Early Scotopic Dark Adaptation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shedding New Light on the Generation of the Visual Chromophore PERSPECTIVE Krzysztof Palczewskia,B,C,1 and Philip D
PERSPECTIVE Shedding new light on the generation of the visual chromophore PERSPECTIVE Krzysztof Palczewskia,b,c,1 and Philip D. Kiserb,d Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 9, 2020 (received for review May 16, 2020) The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chro- mophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well- established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent pro- cesses in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illu- minances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent -
Photopic and Scotopic – the “Eyes” Have It
Photopic and Scotopic – The “eyes” have it Dick Erdmann GE Specification Engineer In the human eye the perceived brightness of illumination depends of color. It takes more energy in the blue or red portion of the color spectrum to create the same sensation of brightness as in the yellow-green region. When it comes to sensing light in the human eye there are two main light-sensing cells called rods and cones. If one took a tube and looked straight ahead through it so that it allowed the field of view to be restricted 2 degrees, light photons would fall on the part of the eye called the fovea that consists mainly of cones. The peripheral area surrounding the fovea consists of both rods and cones with the rods outnumbering the cones about 10:1. Cones have a peak response in the yellow-green region of about 555 nano-meters and rods have a peak response in the bluish-green area of about 505 nano-meters. Because both the rods and cones have been shown to have different sensitivities to colors they can be represented by two different sensitivity curves called Photopic Curves (representing the cone) and Scotopic Curves (representing the rod). Years ago it was thought that the cones were responsible for daytime vision and rods for nighttime vision. Because of this, light meters that measure lighting levels such as footcandles, lumens, lux, etc. are weighted to the cone activated part of the eye ignoring the effect of rod-activated vision. But according to a study by Dr. Sam Berman and Dr. -
Transmission of Scotopic Signals from the Rod to Rod-Bipolar Cell in the Mammalian Retina
Vision Research 44 (2004) 3269–3276 www.elsevier.com/locate/visres Transmission of scotopic signals from the rod to rod-bipolar cell in the mammalian retina W. Rowland Taylor a,*, Robert G. Smith b a Neurological Sciences Institute, Oregon Health and Sciences University––West Campus, 505 NW 185th Avenue, Beaverton, OR 97006, United States b Department of Neuroscience, University of Pennsylvania, Philadelphia, PA Received 15 June 2004; received in revised form 27 July 2004 Abstract Mammals can see at low scotopic light levels where only 1 rod in several thousand transduces a photon. The single photon signal is transmitted to the brain by the ganglion cell, which collects signals from more than 1000 rods to provide enough amplification. If the system were linear, such convergence would increase the neural noise enough to overwhelm the tiny rod signal. Recent studies provide evidence for a threshold nonlinearity in the rod to rod bipolar synapse, which removes much of the background neural noise. We argue that the height of the threshold should be 0.85 times the amplitude of the single photon signal, consistent with the saturation observed for the single photon signal. At this level, the rate of false positive events due to neural noise would be masked by the higher rate of dark thermal events. The evidence presented suggests that this synapse is optimized to transmit the single photon signal at low scotopic light levels. Ó 2004 Elsevier Ltd. All rights reserved. Keywords: Retina; Synaptic transmission; Single photon; Photoreceptor; Visual threshold; Scotopic vision 1. Introduction produced by single photons are carried by only a few neurons, whereas all the rods and postreceptoral Many mammals have evolved excellent night vision, neurons in the pool generate noise. -
Comparative Visual Function in Predatory Fishes from the Indian River Lagoon Author(S): D
Comparative Visual Function in Predatory Fishes from the Indian River Lagoon Author(s): D. Michelle McComb, Stephen M. Kajiura, Andrij Z. Horodysky, and Tamara M. Frank Source: Physiological and Biochemical Zoology, Vol. 86, No. 3 (May/June 2013), pp. 285-297 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/670260 . Accessed: 16/07/2013 16:00 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Physiological and Biochemical Zoology. http://www.jstor.org This content downloaded from 152.3.102.242 on Tue, 16 Jul 2013 16:00:41 PM All use subject to JSTOR Terms and Conditions 285 Comparative Visual Function in Predatory Fishes from the Indian River Lagoon D. Michelle McComb1,* Introduction Stephen M. Kajiura2 Teleost fishes represent a speciose vertebrate lineage that ra- Andrij Z. Horodysky3 diated into distinct aquatic habitats that present unique diver- Tamara M. Frank4 gent light qualities (Jerlov 1968). Selective pressure on the pi- 1Harbor Branch Oceanographic Institute at Florida Atlantic scine eye has resulted in an extensive array of both 2 University, Fort Pierce, Florida 34946; Biological Sciences, morphological and physiological adaptations to maximize vi- Florida Atlantic University, Boca Raton, Florida 33431; sual function under differing light conditions. -
Radiometric and Photometric Measurements with TAOS Photosensors Contributed by Todd Bishop March 12, 2007 Valid
TAOS Inc. is now ams AG The technical content of this TAOS application note is still valid. Contact information: Headquarters: ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-Mail: [email protected] Please visit our website at www.ams.com NUMBER 21 INTELLIGENT OPTO SENSOR DESIGNER’S NOTEBOOK Radiometric and Photometric Measurements with TAOS PhotoSensors contributed by Todd Bishop March 12, 2007 valid ABSTRACT Light Sensing applications use two measurement systems; Radiometric and Photometric. Radiometric measurements deal with light as a power level, while Photometric measurements deal with light as it is interpreted by the human eye. Both systems of measurement have units that are parallel to each other, but are useful for different applications. This paper will discuss the differencesstill and how they can be measured. AG RADIOMETRIC QUANTITIES Radiometry is the measurement of electromagnetic energy in the range of wavelengths between ~10nm and ~1mm. These regions are commonly called the ultraviolet, the visible and the infrared. Radiometry deals with light (radiant energy) in terms of optical power. Key quantities from a light detection point of view are radiant energy, radiant flux and irradiance. SI Radiometryams Units Quantity Symbol SI unit Abbr. Notes Radiant energy Q joule contentJ energy radiant energy per Radiant flux Φ watt W unit time watt per power incident on a Irradiance E square meter W·m−2 surface Energy is an SI derived unit measured in joules (J). The recommended symbol for energy is Q. Power (radiant flux) is another SI derived unit. It is the derivative of energy with respect to time, dQ/dt, and the unit is the watt (W). -
Color Vision and Night Vision Chapter Dingcai Cao 10
Retinal Diagnostics Section 2 For additional online content visit http://www.expertconsult.com Color Vision and Night Vision Chapter Dingcai Cao 10 OVERVIEW ROD AND CONE FUNCTIONS Day vision and night vision are two separate modes of visual Differences in the anatomy and physiology (see Chapters 4, perception and the visual system shifts from one mode to the Autofluorescence imaging, and 9, Diagnostic ophthalmic ultra- other based on ambient light levels. Each mode is primarily sound) of the rod and cone systems underlie different visual mediated by one of two photoreceptor classes in the retina, i.e., functions and modes of visual perception. The rod photorecep- cones and rods. In day vision, visual perception is primarily tors are responsible for our exquisite sensitivity to light, operat- cone-mediated and perceptions are chromatic. In other words, ing over a 108 (100 millionfold) range of illumination from near color vision is present in the light levels of daytime. In night total darkness to daylight. Cones operate over a 1011 range of vision, visual perception is rod-mediated and perceptions are illumination, from moonlit night light levels to light levels that principally achromatic. Under dim illuminations, there is no are so high they bleach virtually all photopigments in the cones. obvious color vision and visual perceptions are graded varia- Together the rods and cones function over a 1014 range of illu- tions of light and dark. Historically, color vision has been studied mination. Depending on the relative activity of rods and cones, as the salient feature of day vision and there has been emphasis a light level can be characterized as photopic (cones alone on analysis of cone activities in color vision. -
Control of Rhodopsin Activity in Vision
Control of rhodopsin DENIS A. BAYLOR, MARIE E. BURNS activity in vision Abstract high concentration in the cytoplasm in darkness and that binds to cationic channels in the Although rhodopsin's role in activating the surface membrane, holding them open. phototransduction cascade is well known, the Hydrolysis of cGMP allows the channels to processes that deactivate rhodopsin, and thus close, interrupting an inward current of sodium, the rest of the cascade, are less well calcium and magnesium ions and producing a understood. At least three proteins appear to hyperpolarisation of the membrane. The play a role: rhodopsin kinase, arrestin and hyperpolarisation reduces the rate at which recoverin. Here we review recent physiological neurotransmitter is released from the synaptic studies of the molecular mechanisms of terminal of the rod. rhodopsin deactivation. The approach was to The purpose of this paper is to review recent monitor the light responses of individual work on the important but still poorly mouse rods in which rhodopsin was altered or understood mechanisms that terminate the arrestin was deleted by transgenic techniques. light-evoked catalytic activity of rhodopsin. Removal of rhodopsin's carboxy-terminal These mechanisms, which fix the intensity and residues which contain phosphorylation sites duration of the activation of the transduction implicated in deactivation, prolonged the flash cascade, need to satisfy strong functional response 20-fold and caused it to become constraints. Rhodopsin activity must be highly variable. In rods that did not express arrestin the flash response recovered partially, terminated rapidly so that an absorbed photon but final recovery was slowed over lOO-fold. -
Molecular Basis of Dark Adaptation in Rod Photoreceptors
1 Molecular basis of dark c.s. LEIBROCK , T. REUTER, T.D. LAMB adaptation in rod photoreceptors Abstract visual threshold (logarithmically) against time, following 'bleaching' exposures of different Following exposure of the eye to an intense strengths. After an almost total bleach light that 'bleaches' a significant fraction of (uppermost trace) the visual threshold recovers the rhodopsin, one's visual threshold is along the classical bi-phasic curve: the initial initially greatly elevated, and takes tens of rapid recovery is due to cones, and the second minutes to recover to normal. The elevation of slower component occurs when the rod visual threshold arises from events occurring threshold drops below the cone threshold. within the rod photoreceptors, and the (Note that in this old work, the term 'photon' underlying molecular basis of these events was used for the unit now defined as the and of the rod's recovery is now becoming troland; x trolands is the illuminance at the clearer. Results obtained by exposing isolated retina when a light of 1 cd/m2 enters a pupil toad rods to hydroxylamine solution indicate with cross-sectional area x mm2.) that, following small bleaches, the primary intermediate causing elevation of visual threshold is metarhodopsin II, in its Questions and observations phosphorylated and arrestin-bound form. This The basic question in dark adaptation, which product activates transduction with an efficacy has not been answered convincingly in the six about 100 times greater than that of opsin. decades since the results of Fig. 1 were obtained, Key words Bleaching, Dark adaptation, is: Why is one not able to see very well during Metarhodopsin, Noise, Photoreceptors, the period following a bleaching exposure? Or, Sensitivity more explicitly: What is the molecular basis for the slow recovery of visual performance during dark adaptation? In considering the answers to these questions, there are three long-standing observations that need to be borne in mind. -
Radiometry and Photometry
Radiometry and Photometry Wei-Chih Wang Department of Power Mechanical Engineering National TsingHua University W. Wang Materials Covered • Radiometry - Radiant Flux - Radiant Intensity - Irradiance - Radiance • Photometry - luminous Flux - luminous Intensity - Illuminance - luminance Conversion from radiometric and photometric W. Wang Radiometry Radiometry is the detection and measurement of light waves in the optical portion of the electromagnetic spectrum which is further divided into ultraviolet, visible, and infrared light. Example of a typical radiometer 3 W. Wang Photometry All light measurement is considered radiometry with photometry being a special subset of radiometry weighted for a typical human eye response. Example of a typical photometer 4 W. Wang Human Eyes Figure shows a schematic illustration of the human eye (Encyclopedia Britannica, 1994). The inside of the eyeball is clad by the retina, which is the light-sensitive part of the eye. The illustration also shows the fovea, a cone-rich central region of the retina which affords the high acuteness of central vision. Figure also shows the cell structure of the retina including the light-sensitive rod cells and cone cells. Also shown are the ganglion cells and nerve fibers that transmit the visual information to the brain. Rod cells are more abundant and more light sensitive than cone cells. Rods are 5 sensitive over the entire visible spectrum. W. Wang There are three types of cone cells, namely cone cells sensitive in the red, green, and blue spectral range. The approximate spectral sensitivity functions of the rods and three types or cones are shown in the figure above 6 W. Wang Eye sensitivity function The conversion between radiometric and photometric units is provided by the luminous efficiency function or eye sensitivity function, V(λ). -
Temporal and Spatial Dependence of Adaptation on Ganglion Cells
Temporal and Spatial Dependence of Adaptation on Ganglion Cells Amin, A.P.1, Moazzezi, R.2, Werblin, F.S.2 1University of California, Berkeley; Department of Integrative Biology 2University of California, Berkeley; Department of Molecular and Cellular Biology Keywords: adaptation, contrast sensitivity, ganglion, inter-stimuli interval, ISI, lateral interneurons, luminosity, MicroElectrode Array (MEA), photoreceptor, rabbit, retina, spatial, temporal ABSTRACT BSJ One of the visual system’s many tasks is to be able to the interval between two circular stimuli (inter-stimuli distinguish objects from the background. The ability interval; ISI) of the same diameter, and by changing the to do this is limited and affected by the relationship diameter over a common ISI, we measured a ganglion between the object (or stimulus) of interest and the cell’s output for one stimulus relative to another background. Adaptation in retinal neurons is the process stimulus. The results show saturation (loss of output to of changing the cell’s response to a stimulus according the 2nd stimulus) of stimuli at lower ISIs. Also, the degree to that stimulus’s background. When the stimulus is of saturation for a given ISI depends on the diameter hard to discern from the background, the retina adapts of the stimulus. These combinations of results illustrate by improving its sensitivity to low contrast. The large the temporal and spatial dependence of adaptation response range maintained by adaptation comes at a on ganglion cells. A larger-diameter stimulus involves cost, however. Adaptation complicates neural coding by multiple neurons surrounding the ganglion cell being making the brain interpret identical stimuli as different recorded so various pathways most likely influence based on differences in background. -
The Eye and Night Vision
Source: http://www.aoa.org/x5352.xml Print This Page The Eye and Night Vision (This article has been adapted from the excellent USAF Special Report, AL-SR-1992-0002, "Night Vision Manual for the Flight Surgeon", written by Robert E. Miller II, Col, USAF, (RET) and Thomas J. Tredici, Col, USAF, (RET)) THE EYE The basic structure of the eye is shown in Figure 1. The anterior portion of the eye is essentially a lens system, made up of the cornea and crystalline lens, whose primary purpose is to focus light onto the retina. The retina contains receptor cells, rods and cones, which, when stimulated by light, send signals to the brain. These signals are subsequently interpreted as vision. Most of the receptors are rods, which are found predominately in the periphery of the retina, whereas the cones are located mostly in the center and near periphery of the retina. Although there are approximately 17 rods for every cone, the cones, concentrated centrally, allow resolution of fine detail and color discrimination. The rods cannot distinguish colors and have poor resolution, but they have a much higher sensitivity to light than the cones. DAY VERSUS NIGHT VISION According to a widely held theory of vision, the rods are responsible for vision under very dim levels of illumination (scotopic vision) and the cones function at higher illumination levels (photopic vision). Photopic vision provides the capability for seeing color and resolving fine detail (20/20 of better), but it functions only in good illumination. Scotopic vision is of poorer quality; it is limited by reduced resolution ( 20/200 or less) and provides the ability to discriminate only between shades of black and white. -
Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods
The Journal of Neuroscience, June 29, 2016 • 36(26):6973–6987 • 6973 Cellular/Molecular Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods X Justin Berry,1 XRikard Frederiksen,1 Yun Yao,2 Soile Nymark,3 Jeannie Chen,2 and Carter Cornwall1 1Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, 2Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, and 3Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, 33520 Tampere, Finland Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that is activated when its 11-cis-retinal moiety is photoisomerized to all-trans retinal. This step initiates a cascade of reactions by which rods signal changes in light intensity. Like other GPCRs, rhodopsin is deactivatedthroughreceptorphosphorylationandarrestinbinding.Fullrecoveryofreceptorsensitivityisthenachievedwhenrhodopsin is regenerated through a series of steps that return the receptor to its ground state. Here, we show that dephosphorylation of the opsin moiety of rhodopsin is an extremely slow but requisite step in the restoration of the visual pigment to its ground state. We make use of a novel observation: isolated mouse retinae kept in standard media for routine physiologic recordings display blunted dephosphorylation of rhodopsin. Isoelectric focusing followed by Western blot analysis of bleached isolated retinae showed little dephosphorylation of rhodopsin for up to4hindarkness, even under conditions when rhodopsin was completely regenerated. Microspectrophotometeric determinations of rhodopsin spectra show that regenerated phospho-rhodopsin has the same molecular photosensitivity as unphos- phorylated rhodopsin and that flash responses measured by trans-retinal electroretinogram or single-cell suction electrode recording displayed dark-adapted kinetics.