Small Mammals

Total Page:16

File Type:pdf, Size:1020Kb

Small Mammals 1 – Game Ranging / Field Guiding Course Module # 7 – Component # 2 Small Mammals The term “small mammals” is not a taxonomic one. Small mammals are not inter-related unless viewed from a much broader sense in that they are mammals and small in size. One of the groups examined here is the Hyrax or Dassie. Oddly enough this small mammal is more closely related (taxonomically) to the elephant, than it is to any other small mammals. Small mammals are a frequently overlooked group. This is not due to any deliberate action but rather because they are seldom seen and are often difficult to find even when looking for them. This does, however, not make them any less important ecologically than the larger mammals frequently seem. In terms of biomass (see the glossary) they more than equal that of their larger counterparts and play an equal or more important part in the functioning of most given ecosystems. In terms of species diversity, as well as actual populations, small mammals as a group are far more numerous than their larger counterparts. For this reason, each subset of the small mammals can only be practically described in broad terms with no specific species accounts given. Mammals © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 2 – Game Ranging / Field Guiding Course Order: Insectivora As a group, insectivores are generally considered to be the most primitive of living placental mammals. Their primitive characteristics include: Small brain Few wrinkles to decrease surface area Primitive teeth Primitive features of the auditory bones and collar bones Plantigrade gait Generally, insectivores are small animals with narrow, mobile snouts. All of them are plantigrade and most have short limbs with five digits on each foot. The eyes and ears are relatively small. Elephant shrew Insectivores which occur in Southern Africa fall into three families: Family Soricidae (Shrews) Family Erinaceidae (Hedgehog) Family Chrysochloridae (Golden moles) Mammals © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 3 – Game Ranging / Field Guiding Course Family Soricidae: Shrews Members of this family are small, secretive mammals. They possess long, narrow and pointed muzzles They have very small eyes - their vision appears to be poor Their senses of smell and hearing are acute Both sexes possess musk glands For their size shrews, are remarkably fierce and are always ready to bite. Shrews are born with their final set of teeth which are extremely sharp. Their first set of teeth are shed or resorbed during embryonic development. Ecologically shrews are important in that they break down animal tissue and return raw materials to the soil. Typically, terrestrial, they spend most of their time foraging in and under fallen vegetation searching for insects and carrion. Some species also eat seeds, nuts and other plant material. There are 15 species of shrew in Southern Africa: Forest shrew Long–tailed forest shrew Dark–footed forest shrew Greater dwarf shrew Lesser dwarf shrew Least dwarf shrew Swamp musk shrew Maquassie musk shrew Reddish – grey musk shrew Grey–brown musk shrew Lesser red musk shrew Tiny musk shrew Peter’s musk shrew Greater musk shrew Giant musk shrew Climbing shrew Mammals © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 4 – Game Ranging / Field Guiding Course Family Erinaceidae: Hedgehog Only one species occurs in Southern Africa - the South African hedgehog. The body plan of hedgehogs is regarded as primitive except for their spines and the associated muscles Their eyes and ears are well developed The snout is long, the tip is mobile They possess powerful legs with strong claws. The most distinctive feature of the hedgehog is its spines. Spines are modified hair ending in a needle-sharp point. To lighten the load each spine consists of many small chambers each filled with air. Connected to the base of each spine is a small muscle whose function it is to pull the spine erect when danger threatens. Hedgehogs are additionally protected by their ability to curl up into a ball, thereby protecting the belly, legs and head. This is achieved by having a larger skin than is necessary and a powerful muscle beneath the skin, which on contraction causes the hedgehog to curl. Hedgehogs feed on a wide variety of prey and some vegetation. The earthworm is their first choice followed by beetles, earwigs, slugs, millipedes and caterpillars. They will also scavenge on remains of any animal found dead and take eggs and young from the nests of birds. All hedgehogs are capable of undergoing periods of dormancy (hibernation). This enables them to survive periods of food scarcity by reducing energy requirement to a very low level. Mammals © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 5 – Game Ranging / Field Guiding Course Family Chrysochloridae: Golden moles Members of this family are solitary, burrowing insectivores. Golden moles spend more time burrowing in search of food than any other activity. They have short limbs with the forelimbs being equipped with strong digging claws There are no visible tails and the eyes have almost been lost The eyes and ear openings are covered with fur The nostrils are shielded by a leathery pad which protects them from soil during excavations Golden moles are highly sensitive to vibrations Most species dig elaborate burrow systems with specific chambers. Golden moles can orientate themselves. When parts of the burrow system have been destroyed, they are able to construct new tunnels to link up with the existing ones. Their food consists of earthworms, insect larvae, slugs, snails, crickets and spiders. Prey found on the surface is dragged down the burrow where it is consumed. 15 species of this family are endemic to the Southern African Sub-region, they include the: Cape golden mole Giant golden mole Rough–haired golden mole Grant’s golden mole Arend’s golden mole Van Zyl golden mole Visagie’s golden mole Duthie’s golden mole De Winton’s golden mole Sclater’s golden mole Gunning’s golden mole Juliana’s golden mole Hottentot golden mole Zulu golden mole Yellow golden mole Mammals © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 6 – Game Ranging / Field Guiding Course Order: Lagomorpha This order is represented by one family - Leporidae - in Southern Africa. Family Leporidae (Rabbits and Hares) Lagomorphs were originally classified as rodents because of their gnawing incisors. But unlike rodents they possess a second pair of small, peg-like incisors behind the constantly growing pair in the upper jaw. The hind legs are long and adapted for running The ears are very large and mobile The eyes are also large and adapted to low light conditions The fur is usually long and soft and their feet are fully furred Their nostrils can be opened and closed by a fold of the skin above The lagomorphs are herbivorous and have a digestive system highly modified which can cope with large quantities of vegetation. The ceacum situated between the large and small intestines, contains bacterial flora which aids the digestion of cellulose. Many products of the digestion can pass from the ceacum directly into the blood-stream. Others such as the important vitamin B12 would be lost if it were not for the fact that lagomorphs eat some of their faeces and pass them through their gut twice. The practice of re-ingesting one’s own faeces is known as coprophagy. The difference between rabbits and hares is often confused. Some have attempted to differentiate the two based on morphology, habitat and ecology. However, this is not a successful technique and quickly gets the user into trouble. There is a very clear cut way to separate the two groups. Hares bear precocial young. This means that their offspring are born fully furred with their eyes open and are capable of movement Rabbits bear altricial young. These young are born blind, naked and feeble. Rabbits also use secluded burrows for the most part and therefore these conditions are more conducive to altricial offspring. Lagomorpha that occur in Southern Africa are: Cape hare Scrub hare Natal red rock rabbit Jameson’s red rock rabbit Riverine rabbit (currently one of the our most endangered species) Mammals © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 7 – Game Ranging / Field Guiding Course Order: Rodentia Due to this order being made up of a great many families, we will only cover characteristics common to all rodents. Rodents occur in almost every habitat and have high powers of reproduction. Most are small and have short limbs and a tail. They all have a single pair of razor- sharp incisors which grow continuously throughout their lifetime as they are constantly being worn down. Rodents have no canines. Some species have cheek pouches. These are folds of skin and are lined with fur. Rodents that possess cheek pouches can build up large stores of food. Their sense of smell and hearing are acutely developed. They have long, touch-sensitive whiskers (vibrissae).
Recommended publications
  • Amblysomus Robustus – Robust Golden Mole
    Amblysomus robustus – Robust Golden Mole continuing decline and possible severe fragmentation of habitat. Currently known from only five locations but probably more widespread. Further field surveys and molecular data are needed to accurately delimit its range. The Highveld grasslands favoured by this species are being degraded by mining for shallow coal deposits to fuel numerous power stations that occur in the preferred high-altitude grassland habitats of this species, which is an inferred major threat. Rehabilitation attempts at these sites appear to have been largely ineffective. These power stations form the backbone of South Africa's electricity network, and disturbance is likely to increase as human populations grow and the demand for power increases. While no mining sites and power generation plants occur at the five localities where this species has been collected, an environmental authorisation application to mine coal at a site near Belfast, close to where this species occurs, is Gary Bronner currently being assessed. Given the ubiquity of mines and power stations in the Mpumalanga grasslands, impacts on this species are likely if it is more widespread than current Regional Red List status (2016) Vulnerable B1ab(iii)* records indicate, which seems probable. Farming, tourism National Red List status (2004) Endangered resort developments and agro-forestry (exotic pine and B1,2ab(i-iv) eucalyptus plantations) have also transformed habitat, but less dramatically; these do not appear to pose a major Reasons for change Non-genuine: threat. More data is required on the distribution limits, New information ecology, densities and reproduction of this species. Global Red List status (2015) Vulnerable B1ab(iii) TOPS listing (NEMBA) None Distribution CITES listing None Endemic to South Africa, this species is known from only the Steenkampsberg Mountain Plateau and in the Endemic Yes Dullstroom and Belfast areas of Mpumalanga (Figure 1), extending eastwards to Lydenburg and possibly *Watch-list Data southwards towards the Ermelo district where A.
    [Show full text]
  • Preliminary Ecological Survey and Habitat Assessment for the Proposed New Link Road from the N2 Connecting to the Mvezho Village
    PRELIMINARY ECOLOGICAL SURVEY-P-166 PRELIMINARY ECOLOGICAL SURVEY AND HABITAT ASSESSMENT FOR THE PROPOSED P-166 ROAD; WHITE-RIVER-MBOMBELA, MPUMALANGA PROVINCE Compiled for: Royal HaskoningDHV by: Vegetation Aspect Prof. L.R. Brown (Phd UP) MGSSA, Pr.Sci.Nat 400075/98 Faunal Aspect Mr C.L.COOK (MSc. Zool. U.P) Pr.Nat.Sci 400084/08 SUBMITTED: DECEMBER 2012 1 PRELIMINARY ECOLOGICAL SURVEY-P-166 1. Background Information Prof. L.R. Brown and Mr. C. L. Cook were appointed by Royal HaskoningDHV (previously SSI) to undertake a preliminary ecological assessment for the scoping phase of the proposed EIA for the P-166 road from the north of White River to the south of Mbombela. Four alternatives alignments were proposed for the new P1-66 road linkage. It must be stressed that no comprehensive vegetation or faunal surveys have been undertaken due to severe financial and time constraints as well as access on privately owned properties; but merely a brief assessment of the current ecological status of the proposed road alignments. By surveying the proposed road alignment as well as immediate areas adjacent to the proposed alignment for specialised habitats, as well as the remaining vegetation and specific habitats, one can make an assumption of the possible presence or absence of threatened plant and animal species. An initial site visitation of the proposed alignment was conducted on the 20-21st October 2012. The survey was supplemented by literature investigations; personal records, historic data and previous surveys conducted in the White River-Mbombela areas (2000-2012) as well as in similar habitats.
    [Show full text]
  • Afrotherian Conservation – Number 16
    AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 16 Edited by PJ Stephenson September 2020 Afrotherian Conservation is published annually by the measure the effectiveness of SSC’s actions on biodiversity IUCN Species Survival Commission Afrotheria Specialist conservation, identification of major new initiatives Group to promote the exchange of news and information needed to address critical conservation issues, on the conservation of, and applied research into, consultations on developing policies, guidelines and aardvarks, golden moles, hyraxes, otter shrews, sengis and standards, and increasing visibility and public awareness of tenrecs. the work of SSC, its network and key partners. Remarkably, 2020 marks the end of the current IUCN Published by IUCN, Gland, Switzerland. quadrennium, which means we will be dissolving the © 2020 International Union for Conservation of Nature membership once again in early 2021, then reassembling it and Natural Resources based on feedback from our members. I will be in touch ISSN: 1664-6754 with all members at the relevant time to find out who wishes to remain a member and whether there are any Find out more about the Group people you feel should be added to our group. No one is on our website at http://afrotheria.net/ASG.html automatically re-admitted, however, so you will all need to and on Twitter @Tweeting_Tenrec actively inform me of your wishes. We will very likely need to reassess the conservation status of all our species during the next quadrennium, so get ready for another round of Red Listing starting Message from the Chair sometime in the not too distant future.
    [Show full text]
  • The Adapted Ears of Big Cats and Golden Moles: Exotic Outcomes of the Evolutionary Radiation of Mammals
    FEATURED ARTICLE The Adapted Ears of Big Cats and Golden Moles: Exotic Outcomes of the Evolutionary Radiation of Mammals Edward J. Walsh and JoAnn McGee Through the process of natural selection, diverse organs and organ systems abound throughout the animal kingdom. In light of such abundant and assorted diversity, evolutionary adaptations have spawned a host of peculiar physiologies. The anatomical oddities that underlie these physiologies and behaviors are the telltale indicators of trait specialization. Following from this, the purpose of this article is to consider a number of auditory “inventions” brought about through natural selection in two phylogenetically distinct groups of mammals, the largely fossorial golden moles (Order Afrosoricida, Family Chrysochloridae) and the carnivorous felids of the genus Panthera along with its taxonomic neigh- bor, the clouded leopard (Neofelis nebulosa). In the Beginning The first vertebrate land invasion occurred during the Early Carboniferous period some 370 million years ago. The primitive but essential scaffolding of what would become the middle and inner ears of mammals was present at this time, although the evolution of the osseous (bony) middle ear system and the optimization of cochlear fea- tures and function would play out over the following 100 million years. Through natural selection, the evolution of the middle ear system, composed of three small articu- lated bones, the malleus, incus, and stapes, and a highly structured and coiled inner ear, came to represent all marsupial and placental (therian) mammals on the planet Figure 1. Schematics of the outer, middle, and inner ears (A) and thus far studied. The consequences of this evolution were the organ of Corti in cross section (B) of a placental mammal.
    [Show full text]
  • Suncus Lixus – Greater Dwarf Shrew
    Suncus lixus – Greater Dwarf Shrew transformed landscapes. It occurs in a number of protected areas and can be locally common in suitable habitat, such as riverine woodland, sandveld and moist grasslands. There is no evidence to suggest a net population decline. However, we caution that molecular data, coupled with further field surveys to delimit Photograph distribution more accurately, are needed to determine whether the highveld grassland and subtropical wanted grasslands subpopulations comprise separate species. If so, both species will need to be reassessed as high rates of grassland habitat loss in both regions may qualify one or both species for a threatened status. Key interventions include protected area expansion of moist grassland and riverine woodland habitats, as well as providing incentives for landowners to sustain natural Regional Red List status (2016) Least Concern* vegetation around wetlands and keep livestock or wildlife at ecological carrying capacity. National Red List status (2004) Data Deficient Regional population effects: There is a disjunct Reasons for change Non-genuine change: distribution between populations in the assessment region Change in risk and the rest of its range. This species is also a poor tolerance disperser. Thus there is not suspected to be a significant Global Red List status (2008) Least Concern rescue effect. TOPS listing (NEMBA) None CITES listing None Distribution Throughout the global range of the Greater Dwarf Shrew Endemic No there are only a few scattered records (Skinner & *Watch-list Data Chimimba 2005). However, it is a widespread species that ranges through East Africa, Central Africa and southern As the colloquial name indicates, although this is Africa.
    [Show full text]
  • Subterranean Mammals Show Convergent Regression in Ocular Genes and Enhancers, Along with Adaptation to Tunneling
    RESEARCH ARTICLE Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling Raghavendran Partha1, Bharesh K Chauhan2,3, Zelia Ferreira1, Joseph D Robinson4, Kira Lathrop2,3, Ken K Nischal2,3, Maria Chikina1*, Nathan L Clark1* 1Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States; 2UPMC Eye Center, Children’s Hospital of Pittsburgh, Pittsburgh, United States; 3Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States; 4Department of Molecular and Cell Biology, University of California, Berkeley, United States Abstract The underground environment imposes unique demands on life that have led subterranean species to evolve specialized traits, many of which evolved convergently. We studied convergence in evolutionary rate in subterranean mammals in order to associate phenotypic evolution with specific genetic regions. We identified a strong excess of vision- and skin-related genes that changed at accelerated rates in the subterranean environment due to relaxed constraint and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in these species indicates that evolution in this environment is recurrent and predictable and can be used to gain insights into phenotype–genotype relationships. DOI: https://doi.org/10.7554/eLife.25884.001 *For correspondence: [email protected] (MC); [email protected] (NLC) Competing interests: The Introduction authors declare that no The subterranean habitat has been colonized by numerous animal species for its shelter and unique competing interests exist.
    [Show full text]
  • Atypicat Molecular Evolution of Afrotherian and Xenarthran B-Globin
    Atypicat molecular evolution of afrotherian and xenarthran B-globin cluster genes with insights into the B-globin cluster gene organization of stem eutherians. By ANGELA M. SLOAN A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology University of Manitoba Winnipeg, Manitoba, Canada @ Angela M. Sloan, July 2005 TIIE I]MVERSITY OF' MANITOBA FACULTY OF GRADUATE STT]DIES ***** - COPYRIGHTPERMISSION ] . Atypical molecular evolution of afrotherian and xenarthran fslobin cluster genes with insights into thefglobin cluster gene organization òf stem eutherians. BY Angela M. Sloan A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfill¡nent of the requirement of the degree of Master of Science Angela M. Sloan @ 2005 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the fiIm, and to University Microfïlms Inc. to publish an abstract of this thesis/practicum. This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright ownér. ABSTRACT Our understanding of p-globin gene cluster evolutionlwithin eutherian mammals .is based solely upon data collected from species in the two most derived eutherian superorders, Laurasiatheria and Euarchontoglires. Ifence, nothing is known regarding_the gene composition and evolution of this cluster within afrotherian (elephants, sea cows, hyraxes, aardvarks, elephant shrews, tenrecs and golden moles) and xenarthran (sloths, anteaters and armadillos) mammals.
    [Show full text]
  • 1994 IUCN Red List of Threatened Animals
    The lUCN Species Survival Commission 1994 lUCN Red List of Threatened Animals Compiled by the World Conservation Monitoring Centre PADU - MGs COPY DO NOT REMOVE lUCN The World Conservation Union lo-^2^ 1994 lUCN Red List of Threatened Animals lUCN WORLD CONSERVATION Tile World Conservation Union species susvival commission monitoring centre WWF i Suftanate of Oman 1NYZ5 TTieWlLDUFE CONSERVATION SOCIET'' PEOPLE'S TRISr BirdLife 9h: KX ENIUNGMEDSPEaES INTERNATIONAL fdreningen Chicago Zoulog k.J SnuicTy lUCN - The World Conservation Union lUCN - The World Conservation Union brings together States, government agencies and a diverse range of non-governmental organisations in a unique world partnership: some 770 members in all, spread across 123 countries. - As a union, I UCN exists to serve its members to represent their views on the world stage and to provide them with the concepts, strategies and technical support they need to achieve their goals. Through its six Commissions, lUCN draws together over 5000 expert volunteers in project teams and action groups. A central secretariat coordinates the lUCN Programme and leads initiatives on the conservation and sustainable use of the world's biological diversity and the management of habitats and natural resources, as well as providing a range of services. The Union has helped many countries to prepare National Conservation Strategies, and demonstrates the application of its knowledge through the field projects it supervises. Operations are increasingly decentralised and are carried forward by an expanding network of regional and country offices, located principally in developing countries. I UCN - The World Conservation Union seeks above all to work with its members to achieve development that is sustainable and that provides a lasting Improvement in the quality of life for people all over the world.
    [Show full text]
  • Northern Cape Provincial Gazette Vol 15 No
    ·.:.:-:-:-:-:.::p.=~==~ ::;:;:;:;:::::t}:::::::;:;:::;:;:;:;:;:;:;:;:;:;:::::;:::;:;:.-:-:.:-:.::::::::::::::::::::::::::-:::-:-:-:-: ..........•............:- ;.:.:.;.;.;.•.;. ::::;:;::;:;:;:;:;:;:;:;:;;:::::. '.' ::: .... , ..:. ::::::::::::::::::::~:~~~~::::r~~~~\~:~ i~ftfj~i!!!J~?!I~~~~I;Ii!!!J!t@tiit):fiftiIit\t~r\t ', : :.;.:.:.:.:.: ::;:;:::::;:::::::::::;:::::::::.::::;:::::::;:::::::::;:;:::;:;:;:;:: :.:.:.: :.:. ::~:}:::::::::::::::::::::: :::::::::::::::::::::tf~:::::::::::::::: ;:::;:::;:::;:;:;:::::::::;:;:::::: ::::::;::;:;:;:;=;:;:;:;:;:::;:;:;::::::::;:.: :.;.:.:.;.;.:.;.:.:-:.;.: :::;:' """"~'"W" ;~!~!"IIIIIII ::::::::::;:::::;:;:;:::;:::;:;:;:;:;:::::..;:;:;:::;: 1111.iiiiiiiiiiii!fillimiDw"""'8m\r~i~ii~:i:] :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:':.:.:.::::::::::::::{::::::::::::;:: ;.;:;:;:;:t;:;~:~;j~Ij~j~)~( ......................: ;.: :.:.:.;.:.;.;.;.;.:.:.:.;.;.:.;.;.;.;.:.;.;.:.;.;.:.; :.:.;.:.: ':;:::::::::::-:.::::::;:::::;;::::::::::::: EXTRAORDINARY • BUITENGEWONE Provincial Gazette iGazethi YePhondo Kasete ya Profensi Provinsiale Koerant Vol. 15 KIMBERLEY, 19 DECEMBER 2008 DESEMBER No. 1258 PROVINCE OF THE NORTHERN CAPE 2 No. 1258 PROVINCIAL GAZETTE EXTRAORDINARY, 19 DECEMBER 2008 CONTENTS • INHOUD Page Gazette No. No. No. GENERAL NOTICE· ALGEMENE KENNISGEWING 105 Northern Cape Nature Conservation Bill, 2009: For public comment . 3 1258 105 Noord-Kaap Natuurbewaringswetontwerp, 2009: Vir openbare kommentaar . 3 1258 PROVINSIE NOORD-KAAP BUITENGEWONE PROVINSIALE KOERANT, 19 DESEMBER 2008 No.1258 3 GENERAL NOTICE NOTICE
    [Show full text]
  • Miombo Ecoregion Vision Report
    MIOMBO ECOREGION VISION REPORT Jonathan Timberlake & Emmanuel Chidumayo December 2001 (published 2011) Occasional Publications in Biodiversity No. 20 WWF - SARPO MIOMBO ECOREGION VISION REPORT 2001 (revised August 2011) by Jonathan Timberlake & Emmanuel Chidumayo Occasional Publications in Biodiversity No. 20 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe PREFACE The Miombo Ecoregion Vision Report was commissioned in 2001 by the Southern Africa Regional Programme Office of the World Wide Fund for Nature (WWF SARPO). It represented the culmination of an ecoregion reconnaissance process led by Bruce Byers (see Byers 2001a, 2001b), followed by an ecoregion-scale mapping process of taxa and areas of interest or importance for various ecological and bio-physical parameters. The report was then used as a basis for more detailed discussions during a series of national workshops held across the region in the early part of 2002. The main purpose of the reconnaissance and visioning process was to initially outline the bio-physical extent and properties of the so-called Miombo Ecoregion (in practice, a collection of smaller previously described ecoregions), to identify the main areas of potential conservation interest and to identify appropriate activities and areas for conservation action. The outline and some features of the Miombo Ecoregion (later termed the Miombo– Mopane Ecoregion by Conservation International, or the Miombo–Mopane Woodlands and Grasslands) are often mentioned (e.g. Burgess et al. 2004). However, apart from two booklets (WWF SARPO 2001, 2003), few details or justifications are publically available, although a modified outline can be found in Frost, Timberlake & Chidumayo (2002). Over the years numerous requests have been made to use and refer to the original document and maps, which had only very restricted distribution.
    [Show full text]
  • Im Auftrage Der Deutschen Gesellschaft Für Säugetierkunde Ev
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ 6 Maria Jose Löpez-Fuster, J. Gosdlbez und V. Sans-Coma Gomez, L; Sans-Coma, V. (1975): Edad relativa de Crocidura russula en egagröpilas de Tyto alba en el nordeste iberico. Mise. Zool. 63, 209-212. Gosälbez, J.; Löpez-Fuster, M. J.; Durfort, M. (1979): Ein neues Färbungsverfahren für Hodenzellen von Kleinsäugetieren. Säugetierkdl. Mitt. 27, 303-305. Hellwing, S. (1971): Maintenance and reproduetion in the white-toothed shrew, Crocidura russula monacha Thomas, in captivity. Z. Säugetierkunde 36, 103-113. — (1973): The postnatal development of the white-toothed shrew, Crocidura russula monacha in captivity. Z. Säugetierkunde 38, 257-270. — (1975): Sexual reeeptivity and oestrus in the white-toothed shrew, Crocidura russula monacha. J. Reprod. Fert. 45, 469-477. Kahmann, H.; Kahmann, E. (1954): La musaraigne de Corse. Mammalia 18, 129-158. Niethammer, J. (1970): Uber Kleinsäuger aus Portugal. Bonn. zool. Beitr. 21, 89-118. Röben, P. (1969): Die Spitzmäuse (Soricidae) der Heidelberg Umgebung. Säugetierkdl. Mitt. 17, 42-62. Saint-Girons, M. C. (1973): Les Mammiferes de France et du Benelux (faune marine exceptee) Paris: Doin. Sans-Coma, V.; Gomez, I.; Gosälbez, J. (1976): Eine Untersuchung an der Hausspitzmaus {Crocidura russula Hermann, 1780) auf der Insel Meda Grossa (Katalonien, Spanien). Säugetierkdl. Mitt. 24, 279-288. Vesmanis, I.; Vesmanis, A. (1979): Ein Vorschlag zur einheitlichen Altersabstufung bei Wimperspitz- mäusen (Mammalia: Insectivora: Crocidura). Bonn. zool. Beitr. 30, 7-13. Vogel, P. (1972): Beitrag zur Fortpflanzungsbiologie der Gattungen Sorex, Neomys und Crocidura (Soricidae). Verh. Naturf. Ges. Basel 82, 165-192. Anschriften der Verfasser: Dra. Maria Jose Löpez-Fuster und Prof.
    [Show full text]
  • The Reproductive Biology of Two Small Southern
    The reproductive biology of two small southern African mammals, the spiny mouse, Acomys spinosissimus (Rodentia: Muridae) and the Eastern rock elephant- shrew, Elephantulus myurus (Macroscelidea: Macroscelididae) by Katarina Medger Submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy In the Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria December, 2010 © University of Pretoria II Table of Contents List of tables .............................................................................................................. vii List of figures ............................................................................................................ viii Acknowledgements ..................................................................................................... x Declaration ................................................................................................................ xii SUMMARY ............................................................................................. 1 GENERAL INTRODUCTION .................................................................. 3 Seasonal reproduction ....................................................................................... 3 Temperate vs. sub-tropical and tropical regions ....................................................... 3 Food quantity and quality .......................................................................................... 4 Seasonal vs. opportunistic breeding strategies ........................................................
    [Show full text]