1993) provide an overview of the plant Plant species distribution in CARE is communities and vegetation patterns in controlled primarily by gradients in elevation CARE, as well as the vascular flora and and soil texture, the latter being determined general environmental conditions in the park. mainly by geologic substrate. In many areas, The objectives of this companion paper are to: plant species abundance has been altered (1) describe each plant community in greater greatly by heavy livestock grazing. Topo­ detail; (2) compare the plant communities and graphic position and aspect influence species classification system developed in CARE with distribution and abundance in a few places, communities and classifications elsewhere on but are not major controlling factors in plant the Colorado Plateau—in particular, with the distribution (unlike many other regions). See Brown-Lowe-Pase system being adopted Heil et al. (1993) for gradient analyses of throughout the region; and (3) present the CARE vegetation and an analysis of grazing rationale and methodolgy for producing a effects. vegetation map of CARE by use of informa­ The vegetation in Capitol Reef National tion on geology, elevation, and physiognomic Park appears to be a continuum rather than a 1 Technical Report NPS/NAUCARE/NRTR-93/02 series of discrete units, except where under­ species and occupying a portion of the usual lying physical factors, such as soil texture or habitat for that community type with no moisture, change abruptly. The communities recognizably unique environmental condi­ that we describe below are not the communities tions. Phases may reflect subtle, unrecog­ of Clements and Daubenmire; rather they are nized patterns in underlying environmental recognizable assemblages of plant species that gradients;
Recommended publications
  • The Laccolith-Stock Controversy: New Results from the Southern Henry Mountains, Utah
    The laccolith-stock controversy: New results from the southern Henry Mountains, Utah MARIE D. JACKSON* Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218 DAVID D. POLLARD Departments of Applied Earth Sciences and Geology, Stanford University, Stanford, California 94305 ABSTRACT rule out the possibility of a stock at depth. At Mesa, Fig. 1). Gilbert inferred that the central Mount Hillers, paleomagnetic vectors indi- intrusions underlying the large domes are Domes of sedimentary strata at Mount cate that tongue-shaped sills and thin lacco- floored, mushroom-shaped laccoliths (Fig. 3). Holmes, Mount Ellsworth, and Mount Hillers liths overlying the central intrusion were More recently, C. B. Hunt (1953) inferred that in the southern Henry Mountains record suc- emplaced horizontally and were rotated dur- the central intrusions in the Henry Mountains cessive stages in the growth of shallow (3 to 4 ing doming through about 80° of dip. This are cylindrical stocks, surrounded by zones of km deep) magma chambers. Whether the in- sequence of events is not consistent with the shattered host rock. He postulated a process in trusions under these domes are laccoliths or emplacement of a stock and subsequent or which a narrow stock is injected vertically up- stocks has been the subject of controversy. contemporaneous lateral growth of sills and ward and then pushes aside and domes the sed- According to G. K. Gilbert, the central intru- minor laccoliths. Growth in diameter of a imentary strata as it grows in diameter. After the sions are direct analogues of much smaller, stock from about 300 m at Mount Holmes to stock is emplaced, tongue-shaped sills and lacco- floored intrusions, exposed on the flanks of nearly 3 km at Mount Hillers, as Hunt sug- liths are injected radially from the discordant the domes, that grew from sills by lifting and gested, should have been accompanied by sides of the stock (Fig.
    [Show full text]
  • US Fish and Wildlife Service
    BARNEBY REED-MUSTARD (S. barnebyi ) CLAY REED-MUSTARD SHRUBBY REED-MUSTARD (S,arguillacea) (S. suffrutescens) .-~ U.S. Fish and Wildlife Service UTAH REED—MUSTARDS: CLAY REED-MUSTARD (SCHOENOCRAMBE ARGILLACEA) BARNEBY REED—MUSTARD (SCHOENOCRAMBE BARNEBYI) SI-IRUBBY REED-MUSTARD (SCHOENOCRAMBE SUFFRUTESCENS) RECOVERY PLAN Prepared by Region 6, U.S. Fish and Wildlife Service Approved: Date: (~19~- Recovery plans delineate reasonable actions which are believed to be required to recover and/or protect the species. Plans are prepared by the U.S. Fish and Wildlife Service, sometimes with the assistance of recovery teams, contractors, State agencies, and others. Objectives will only be attained and funds expended contingent upon appropriations, priorities, and other budgetary constraints. Recovery plans do not necessarily represent the views or the official positions or approvals of any individuals or agencies, other than the U.S. Fish and Wildlife Service, involved in the plan formulation. They represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Regional Director or Director as an~roved Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks. Literature Citation should read as follows: U.S. Fish and Wildlife Service. 1994. Utah reed—mustards: clay reed—mustard (Schoenocrambe argillacea), Barneby reed-mustard (Schoenocrambe barnebyl), shrubby reed—mustard (Schoenacranibe suffrutescens) recovery plan. Denver, Colorado. 22 pp. Additional copies may be purchased from: Fish and Wildlife Reference Service 5430 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814 Telephone: 301/492—6403 or 1—800—582—3421 The fee for the plan varies depending on the number of pages of the plan.
    [Show full text]
  • Threatened, Endangered, Candidate & Proposed Plant Species of Utah
    TECHNICAL NOTE USDA - Natural Resources Conservation Service Boise, Idaho and Salt Lake City, Utah TN PLANT MATERIALS NO. 52 MARCH 2011 THREATENED, ENDANGERED, CANDIDATE & PROPOSED PLANT SPECIES OF UTAH Derek Tilley, Agronomist, NRCS, Aberdeen, Idaho Loren St. John, PMC Team Leader, NRCS, Aberdeen, Idaho Dan Ogle, Plant Materials Specialist, NRCS, Boise, Idaho Casey Burns, State Biologist, NRCS, Salt Lake City, Utah Last Chance Townsendia (Townsendia aprica). Photo by Megan Robinson. This technical note identifies the current threatened, endangered, candidate and proposed plant species listed by the U.S.D.I. Fish and Wildlife Service (USDI FWS) in Utah. Review your county list of threatened and endangered species and the Utah Division of Wildlife Resources Conservation Data Center (CDC) GIS T&E database to see if any of these species have been identified in your area of work. Additional information on these listed species can be found on the USDI FWS web site under “endangered species”. Consideration of these species during the planning process and determination of potential impacts related to scheduled work will help in the conservation of these rare plants. Contact your Plant Material Specialist, Plant Materials Center, State Biologist and Area Biologist for additional guidance on identification of these plants and NRCS responsibilities related to the Endangered Species Act. 2 Table of Contents Map of Utah Threatened, Endangered and Candidate Plant Species 4 Threatened & Endangered Species Profiles Arctomecon humilis Dwarf Bear-poppy ARHU3 6 Asclepias welshii Welsh’s Milkweed ASWE3 8 Astragalus ampullarioides Shivwits Milkvetch ASAM14 10 Astragalus desereticus Deseret Milkvetch ASDE2 12 Astragalus holmgreniorum Holmgren Milkvetch ASHO5 14 Astragalus limnocharis var.
    [Show full text]
  • Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service
    Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service Rocky Mountain Research Station Daniel G. Milchunas General Technical Report RMRS-GTR-169 April 2006 Milchunas, Daniel G. 2006. Responses of plant communities to grazing in the southwestern United States. Gen. Tech. Rep. RMRS-GTR-169. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 126 p. Abstract Grazing by wild and domestic mammals can have small to large effects on plant communities, depend- ing on characteristics of the particular community and of the type and intensity of grazing. The broad objective of this report was to extensively review literature on the effects of grazing on 25 plant commu- nities of the southwestern U.S. in terms of plant species composition, aboveground primary productiv- ity, and root and soil attributes. Livestock grazing management and grazing systems are assessed, as are effects of small and large native mammals and feral species, when data are available. Emphasis is placed on the evolutionary history of grazing and productivity of the particular communities as deter- minants of response. After reviewing available studies for each community type, we compare changes in species composition with grazing among community types. Comparisons are also made between southwestern communities with a relatively short history of grazing and communities of the adjacent Great Plains with a long evolutionary history of grazing. Evidence for grazing as a factor in shifts from grasslands to shrublands is considered. An appendix outlines a new community classification system, which is followed in describing grazing impacts in prior sections.
    [Show full text]
  • B2158 Pt 08 Text
    Previous section Volume contents Processes of Laccolithic Emplacement in the Southern Henry Mountains, Southeastern Utah By Marie Jackson1 CONTENTS References Cited............................................................................................................. 27 FIGURES 1. Simplified geologic map of the south Henry Mountains .......................................... 52 2. Interpretive radially oriented cross sections through Mounts Holmes, Ellsworth, and Hillers ................................................................................................................. 54 3. Zijderveldt plots showing the progressive demagnetization of a diorite porphyry sample from sill A in cross section C–C′.................................................................. 56 4. G.K. Gilbert’s concept of laccoliths in Henry Mountains ........................................ 56 5. Structure contour maps and cross sections of Mounts Holmes, Ellsworth, and Hillers, illustrating C.B. Hunt’s concept of relationships between the stocks and uplifts of the beds ............................................................................................... 57 6. Vertical cross sections showing states in growth of central intrusions and domes in the Henry Mountains ................................................................................. 58 A sequence of sedimentary rocks about 4 km thick was New geologic mapping (Jackson and Pollard, 1988) bent, stretched, and uplifted during the growth of three igne- demonstrates that the sedimentary
    [Show full text]
  • Tesis 38.Pdf
    UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS REVISIÓN TAXONÓMICA Y DISTRIBUCIÓN GEOGRÁFICA DE EPHEDRA EN MÉXICO T E S I S QUE PARA OBTENER EL TÍTULO DE: BIÓLOGA P R E S E N T A : LORENA VILLANUEVA ALMANZA DIRECTOR DE TESIS: M. EN C. ROSA MARÍA FONSECA JUÁREZ 2010 Hoja de datos de jurado 1. Datos del alumno Villanueva Almanza Lorena 55 44 44 39 Universidad Nacional Autónoma de México Facultad de Ciencias Biología 3030584751 2. Datos del tutor M. en C. Rosa María Fonseca Juárez 3. Datos del sinodal 1 Dra. Rosa Irma Trejo Vázquez 4. Datos del sinodal 2 M. en C. Jaime Jiménez Ramírez 4. Datos del sinodal 3 M. en C. Felipe Ernesto Velázquez Montes 5. Datos del sinodal 4 Biól. Rosalinda Medina Lemos 6. Datos del trabajo escrito Revisión taxonómica y distribución geográfica de Ephedra en México 51 p 2010 AGRADECIMIENTOS A la Rosa Irma Trejo del Instituto de Geografía por su apoyo para elaborar los mapas, a Ernesto Velázquez y José García del Instituto de Investigaciones de Zonas Desérticas de la Universidad Autónoma de San Luis Potosí por su colaboración en el trabajo de campo, al personal de los herbarios ENCB, MEXU, SLPM y UAMIZ por permitir la consulta de las colecciones y a las señoras Rosa Silbata y Susana Rito de la mapoteca del Instituto de Geografía. A mis padres Gabriela Almanza Castillo y Jorge Villanueva Benítez. A mi hermano Jorge Villanueva Almanza porque es el mejor. REVISIÓN TAXONÓMICA Y DISTRIBUCIÓN GEOGRÁFICA DE EPHEDRA EN MÉXICO I. Introducción 1 Antecedentes 1 Área de estudio 6 II.
    [Show full text]
  • National Park Service U.S
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science DOI Bison Report Looking Forward Natural Resource Report NPS/NRSS/BRMD/NRR—2014/821 ON THE COVER Bison bull at southeastern Utah's Henry Mountains Photograph by Utah Division of Wildlife Resources DOI Bison Report Looking Forward Natural Resource Report NPS/NRSS/BRMD/NRR—2014/821 Prepared by the Department of the Interior Bison Leadership Team and Working Group National Park Service Biological Resource Management Division 1201 Oakridge Drive, Suite 200 Fort Collins, Colorado 80525 June 2014 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data.
    [Show full text]
  • Vegetation Classification and Mapping Project Report
    USGS-NPS National Vegetation Mapping Program: Wupatki National Monument, Arizona, Vegetation Classification and Distribution By Monica Hansen1, Janet Coles2, Kathryn A. Thomas1, Daniel Cogan2, Marion Reid3, Jim Von Loh2, and Keith Schulz3 U.S GEOLOGICAL SURVEY SOUTHWEST BIOLOGICAL SCIENCE CENTER Final Report Prepared for: USGS-NPS National Vegetation Mapping Program 1Colorado Plateau Research Station Southwest Biological Science Center U.S. Geological Survey (USGS) Flagstaff, AZ 2Remote Sensing and GIS Group U.S. Bureau of Reclamation (USBR) Denver, Colorado 3NatureServe Boulder, Colorado Flagstaff, Arizona 2004 UGSG-NPS Vegetation Mapping Program Wupatki National Monument TABLE OF CONTENTS LIST OF TABLES ........................................................................................................................ 3 LIST OF FIGURES ...................................................................................................................... 4 LIST OF CONTACTS AND CONTRIBUTORS ...................................................................... 5 ACKNOWLEDGEMENTS ......................................................................................................... 7 LIST OF ABBREVIATIONS AND TERMS ............................................................................. 8 SUMMARY ................................................................................................................................... 9 1. INTRODUCTION..................................................................................................................
    [Show full text]
  • A Guide to Native Plants for the Santa Fe Landscape
    A Guide to Native Plants for the Santa Fe Landscape Penstemon palmeri Photo by Tracy Neal Santa Fe Native Plant Project Santa Fe Master Gardener Association Santa Fe, New Mexico March 15, 2018 www.sfmga.org Contents Introduction………………………………………………………………………………………………………………………………………………………………………………………………………….. ii Chapter 1 – Annuals and Biennials ........................................................................................................................................................................ 1 Chapter 2 – Cacti and Succulents ........................................................................................................................................................................... 3 Chapter 3 – Grasses ............................................................................................................................................................................................... 6 Chapter 4 – Ground Covers .................................................................................................................................................................................... 9 Chapter 5 – Perennials......................................................................................................................................................................................... 11 Chapter 6 – Shrubs .............................................................................................................................................................................................
    [Show full text]
  • New Mexico Range Plants
    New Mexico Range Plants Circular 374 Revised by Christopher D. Allison and Nick Ashcroft1 Cooperative Extension Service • College of Agricultural, Consumer and Environmental Sciences New Mexico contains almost 78 million acres, more than 90 percent of which is in native vegetation grazed by domestic livestock and wildlife. The kinds of plants that grow on a range, along with their quality and quan- tity, determine its value. A successful rancher knows the plants on his or her range. There are more than 3,000 species of plants in New Mexico. The 85 discussed here are most important to the livestock industry. Most of these are native plants. RANGELAND AREAS OF NEW MEXICO Figure 1 represents the major rangeland areas in New Mexico. The northern desert, western plateau, and high valley areas are enough alike to be described together, as are the central and high plains areas and the southern desert and basin. Southern Desert and Basin 36 - New Mexico and Arizona Plateaus and Mesas 37 - San Juan River Valley, mesas and Plateaus The southern desert and basin occupies much of south- 39 - Arizona and New Mexico Mountains 41 - Southeastern Arizona Basin and Range 42 - Southern Desertic Basins, Plains and Mountains ern New Mexico at elevations between 3,000 and 5,000 48 - Southern Rocky Mountains 51 - High Intermountain Valleys feet. This area follows the Rio Grande north into the 70 - Pecos/Canadian Plains and Valleys southern part of Sandoval County. 77 - Southern High Plains Some of the most common plants are creosote bush (Larrea tridentata [DC.] Coville), mesquite (Prosopis Figure 1.
    [Show full text]
  • United States Department of the Interior Bureau of Land Management
    UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT FINDING OF NO SIGNFICANT IMPACT San Rafael Desert Travel Management Plan DOI-BLM-UT-G020-2018-0004-EA August 2020 Price Field Office 125 South 600 West Price, Utah 84501 435-636-3600 San Rafael Desert Travel Management Plan DOI-BLM-UT-G020-2018-0004-EA FINDING OF NO SIGNFICANT IMPACT I have reviewed the San Rafael Desert Travel Management Plan Environmental Assessment (EA) DOI-BLM-UT-G020-2018-0004-EA. After considering the environmental effects as described in the EA, and incorporated herein, I have determined that Alternative D, as identified in the EA and modified in the Decision Record (Modified Alternative D), will not significantly affect the quality of the human environment and that an Environmental Impact Statement is not required to be prepared. I have determined that the proposed action, which is to designate a comprehensive off-highway vehicle (OHV) travel management plan (TMP) for the San Rafael Desert Travel Management Area (TMA), is in conformance with the approved 2008 Price Field Office Record of Decision and Approved Resource Management Plan (2008 RMP) and is consistent with applicable plans and policies of county, state, Tribal and Federal agencies. This finding is based on my consideration of the Council on Environmental Quality’s (CEQ) criteria for significance (40 CFR 1508.27) regarding the context and the intensity of impacts described in the EA. Context The TMA that forms the basis of the San Rafael Desert TMP contains 377,609 acres of Bureau of Land Management (BLM)-managed lands, and an existing road inventory containing 1,180.8 miles of roads.
    [Show full text]
  • Wood and Bark Anatomy of the New World Species of Ephedra Sherwin Carlquist Pomona College; Rancho Santa Ana Botanic Garden
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 12 | Issue 3 Article 4 1988 Wood and Bark Anatomy of the New World Species of Ephedra Sherwin Carlquist Pomona College; Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1989) "Wood and Bark Anatomy of the New World Species of Ephedra," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 12: Iss. 3, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol12/iss3/4 ALISO 12(3), 1989, pp. 441-483 WOOD AND BARK ANATOMY OF THE NEW WORLD SPECIES OF EPHEDRA SHERWIN CARLQUIST Rancho Santa Ana Botanic Garden and Department of Biology, Pomona College, Claremont, California 91711 ABSTRACf Quantitative and qualitative data are presented for wood of 42 collections of 23 species of Ephedra from North and South America; data on bark anatomy are offered for most ofthese. For five collections, root as well as stem wood is analyzed, and for two collections, anatomy of horizontal underground stems is compared to that of upright stems. Vessel diameter, vessel element length, fiber-tracheid length, and tracheid length increase with age. Vessels and tracheids bear helical thickenings in I 0 North American species (first report); thickenings are absent in Mexican and South American species. Mean total area of perforations per mm2 of transection is more reliable as an indicator of conductive demands than mean vessel diameter or vessel area per mm2 oftransection. Perforation area per mm2 is greatest in lianoid shrubs and treelike shrubs, less in large shrubs, and least in small shrubs.
    [Show full text]