Vision and Exterior Lighting: Shining Some Light on Scotopic and Photopic Lumens in Roadway Conditions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Applications of High Dynamic Range Imaging Stereo Matching and Mesopic Rendering
Applications of High Dynamic Range Imaging Stereo Matching and Mesopic Rendering PhD THESIS submitted in partial fulfillment of the requirements for the degree of Doctor of Technical Sciences within the Vienna PhD School of Informatics by Eng. Tara Akhavan Registration Number 1128895 to the Faculty of Informatics at the Vienna University of Technology Advisor: Assoc. Prof. Mag. Dr. Hannes Kaufmann External reviewers: . Alan Chalmers, WMG, University of Warwick, United Kingdom. Kadi Bouatouch, ISTIC, University of Rennes I, France. Vienna, 8th April, 2017 Tara Akhavan Hannes Kaufmann Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Declaration of Authorship Eng. Tara Akhavan Address I hereby declare that I have written this Doctoral Thesis independently, that I have completely specified the utilized sources and resources and that I have definitely marked all parts of the work - including tables, maps and figures - which belong to other works or to the internet, literally or extracted, by referencing the source as borrowed. Vienna, 8th April, 2017 Tara Akhavan iii Acknowledgements Firstly, I would like to express my deepest gratitude to my supervisor Hannes Kaufmann for his unlimited support, inspiration, motivation, belief, and guidance. My special thanks to Christian Breiteneder who was always there to help resolving hardest problems with wisdom and vision. I am very thankful to Alan Chalmers and Kadi Bouatouch who agreed to be my thesis external reviewers but most importantly planned valuable workshops through the course of my PhD and invited me to network with and learn from the experts in the field. Part of my PhD research was conducted at Tandemlaunch Inc. -
Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs
sustainability Article Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs Enrique Navarrete-de Galvez 1 , Alfonso Gago-Calderon 1,* , Luz Garcia-Ceballos 2, Miguel Angel Contreras-Lopez 2 and Jose Ramon Andres-Diaz 1 1 Proyectos de Ingeniería, Departamento de Expresión Gráfica Diseño y Proyectos, Universidad de Málaga, 29071 Málaga, Spain; [email protected] (E.N.-d.G.); [email protected] (J.R.A.-D.) 2 Expresión Gráfica en la Ingeniería, Departamento de Expresión Gráfica Diseño y Proyectos, Universidad de Málaga, 29071 Málaga, Spain; [email protected] (L.G.-C.); [email protected] (M.A.C.-L.) * Correspondence: [email protected]; Tel.: +34-951-952-268 Abstract: The sensitivity of the human eye varies with the different lighting conditions to which it is exposed. The cone photoreceptors perceive the color and work for illuminance conditions greater than 3.00 cd/m2 (photopic vision). Below 0.01 cd/m2, the rods are the cells that assume this function (scotopic vision). Both types of photoreceptors work coordinately in the interval between these values (mesopic vision). Each mechanism generates a different spectral sensibility. In this work, Citation: Navarrete-de Galvez, E.; the emission spectra of common sources in present public lighting installations are analyzed and Gago-Calderon, A.; Garcia-Ceballos, their normative photopic values translated to the corresponding mesopic condition, which more L.; Contreras-Lopez, M.A.; faithfully represents the vision mechanism of our eyes in these conditions. Based on a common Andres-Diaz, J.R. Adjustment of street urban configuration (ME6), we generated a large set of simulations to determine the ideal light Lighting Parameters from Photopic to point setup configuration (luminance and light point height vs. -
S Selection of Intraocular Lens on the Basis of Light Transmittance Properties
Eye (2017) 31, 258–272 OPEN Official journal of The Royal College of Ophthalmologists www.nature.com/eye 1 2 2 2 REVIEW The evidence informing XLi, D Kelly , JM Nolan , JL Dennison and S Beatty2,3 the surgeon’s selection of intraocular lens on the basis of light transmittance properties Abstract In recent years, manufacturers and distributors surgical procedure worldwide,1 and the need have promoted commercially available intrao- for such surgery is likely to rise because cular lenses (IOLs) with transmittance proper- of increasing longevity.2 Commercially fi ties that lter visible short-wavelength (blue) available IOLs can vary in terms of material light on the basis of a putative photoprotective (polymethylmethacrylate, polymers, silicone effect. Systematic literature review. Out of or acrylic),3,4 hydrophobicity (hydrophobic vs 21 studies reporting on outcomes following hydrophilic),5 sphericity (aspheric vs spheric)6 implantation of blue-light-filtering IOLs (invol- 1 and light-filtering properties. In this paper, Pharmaceutical & ving 8914 patients and 12 919 study eyes Molecular Biotechnology undergoing cataract surgery), the primary out- we review the evidence germane to the Research Centre, fi come was vision, sleep pattern, and photopro- putative and relative risks and/or bene ts of Department of Chemical & fi Life Sciences, Waterford tection in 9 (42.9%), 9 (42.9%), and 3 (14.2%) implanting IOLs that lter visible short- Institute of Technology, respectively, and, of these, only 7 (33.3%) can be wavelength light (ie, o500 nm), referred to as Waterford, Ireland classed as high as level 2b (individual cohort blue-light-filtering IOLs for the purpose of this study/low-quality randomized controlled trials), review. -
1 Human Color Vision
CAMC01 9/30/04 3:13 PM Page 1 1 Human Color Vision Color appearance models aim to extend basic colorimetry to the level of speci- fying the perceived color of stimuli in a wide variety of viewing conditions. To fully appreciate the formulation, implementation, and application of color appearance models, several fundamental topics in color science must first be understood. These are the topics of the first few chapters of this book. Since color appearance represents several of the dimensions of our visual experience, any system designed to predict correlates to these experiences must be based, to some degree, on the form and function of the human visual system. All of the color appearance models described in this book are derived with human visual function in mind. It becomes much simpler to understand the formulations of the various models if the basic anatomy, physiology, and performance of the visual system is understood. Thus, this book begins with a treatment of the human visual system. As necessitated by the limited scope available in a single chapter, this treatment of the visual system is an overview of the topics most important for an appreciation of color appearance modeling. The field of vision science is immense and fascinating. Readers are encouraged to explore the liter- ature and the many useful texts on human vision in order to gain further insight and details. Of particular note are the review paper on the mechan- isms of color vision by Lennie and D’Zmura (1988), the text on human color vision by Kaiser and Boynton (1996), the more general text on the founda- tions of vision by Wandell (1995), the comprehensive treatment by Palmer (1999), and edited collections on color vision by Backhaus et al. -
Photopic and Scotopic – the “Eyes” Have It
Photopic and Scotopic – The “eyes” have it Dick Erdmann GE Specification Engineer In the human eye the perceived brightness of illumination depends of color. It takes more energy in the blue or red portion of the color spectrum to create the same sensation of brightness as in the yellow-green region. When it comes to sensing light in the human eye there are two main light-sensing cells called rods and cones. If one took a tube and looked straight ahead through it so that it allowed the field of view to be restricted 2 degrees, light photons would fall on the part of the eye called the fovea that consists mainly of cones. The peripheral area surrounding the fovea consists of both rods and cones with the rods outnumbering the cones about 10:1. Cones have a peak response in the yellow-green region of about 555 nano-meters and rods have a peak response in the bluish-green area of about 505 nano-meters. Because both the rods and cones have been shown to have different sensitivities to colors they can be represented by two different sensitivity curves called Photopic Curves (representing the cone) and Scotopic Curves (representing the rod). Years ago it was thought that the cones were responsible for daytime vision and rods for nighttime vision. Because of this, light meters that measure lighting levels such as footcandles, lumens, lux, etc. are weighted to the cone activated part of the eye ignoring the effect of rod-activated vision. But according to a study by Dr. Sam Berman and Dr. -
Chromatic Function of the Cones D H Foster, University of Manchester, Manchester, UK
Chromatic Function of the Cones D H Foster, University of Manchester, Manchester, UK ã 2010 Elsevier Ltd. All rights reserved. Glossary length. If l is the path length and a(l) is the spectral absorptivity, then, for a homogeneous isotropic CIE, Commission Internationale de l’Eclairage – absorbing medium, A(l)=la(l) (Lambert’s law). The CIE is an independent, nonprofit organization Spectral absorptance a(l) – Ratio of the spectral responsible for the international coordination of radiant flux absorbed by a layer to the spectral lighting-related technical standards, including radiant flux entering the layer. If t(l) is the spectral colorimetry standards. transmittance, then a(l)=1Àt(l). The value of a(l) Color-matching functions – Functions of depends on the length or thickness of the layer. For a wavelength l that describe the amounts of three homogeneous isotropic absorbing medium, fixed primary lights which, when mixed, match a a(l)=1Àt(l)=1À10Àla(l), where l is the path length monochromatic light of wavelength l of constant and a(l) is the spectral absorptivity. Changes in the radiant power. The amounts may be negative. The concentration of a photopigment have the same color-matching functions obtained with any two effect as changes in path length. different sets of primaries are related by a linear Spectral absorptivity a(l) – Spectral absorbance of transformation. Particular sets of color-matching a layer of unit thickness. Absorptivity is a functions have been standardized by the CIE. characteristic of the medium, that is, the Fundamental spectral sensitivities – The color- photopigment. Its numerical value depends on the matching functions corresponding to the spectral unit of length. -
17-2021 CAMI Pilot Vision Brochure
Visual Scanning with regular eye examinations and post surgically with phoria results. A pilot who has such a condition could progress considered for medical certification through special issuance with Some images used from The Federal Aviation Administration. monofocal lenses when they meet vision standards without to seeing double (tropia) should they be exposed to hypoxia or a satisfactory adaption period, complete evaluation by an eye Helicopter Flying Handbook. Oklahoma City, Ok: US Department The probability of spotting a potential collision threat complications. Multifocal lenses require a brief waiting certain medications. specialist, satisfactory visual acuity corrected to 20/20 or better by of Transportation; 2012; 13-1. Publication FAA-H-8083. Available increases with the time spent looking outside, but certain period. The visual effects of cataracts can be successfully lenses of no greater power than ±3.5 diopters spherical equivalent, at: https://www.faa.gov/regulations_policies/handbooks_manuals/ techniques may be used to increase the effectiveness of treated with a 90% improvement in visual function for most One prism diopter of hyperphoria, six prism diopters of and by passing an FAA medical flight test (MFT). aviation/helicopter_flying_handbook/. Accessed September 28, 2017. the scan time. Effective scanning is accomplished with a patients. Regardless of vision correction to 20/20, cataracts esophoria, and six prism diopters of exophoria represent series of short, regularly-spaced eye movements that bring pose a significant risk to flight safety. FAA phoria (deviation of the eye) standards that may not be A Word about Contact Lenses successive areas of the sky into the central visual field. Each exceeded. -
Color Vision Mechanisms
11 COLOR VISION MECHANISMS Andrew Stockman Department of Visual Neuroscience UCL Institute of Opthalmology London, United KIngdom David H. Brainard Department of Psychology University of Pennsylvania Philadelphia, Pennsylvania 11.1 GLOSSARY Achromatic mechanism. Hypothetical psychophysical mechanisms, sometimes equated with the luminance mechanism, which respond primarily to changes in intensity. Note that achromatic mech- anisms may have spectrally opponent inputs, in addition to their primary nonopponent inputs. Bezold-Brücke hue shift. The shift in the hue of a stimulus toward either the yellow or blue invariant hues with increasing intensity. Bipolar mechanism. A mechanism, the response of which has two mutually exclusive types of out- put that depend on the balance between its two opposing inputs. Its response is nulled when its two inputs are balanced. Brightness. A perceptual measure of the apparent intensity of lights. Distinct from luminance in the sense that lights that appear equally bright are not necessarily of equal luminance. Cardinal directions. Stimulus directions in a three-dimensional color space that silence two of the three “cardinal mechanisms.” These are the isolating directions for the L+M, L–M, and S–(L+M) mech- anisms. Note that the isolating directions do not necessarily correspond to mechanism directions. Cardinal mechanisms. The second-site bipolar L–M and S–(L+M) chromatic mechanisms and the L+M luminance mechanism. Chromatic discrimination. Discrimination of a chromatic target from another target or back- ground, typically measured at equiluminance. Chromatic mechanism. Hypothetical psychophysical mechanisms that respond to chromatic stimuli, that is, to stimuli modulated at equiluminance. Color appearance. Subjective appearance of the hue, brightness, and saturation of objects or lights. -
Transmission of Scotopic Signals from the Rod to Rod-Bipolar Cell in the Mammalian Retina
Vision Research 44 (2004) 3269–3276 www.elsevier.com/locate/visres Transmission of scotopic signals from the rod to rod-bipolar cell in the mammalian retina W. Rowland Taylor a,*, Robert G. Smith b a Neurological Sciences Institute, Oregon Health and Sciences University––West Campus, 505 NW 185th Avenue, Beaverton, OR 97006, United States b Department of Neuroscience, University of Pennsylvania, Philadelphia, PA Received 15 June 2004; received in revised form 27 July 2004 Abstract Mammals can see at low scotopic light levels where only 1 rod in several thousand transduces a photon. The single photon signal is transmitted to the brain by the ganglion cell, which collects signals from more than 1000 rods to provide enough amplification. If the system were linear, such convergence would increase the neural noise enough to overwhelm the tiny rod signal. Recent studies provide evidence for a threshold nonlinearity in the rod to rod bipolar synapse, which removes much of the background neural noise. We argue that the height of the threshold should be 0.85 times the amplitude of the single photon signal, consistent with the saturation observed for the single photon signal. At this level, the rate of false positive events due to neural noise would be masked by the higher rate of dark thermal events. The evidence presented suggests that this synapse is optimized to transmit the single photon signal at low scotopic light levels. Ó 2004 Elsevier Ltd. All rights reserved. Keywords: Retina; Synaptic transmission; Single photon; Photoreceptor; Visual threshold; Scotopic vision 1. Introduction produced by single photons are carried by only a few neurons, whereas all the rods and postreceptoral Many mammals have evolved excellent night vision, neurons in the pool generate noise. -
Cone Fundamentals and CIE Standards
Cone fundamentals and CIE standards Andrew Stockman UCL Institute of Ophthalmology, London, UK Address UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK Corresponding author: Stockman, Andrew ([email protected]) Abstract A knowledge of the spectral sensitivities of the long- (L-), middle- (M-) and short- (S-) wavelength-sensitive cone types is vital for modelling human color vision and for the practical applications of color matching and color specification. After being agnostic about defining standard cone spectral sensitivities, the Commission Internationale de l' Éclairage (CIE) has sanctioned the cone spectral sensitivity estimates of Stockman & Sharpe [1] and the associated measures of luminous efficiency [2,3] as “physiologically-relevant” standards for color vision [4,5]. These can be used to model mean normal color vision at the photoreceptor level and postreceptorally. Both LMS and XYZ versions have been defined for 2-deg and 10-deg vision. Built into the standards are corrections for individual differences in macular and lens pigment densities, but individual differences in photopigment optical density and the spectral position of the cone photopigments can also be accommodated [6,7]. Understanding the CIE standard and its advantages is of current interest and importance. 1 Color perception and photopic visual function are inextricably linked to and, indeed, limited by the properties of the three cone photoceptors: the long- (L-), middle- (M-) and short- (S-) wavelength-sensitive cones. This short review covers the derivation of the recent “physiologically- relevant” Commission Internationale de l' Éclairage (CIE) 2006; 2015 cone spectral sensitivities and luminous efficiency functions for 2-deg and 10-deg vision [4,5] and provides background details about cone spectral sensitivities and trichromatic color matching. -
Comparative Visual Function in Predatory Fishes from the Indian River Lagoon Author(S): D
Comparative Visual Function in Predatory Fishes from the Indian River Lagoon Author(s): D. Michelle McComb, Stephen M. Kajiura, Andrij Z. Horodysky, and Tamara M. Frank Source: Physiological and Biochemical Zoology, Vol. 86, No. 3 (May/June 2013), pp. 285-297 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/670260 . Accessed: 16/07/2013 16:00 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Physiological and Biochemical Zoology. http://www.jstor.org This content downloaded from 152.3.102.242 on Tue, 16 Jul 2013 16:00:41 PM All use subject to JSTOR Terms and Conditions 285 Comparative Visual Function in Predatory Fishes from the Indian River Lagoon D. Michelle McComb1,* Introduction Stephen M. Kajiura2 Teleost fishes represent a speciose vertebrate lineage that ra- Andrij Z. Horodysky3 diated into distinct aquatic habitats that present unique diver- Tamara M. Frank4 gent light qualities (Jerlov 1968). Selective pressure on the pi- 1Harbor Branch Oceanographic Institute at Florida Atlantic scine eye has resulted in an extensive array of both 2 University, Fort Pierce, Florida 34946; Biological Sciences, morphological and physiological adaptations to maximize vi- Florida Atlantic University, Boca Raton, Florida 33431; sual function under differing light conditions. -
Radiometric and Photometric Measurements with TAOS Photosensors Contributed by Todd Bishop March 12, 2007 Valid
TAOS Inc. is now ams AG The technical content of this TAOS application note is still valid. Contact information: Headquarters: ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-Mail: [email protected] Please visit our website at www.ams.com NUMBER 21 INTELLIGENT OPTO SENSOR DESIGNER’S NOTEBOOK Radiometric and Photometric Measurements with TAOS PhotoSensors contributed by Todd Bishop March 12, 2007 valid ABSTRACT Light Sensing applications use two measurement systems; Radiometric and Photometric. Radiometric measurements deal with light as a power level, while Photometric measurements deal with light as it is interpreted by the human eye. Both systems of measurement have units that are parallel to each other, but are useful for different applications. This paper will discuss the differencesstill and how they can be measured. AG RADIOMETRIC QUANTITIES Radiometry is the measurement of electromagnetic energy in the range of wavelengths between ~10nm and ~1mm. These regions are commonly called the ultraviolet, the visible and the infrared. Radiometry deals with light (radiant energy) in terms of optical power. Key quantities from a light detection point of view are radiant energy, radiant flux and irradiance. SI Radiometryams Units Quantity Symbol SI unit Abbr. Notes Radiant energy Q joule contentJ energy radiant energy per Radiant flux Φ watt W unit time watt per power incident on a Irradiance E square meter W·m−2 surface Energy is an SI derived unit measured in joules (J). The recommended symbol for energy is Q. Power (radiant flux) is another SI derived unit. It is the derivative of energy with respect to time, dQ/dt, and the unit is the watt (W).