Stringsext Documentation
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
SLP-5 Setup for Uni-3/5/7 & WM-Nano Chinese BIG5 Characters
SLP-5 Configuration for Uni-3, Uni-5, Uni-7 & WM-Nano Chinese BIG5 Characters The Uni-3, Uni-5, Uni-7 scales and WM-Nano wrapper can display and print PLU information in Chinese BIG5, also known as Traditional, characters but all menus, etc. remain in English. Chinese characters are entered in SLP-5 and sent to the scales. Chinese characters cannot be entered at the scales. Refer to the following procedure to configure the scales and wrapper and SLP-5. SCALE SETUP Update the firmware for the Uni-5, Uni-7 and WM-Nano to the following versions. Uni-5: C1830x Uni-7: C1828x (PK-260A CF CPU), C2072x (PK-260B SD CPU) WM-Nano: C1832x (PK-260A CF CPU), C2074x (PK-260B SD CPU) Uni-3: C1937U or later, C2271x The Language setting in the Uni-3 must be set to print and display Chinese characters. Note: Only the Uni-3L2 models display Chinese characters. KEY IN ITEM No. Enter 6000, press MODE 0.000 0.000 0.00 0.00 <B00 SETUP> Enter 495344, press PLU <B00 SETUP> <B00 SETUP> Enter 26, press Down Arrow <B00 SETUP> B26 COUNTRY Press ENTER B26 COUNTRY *LANGUAGE 1:ENGLISH Enter 15, press ENTER B26-01-02 LANGUAGE 1 *LANGUAGE 15:FORMOSAN After the long beep press MODE B26-01-02 LANGUAGE 15 REBOOT Shut off the scale for this setting change to 19004-0000 take effect. SLP-5 SETUP SLP-5 must be configured to use Chinese fonts. Refer to the instructions below. The following Chinese character sizes are available. -
Assessment of Options for Handling Full Unicode Character Encodings in MARC21 a Study for the Library of Congress
1 Assessment of Options for Handling Full Unicode Character Encodings in MARC21 A Study for the Library of Congress Part 1: New Scripts Jack Cain Senior Consultant Trylus Computing, Toronto 1 Purpose This assessment intends to study the issues and make recommendations on the possible expansion of the character set repertoire for bibliographic records in MARC21 format. 1.1 “Encoding Scheme” vs. “Repertoire” An encoding scheme contains codes by which characters are represented in computer memory. These codes are organized according to a certain methodology called an encoding scheme. The list of all characters so encoded is referred to as the “repertoire” of characters in the given encoding schemes. For example, ASCII is one encoding scheme, perhaps the one best known to the average non-technical person in North America. “A”, “B”, & “C” are three characters in the repertoire of this encoding scheme. These three characters are assigned encodings 41, 42 & 43 in ASCII (expressed here in hexadecimal). 1.2 MARC8 "MARC8" is the term commonly used to refer both to the encoding scheme and its repertoire as used in MARC records up to 1998. The ‘8’ refers to the fact that, unlike Unicode which is a multi-byte per character code set, the MARC8 encoding scheme is principally made up of multiple one byte tables in which each character is encoded using a single 8 bit byte. (It also includes the EACC set which actually uses fixed length 3 bytes per character.) (For details on MARC8 and its specifications see: http://www.loc.gov/marc/.) MARC8 was introduced around 1968 and was initially limited to essentially Latin script only. -
Basis Technology Unicode対応ライブラリ スペックシート 文字コード その他の名称 Adobe-Standard-Encoding A
Basis Technology Unicode対応ライブラリ スペックシート 文字コード その他の名称 Adobe-Standard-Encoding Adobe-Symbol-Encoding csHPPSMath Adobe-Zapf-Dingbats-Encoding csZapfDingbats Arabic ISO-8859-6, csISOLatinArabic, iso-ir-127, ECMA-114, ASMO-708 ASCII US-ASCII, ANSI_X3.4-1968, iso-ir-6, ANSI_X3.4-1986, ISO646-US, us, IBM367, csASCI big-endian ISO-10646-UCS-2, BigEndian, 68k, PowerPC, Mac, Macintosh Big5 csBig5, cn-big5, x-x-big5 Big5Plus Big5+, csBig5Plus BMP ISO-10646-UCS-2, BMPstring CCSID-1027 csCCSID1027, IBM1027 CCSID-1047 csCCSID1047, IBM1047 CCSID-290 csCCSID290, CCSID290, IBM290 CCSID-300 csCCSID300, CCSID300, IBM300 CCSID-930 csCCSID930, CCSID930, IBM930 CCSID-935 csCCSID935, CCSID935, IBM935 CCSID-937 csCCSID937, CCSID937, IBM937 CCSID-939 csCCSID939, CCSID939, IBM939 CCSID-942 csCCSID942, CCSID942, IBM942 ChineseAutoDetect csChineseAutoDetect: Candidate encodings: GB2312, Big5, GB18030, UTF32:UTF8, UCS2, UTF32 EUC-H, csCNS11643EUC, EUC-TW, TW-EUC, H-EUC, CNS-11643-1992, EUC-H-1992, csCNS11643-1992-EUC, EUC-TW-1992, CNS-11643 TW-EUC-1992, H-EUC-1992 CNS-11643-1986 EUC-H-1986, csCNS11643_1986_EUC, EUC-TW-1986, TW-EUC-1986, H-EUC-1986 CP10000 csCP10000, windows-10000 CP10001 csCP10001, windows-10001 CP10002 csCP10002, windows-10002 CP10003 csCP10003, windows-10003 CP10004 csCP10004, windows-10004 CP10005 csCP10005, windows-10005 CP10006 csCP10006, windows-10006 CP10007 csCP10007, windows-10007 CP10008 csCP10008, windows-10008 CP10010 csCP10010, windows-10010 CP10017 csCP10017, windows-10017 CP10029 csCP10029, windows-10029 CP10079 csCP10079, windows-10079 -
AIX Globalization
AIX Version 7.1 AIX globalization IBM Note Before using this information and the product it supports, read the information in “Notices” on page 233 . This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright International Business Machines Corporation 2010, 2018. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About this document............................................................................................vii Highlighting.................................................................................................................................................vii Case-sensitivity in AIX................................................................................................................................vii ISO 9000.....................................................................................................................................................vii AIX globalization...................................................................................................1 What's new...................................................................................................................................................1 Separation of messages from programs..................................................................................................... 1 Conversion between code sets............................................................................................................. -
Data Encoding: All Characters for All Countries
PhUSE 2015 Paper DH03 Data Encoding: All Characters for All Countries Donna Dutton, SAS Institute Inc., Cary, NC, USA ABSTRACT The internal representation of data, formats, indexes, programs and catalogs collected for clinical studies is typically defined by the country(ies) in which the study is conducted. When data from multiple languages must be combined, the internal encoding must support all characters present, to prevent truncation and misinterpretation of characters. Migration to different operating systems with or without an encoding change make it impossible to use catalogs and existing data features such as indexes and constraints, unless the new operating system’s internal representation is adopted. UTF-8 encoding on the Linux OS is used by SAS® Drug Development and SAS® Clinical Trial Data Transparency Solutions to support these requirements. UTF-8 encoding correctly represents all characters found in all languages by using multiple bytes to represent some characters. This paper explains transcoding data into UTF-8 without data loss, writing programs which work correctly with MBCS data, and handling format catalogs and programs. INTRODUCTION The internal representation of data, formats, indexes, programs and catalogs collected for clinical studies is typically defined by the country or countries in which the study is conducted. The operating system on which the data was entered defines the internal data representation, such as Windows_64, HP_UX_64, Solaris_64, and Linux_X86_64.1 Although SAS Software can read SAS data sets copied from one operating system to another, it impossible to use existing data features such as indexes and constraints, or SAS catalogs without converting them to the new operating system’s data representation. -
International Language Environments Guide
International Language Environments Guide Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 806–6642–10 May, 2002 Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, XView, ToolTalk, Solstice AdminTools, SunVideo and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. SunOS, Solaris, X11, SPARC, UNIX, PostScript, OpenWindows, AnswerBook, SunExpress, SPARCprinter, JumpStart, Xlib The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. -
IRG N2153 IRG Principles and Procedures 2016-10-20 Version 8Confirmed Page 1 of 40 2.3.3
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC 1/SC 2/WG 2/IRG Universal Coded Character Set (UCS) ISO/IEC JTC 1/SC 2/WG 2/IRGN2153 SC2N5405 (Revision of IRG N1503/N1772/N1823/N1920/N1942/N1975/N2016/N2092) 2016-10-20 Title: IRG Principles and Procedures(IRG PnP) Version 9 Source: IRG Rapporteur Action: For review by the IRG and WG2 Distribution: IRG Member Bodies and Ideographic Experts Editor in chief: Lu Qin, IRG Rapporteur References: IRG Meeting No. 45 Recommendations(IRGN2150), IRG Special Meeting No. 44 discussions and recommendation No. 44.6(IRGN2080), IRGN2016, and IRGN 1975 and IRG Meeting No. 42 discussions IRGN 1952 and feedback from HKSARG, Japan, ROK and TCA, IRG 1920 Draft(2012-11-15), Draft 2(2013-05-04) and Draft 3(2013-05-22); feedback from Japan(2013-04-23) and ROK(2013-05-16 and 2013-05-21); and IRG Meeting No. 40 discussions IRG 1823 Draft 3 and feedback from HKSAR, Korea and IRG Meeting No. 39 discussions IRGN1823 Draft2 feedback from HKSAR and Japan IRG N1823Draft_gimgs2_Feedback IRG N1781 and N1782 Feedback from KIM Kyongsok IRGN1772 (P&P Version 5) IRG N1646 (P&P Version 4 draft) IRG N1602 (P&P Draft 4) and IRG N1633 (P&P Editorial Report) IRG N1601 (P&P Draft 3 Feedback from HKSAR) IRG N1590 and IRGN 1601(P&P V2 and V3 draft and all feedback) IRG N1562 (P&P V3 Draft 1 and Feedback from HKSAR) IRG N1561 (P&P V2 and all feedback) IRG N1559 (P&P V2 Draft and all feedback) IRG N1516 (P&P V1 Feedback from HKSAR) IRG N1489 (P&P V1 Feedback from Taichi Kawabata) IRG N1487 (P&P V1 Feedback from HKSAR) IRG N1465, IRG N1498 and IRG N1503 (P&P V1 drafts) Table of Contents 1. -
Traditional Chinese Solaris User's Guide
Traditional Chinese Solaris User’s Guide Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 816–0669–10 May 2002 Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements. -
UTF-8 for User Defined Fields
Proposed Updates to ANSI/NIST-ITL 1-2005 UTF8, GPS, Tracking Subcommittee Scott Hills, Aware, Inc. Rob Mungovan, Aware, Inc. Dale Hapeman, DOD-BFC Tony Misslin, Identix Bonny Scheier, Sabre Ralph Lessman, Smiths-Heimann UTF-8 for User Defined Fields Change to Section 6.1 File Format The second paragraph restricts text or character data in Type 2 and Type 9 through Type 16 records to 7-bit ASCII code. This should be modified to allow 8-bit UTF-8 characters in all user defined fields within these records. Proposed wording change to paragraph 2: After the first sentence: “The text or character data in Type-2, and Type-9 through Type-16 records will normally be recorded using 7-bit ASCII code in variable length fields with specified upper limits on the size of the fields.” … Add this… “Eight bit UTF-8 characters shall be allowed to support international character sets for all user defined fields in all record types. By definition this excludes record types 1, 3, 4, 5, 6 and 8.” The third paragraph should be changed to suggest UTF-8 as the preferred way of storing data that cannot be represented in 7-bit ASCII. Proposed wording change to paragraph 3: After the first sentence: “For data interchange between non-English speaking agencies, character sets other than 7-bit ASCII may be used in textual fields contained in Type-2 and Type-9 through Type- 16 records.” … Add this… “UTF-8 is the preferred method of storing textual data that cannot be represented as 7 bit ASCII.” Change to Section 7.2.3 International character sets … at the very end of this section add this text… “Usage of UTF-8 is allowed as an alternative to the technique that requires the usage of the ASCII “STX” and “ETX” characters to signify the beginning or end of of international characters. -
UTR #25: Unicode and Mathematics
UTR #25: Unicode and Mathematics http://www.unicode.org/reports/tr25/tr25-5.html Technical Reports Draft Unicode Technical Report #25 UNICODE SUPPORT FOR MATHEMATICS Version 1.0 Authors Barbara Beeton ([email protected]), Asmus Freytag ([email protected]), Murray Sargent III ([email protected]) Date 2002-05-08 This Version http://www.unicode.org/unicode/reports/tr25/tr25-5.html Previous Version http://www.unicode.org/unicode/reports/tr25/tr25-4.html Latest Version http://www.unicode.org/unicode/reports/tr25 Tracking Number 5 Summary Starting with version 3.2, Unicode includes virtually all of the standard characters used in mathematics. This set supports a variety of math applications on computers, including document presentation languages like TeX, math markup languages like MathML, computer algebra languages like OpenMath, internal representations of mathematics in systems like Mathematica and MathCAD, computer programs, and plain text. This technical report describes the Unicode mathematics character groups and gives some of their default math properties. Status This document has been approved by the Unicode Technical Committee for public review as a Draft Unicode Technical Report. Publication does not imply endorsement by the Unicode Consortium. This is a draft document which may be updated, replaced, or superseded by other documents at any time. This is not a stable document; it is inappropriate to cite this document as other than a work in progress. Please send comments to the authors. A list of current Unicode Technical Reports is found on http://www.unicode.org/unicode/reports/. For more information about versions of the Unicode Standard, see http://www.unicode.org/unicode/standard/versions/. -
An Alignment Based Technique for Text Translation Between Traditional Chinese and Simplified Chinese
An Alignment based technique for Text Translation between Traditional Chinese and Simplified Chinese Sue J. Ker Chun-Hsien Lin . Department of Computer and Information Science Department of Computer and Information Science Soochow University Soochow University Taipei, Taiwan, R.O.C. Taipei, Taiwan, R.O.C. [email protected] [email protected] Abstract Aligned parallel corpora have proved very useful in many natural language processing tasks, including statistical machine translation and word sense disambiguation. In this paper, we describe an alignment technique for extracting transfer mapping from the parallel corpus. During building our system and data collection, we observe that there are three types of translation approaches can be used. We especially focuses on Traditional Chinese and Simplified Chinese text lexical translation and a method for extracting transfer mappings for machine translation. 1 Introduction Aligned parallel corpora have proved very useful in many tasks, including statistical machine translation (Brown et al., 1993; Wu and Ng, 1995, Chen et al., 1997; Moore, 2001) and word sense disambiguation (Chang et al., 1996; Chen and Chang, 1998). Traditional and Simplified Chinese are two Chinese writing systems that used by Chinese-speaking communities. Since their typefaces are different, foreigners always view these two languages as a family of cognate languages. Aside from differences in typeface, their encoding schemas are also different. For the conversion of text, special utilities or tools are required for mapping the correspondence between the two schemas. At present, the methods used to undertake this mapping are far from perfect. In general, a table-conversion method is used to translate between Traditional and Simplified Chinese text. -
Unicode Characters in Proofpower Through Lualatex
Unicode Characters in ProofPower through Lualatex Roger Bishop Jones Abstract This document serves to establish what characters render like in utf8 ProofPower documents prepared using lualatex. Created 2019 http://www.rbjones.com/rbjpub/pp/doc/t055.pdf © Roger Bishop Jones; Licenced under Gnu LGPL Contents 1 Prelude 2 2 Changes 2 2.1 Recent Changes .......................................... 2 2.2 Changes Under Consideration ................................... 2 2.3 Issues ............................................... 2 3 Introduction 3 4 Mathematical operators and symbols in Unicode 3 5 Dedicated blocks 3 5.1 Mathematical Operators block .................................. 3 5.2 Supplemental Mathematical Operators block ........................... 4 5.3 Mathematical Alphanumeric Symbols block ........................... 4 5.4 Letterlike Symbols block ..................................... 6 5.5 Miscellaneous Mathematical Symbols-A block .......................... 7 5.6 Miscellaneous Mathematical Symbols-B block .......................... 7 5.7 Miscellaneous Technical block .................................. 7 5.8 Geometric Shapes block ...................................... 8 5.9 Miscellaneous Symbols and Arrows block ............................. 9 5.10 Arrows block ........................................... 9 5.11 Supplemental Arrows-A block .................................. 10 5.12 Supplemental Arrows-B block ................................... 10 5.13 Combining Diacritical Marks for Symbols block ......................... 11 5.14