Lacuna Porrecta Class: Gastropoda, Caenogastropoda

Total Page:16

File Type:pdf, Size:1020Kb

Lacuna Porrecta Class: Gastropoda, Caenogastropoda Phylum: Mollusca Lacuna porrecta Class: Gastropoda, Caenogastropoda Order: Littorinimorpha The wide chink shell Family: Littorinoidea, Littorinidae, Lacuninae Description identified. Both are larger than our Oregon 1 1 Size: 2-4 mm high; /4 to /2 size of Littorina. species: Lacuna vincta (= carinata, = solidula) Color: white to golden brown, with some (Carlton and Roth 1975), is large, about 10 spiral marking; surface wrinkled, with fine, mm long, with 3-4 strong, smooth whorls, a wavy spiral striae (figs. 1, 4). No white band small umbilicus, a white columella, and a on inside of aperture, no carina (keel) on strong carina on the last whorl. Lacuna varie- largest whorl. gata is a tall, high-spired form, up to 6 mm Shell: high, found in eelgrass (Zostera); not de- Shape: broad, compact, globose, on- scribed in California keys (Ricketts and Calvin ly 3 whorls (fig 1); shell thin, outer lip 1971). L. variegata has a spreading outer lip, ‘effuse’ (extended); aperture semi-lunar. a wide chink, and zig zag markings (Keep Columella: flattened (fig 4): genus 1935). Lacuna. The species most like L. porrecta and Umbilicus: chink is large, with a often found with it is Lacuna marmorata, the sharp ridge (fig 3); this groove between marbled chink shell, usually brown and white, whorl and columella is an important key but with a carina on the large whorl, a narrow character of the genus Lacuna. columeilar groove, and often with a white Operculum: ‘paucispiral’; flattened stripe inside the base of the aperture (Carlton on one side (fig 2). and Roth 1975). It has been found in Coos Body: Lacuna species have metapodial ten- Bay (Keen et al 1942), and hybridizes with tacles, which Littorina lack (fig 5). other Lacuna spp., (Friday Harbor) (Morris et al 1980). Possible Misidentifications Adult Lacunidae can be differentiated Ecological Information from Littorinidae by their much smaller size, Range: Bering Sea to San Diego, California metapodial tentacles, and chiefly by their (Packard 1918). umbilical fissure or chink which Littorinidae Local Distribution: Coos Bay, several sta- lack. (Littorinidae have a columella flush with tions: South Slough (Keen and Doty 1942). the large whorl). Lacuna are often found in Habitat: in algae, eelgrass (Zostera), or eelgrass; Littorina almost never are. around its roots; in tidepool algae at lower lit- There are several species of Lacuna torine level (Keen et al 1942). on the Pacific coast: Salinity: Lacuna unifasciata is more turbinate Temperature: genus Lacuna essentially a than globose, and has a sharp carina or keel cold water form; few tropical species. around its largest whorl. It is a southern spe- Tidal Level: mid- and low intertidal levels and cies, its northern boundary being probably at subtidally; never in upper reaches (Kozloff Monterey Bay, California (Carlton and Roth 1974b). 1975). Associates: hermit crabs, amphipods, littori- Two Puget Sound species have been ne snails; en-crusted with bryozoans. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Unknown. 1983. Lacuna porrecta. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to 140 Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. Abundance: not common. from San Francisco Bay. 14:199-452. 7. RICKETTS, E. F., and J. CALVIN. 1971. Life-History Information Between Pacific tides. Stanford University Reproduction: Lacuna variegata has eggs Press, Stanford, California. like life preservers: yellow, about 5 mm di- ameter (Kozloff 1974b). Updated 1983 Larva: Juvenile: Longevity: Growth Rate: Food: family is herbivorous. Predators: in eelgrass: seastar Lepasterias. Few fishes eat Lacuna (Morris et al 1980). Behavior: it waddles as it moves one side of foot, then the other. Bibliography 1. CARLTON, J. T., and B. ROTH. 1975. Phylum Mollusca: Shelled Gastropods, p. 467-514. In: Light's manual; intertidal in- vertebrates of the central California coast. S. F. Light, R. I. Smith, and J. T. Carlton (eds.). University of California Press, Berkeley. 2. KEEN, A. M., E. COAN, and C. L. DOTY. 1942. An annotated check list of the gas- tropods of Cape Arago, Oregon. Studies in Zoology. 13. 3. KEEP, J. and J. Longstreth (eds). 1935. West coast shells; a description in famil- iar terms of principal marine, fresh-water, and land mollusks of the United States, British Columbia, and Alaska, found west of the Sierra. Calif., Stanford University Press; London, H. Milford, Oxford Uni- versity Press, Stanford University. 4. KOZLOFF, E. N. 1974b. Seashore life of Puget Sound, the Strait of Georgia, and the San Juan Archipelago. University of Washington Press, Seattle & London. 5. MORRIS, R. H., D. P. ABBOTT, and E. C. HADERLIE. 1980. Intertidal inverte- brates of California. Stanford University Press, Stanford, California. 6. PACKARD, E. L. 1918. Molluscan fauna A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] .
Recommended publications
  • Molluscan (Gastropoda and Bivalvia) Diversity and Abundance in Rocky Intertidal Areas of Lugait, Misamis Oriental, Northern Mindanao, Philippines
    J. Bio. & Env. Sci. 2017 Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 11, No. 3, p. 169-179, 2017 http://www.innspub.net RESEARCH PAPER OPEN ACCESS Molluscan (Gastropoda and Bivalvia) diversity and abundance in rocky intertidal areas of Lugait, Misamis Oriental, Northern Mindanao, Philippines Shirlamaine Irina G. Masangcay1, Maria Lourdes Dorothy G. Lacuna*2 1Department of Biology, College of Arts and Sciences, Caraga State University, Ampayon Campus National Highway, NH1, Butuan City, Philippines 2Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines Article published on September 30, 2017 Key words: Cerithium stercusmuscarum, Drupella margariticola, total organic matter, calcium carbonate, density. Abstract Composition, diversity and abundance of rocky intertidal mollusks and their relationship with the environmental parameters, viz. water quality, total organic matter and calcium carbonate were determined. A total of 43 species were identified, of which 41 species belong to Class Gastropoda under 18 families and 2 species were categorized under Class Bivalvia from 2 families. Using several diversity indices, results revealed high diversity and equitability values in the 2 sampling sites. Moreover, comparison of the mollusks abundance between the 2 sampling stations showed station 2 to be dominantly abundant with Cerithium stercusmuscarum comprising almost one-third of the total population. Canonical Correspondence Analysis showed that total organic matter and calcium carbonate in the sediment may have influenced the abundance of mollusk assemblage in station 2. The results obtained from the study are vital in order to strongly support the need to continue monitoring the Lugait marine sanctuary and its nearby surroundings.
    [Show full text]
  • Upper Eocene) of the Sultanate of Oman
    Pala¨ontol Z (2016) 90:63–99 DOI 10.1007/s12542-015-0277-1 RESEARCH PAPER Terrestrial and lacustrine gastropods from the Priabonian (upper Eocene) of the Sultanate of Oman 1 1 2 3 Mathias Harzhauser • Thomas A. Neubauer • Dietrich Kadolsky • Martin Pickford • Hartmut Nordsieck4 Received: 17 January 2015 / Accepted: 15 September 2015 / Published online: 29 October 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Terrestrial and aquatic gastropods from the sparse non-marine fossil record of the Eocene in the Tethys upper Eocene (Priabonian) Zalumah Formation in the region. The occurrence of the genera Lanistes, Pila, and Salalah region of the Sultanate of Oman are described. The Gulella along with some pomatiids, probably related to assemblages reflect the composition of the continental extant genera, suggests that the modern African–Arabian mollusc fauna of the Palaeogene of Arabia, which, at that continental faunas can be partly traced back to Eocene time, formed parts of the southeastern Tethys coast. Sev- times and reflect very old autochthonous developments. In eral similarities with European faunas are observed at the contrast, the diverse Vidaliellidae went extinct, and the family level, but are rarer at the genus level. These simi- morphologically comparable Neogene Achatinidae may larities point to an Eocene (Priabonian) rather than to a have occupied the equivalent niches in extant environ- Rupelian age, although the latter correlation cannot be ments. Carnevalea Harzhauser and Neubauer nov. gen., entirely excluded. At the species level, the Omani assem- Arabiella Kadolsky, Harzhauser and Neubauer nov. gen., blages lack any relations to coeval faunas.
    [Show full text]
  • WMSDB - Worldwide Mollusc Species Data Base
    WMSDB - Worldwide Mollusc Species Data Base Family: TURBINIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: VETIGASTROPODA-TROCHOIDEA ------ Family: TURBINIDAE Rafinesque, 1815 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=681, Genus=26, Subgenus=17, Species=203, Subspecies=23, Synonyms=411, Images=168 abyssorum , Bolma henica abyssorum M.M. Schepman, 1908 aculeata , Guildfordia aculeata S. Kosuge, 1979 aculeatus , Turbo aculeatus T. Allan, 1818 - syn of: Epitonium muricatum (A. Risso, 1826) acutangulus, Turbo acutangulus C. Linnaeus, 1758 acutus , Turbo acutus E. Donovan, 1804 - syn of: Turbonilla acuta (E. Donovan, 1804) aegyptius , Turbo aegyptius J.F. Gmelin, 1791 - syn of: Rubritrochus declivis (P. Forsskål in C. Niebuhr, 1775) aereus , Turbo aereus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) aethiops , Turbo aethiops J.F. Gmelin, 1791 - syn of: Diloma aethiops (J.F. Gmelin, 1791) agonistes , Turbo agonistes W.H. Dall & W.H. Ochsner, 1928 - syn of: Turbo scitulus (W.H. Dall, 1919) albidus , Turbo albidus F. Kanmacher, 1798 - syn of: Graphis albida (F. Kanmacher, 1798) albocinctus , Turbo albocinctus J.H.F. Link, 1807 - syn of: Littorina saxatilis (A.G. Olivi, 1792) albofasciatus , Turbo albofasciatus L. Bozzetti, 1994 albofasciatus , Marmarostoma albofasciatus L. Bozzetti, 1994 - syn of: Turbo albofasciatus L. Bozzetti, 1994 albulus , Turbo albulus O. Fabricius, 1780 - syn of: Menestho albula (O. Fabricius, 1780) albus , Turbo albus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) albus, Turbo albus T. Pennant, 1777 amabilis , Turbo amabilis H. Ozaki, 1954 - syn of: Bolma guttata (A. Adams, 1863) americanum , Lithopoma americanum (J.F.
    [Show full text]
  • Phylum MOLLUSCA
    285 MOLLUSCA: SOLENOGASTRES-POLYPLACOPHORA Phylum MOLLUSCA Class SOLENOGASTRES Family Lepidomeniidae NEMATOMENIA BANYULENSIS (Pruvot, 1891, p. 715, as Dondersia) Occasionally on Lafoea dumosa (R.A.T., S.P., E.J.A.): at 4 positions S.W. of Eddystone, 42-49 fm., on Lafoea dumosa (Crawshay, 1912, p. 368): Eddystone, 29 fm., 1920 (R.W.): 7, 3, 1 and 1 in 4 hauls N.E. of Eddystone, 1948 (V.F.) Breeding: gonads ripe in Aug. (R.A.T.) Family Neomeniidae NEOMENIA CARINATA Tullberg, 1875, p. 1 One specimen Rame-Eddystone Grounds, 29.12.49 (V.F.) Family Proneomeniidae PRONEOMENIA AGLAOPHENIAE Kovalevsky and Marion [Pruvot, 1891, p. 720] Common on Thecocarpus myriophyllum, generally coiled around the base of the stem of the hydroid (S.P., E.J.A.): at 4 positions S.W. of Eddystone, 43-49 fm. (Crawshay, 1912, p. 367): S. of Rame Head, 27 fm., 1920 (R.W.): N. of Eddystone, 29.3.33 (A.J.S.) Class POLYPLACOPHORA (=LORICATA) Family Lepidopleuridae LEPIDOPLEURUS ASELLUS (Gmelin) [Forbes and Hanley, 1849, II, p. 407, as Chiton; Matthews, 1953, p. 246] Abundant, 15-30 fm., especially on muddy gravel (S.P.): at 9 positions S.W. of Eddystone, 40-43 fm. (Crawshay, 1912, p. 368, as Craspedochilus onyx) SALCOMBE. Common in dredge material (Allen and Todd, 1900, p. 210) LEPIDOPLEURUS, CANCELLATUS (Sowerby) [Forbes and Hanley, 1849, II, p. 410, as Chiton; Matthews. 1953, p. 246] Wembury West Reef, three specimens at E.L.W.S.T. by J. Brady, 28.3.56 (G.M.S.) Family Lepidochitonidae TONICELLA RUBRA (L.) [Forbes and Hanley, 1849, II, p.
    [Show full text]
  • Xoimi AMERICAN COXCIIOLOGY
    S31ITnS0NIAN MISCEllANEOUS COLLECTIOXS. BIBLIOGIIAPHY XOimi AMERICAN COXCIIOLOGY TREVIOUS TO THE YEAR 18G0. PREPARED FOR THE SMITHSONIAN INSTITUTION BY . W. G. BINNEY. PART II. FOKEIGN AUTHORS. WASHINGTON: SMITHSONIAN INSTITUTION. JUNE, 1864. : ADYERTISEMENT, The first part of the Bibliography of American Conchology, prepared for the Smithsonian Institution by Mr. Binuey, was published in March, 1863, and embraced the references to de- scriptions of shells by American authors. The second part of the same work is herewith presented to the public, and relates to species of North American shells referred to by European authors. In foreign works binomial authors alone have been quoted, and no species mentioned which is not referred to North America or some specified locality of it. The third part (in an advanced stage of preparation) will in- clude the General Index of Authors, the Index of Generic and Specific names, and a History of American Conchology, together with any additional references belonging to Part I and II, that may be met with. JOSEPH HENRY, Secretary S. I. Washington, June, 1864. (" ) PHILADELPHIA COLLINS, PRINTER. CO]^TENTS. Advertisement ii 4 PART II.—FOREIGN AUTHORS. Titles of Works and Articles published by Foreign Authors . 1 Appendix II to Part I, Section A 271 Appendix III to Part I, Section C 281 287 Appendix IV .......... • Index of Authors in Part II 295 Errata ' 306 (iii ) PART II. FOEEIGN AUTHORS. ( V ) BIBLIOGRxVPHY NOETH AMERICAN CONCHOLOGY. PART II. Pllipps.—A Voyage towards the North Pole, &c. : by CON- STANTiNE John Phipps. Loudou, ITTJc. Pa. BIBLIOGRAPHY OF [part II. FaliricillS.—Fauna Grcenlandica—systematice sistens ani- malia GrcEulandite occidentalis liactenus iudagata, &c., secun dum proprias observatioues Othonis Fabricii.
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Sea lace or Dead man's rope (Chorda filum) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White 2006-11-07 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1366]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. 2006. Chorda filum Sea lace or Dead man's rope. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1366.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2006-11-07 Sea lace or Dead man's rope (Chorda filum) - Marine Life Information Network See online review for distribution map Chorda filum.
    [Show full text]
  • CONE SHELLS - CONIDAE MNHN Koumac 2018
    Living Seashells of the Tropical Indo-Pacific Photographic guide with 1500+ species covered Andrey Ryanskiy INTRODUCTION, COPYRIGHT, ACKNOWLEDGMENTS INTRODUCTION Seashell or sea shells are the hard exoskeleton of mollusks such as snails, clams, chitons. For most people, acquaintance with mollusks began with empty shells. These shells often delight the eye with a variety of shapes and colors. Conchology studies the mollusk shells and this science dates back to the 17th century. However, modern science - malacology is the study of mollusks as whole organisms. Today more and more people are interacting with ocean - divers, snorkelers, beach goers - all of them often find in the seas not empty shells, but live mollusks - living shells, whose appearance is significantly different from museum specimens. This book serves as a tool for identifying such animals. The book covers the region from the Red Sea to Hawaii, Marshall Islands and Guam. Inside the book: • Photographs of 1500+ species, including one hundred cowries (Cypraeidae) and more than one hundred twenty allied cowries (Ovulidae) of the region; • Live photo of hundreds of species have never before appeared in field guides or popular books; • Convenient pictorial guide at the beginning and index at the end of the book ACKNOWLEDGMENTS The significant part of photographs in this book were made by Jeanette Johnson and Scott Johnson during the decades of diving and exploring the beautiful reefs of Indo-Pacific from Indonesia and Philippines to Hawaii and Solomons. They provided to readers not only the great photos but also in-depth knowledge of the fascinating world of living seashells. Sincere thanks to Philippe Bouchet, National Museum of Natural History (Paris), for inviting the author to participate in the La Planete Revisitee expedition program and permission to use some of the NMNH photos.
    [Show full text]
  • Rocky Shore Snails As Material for Projects (With a Key for Their Identification)
    Field Studies, 10, (2003) 601 - 634 ROCKY SHORE SNAILS AS MATERIAL FOR PROJECTS (WITH A KEY FOR THEIR IDENTIFICATION) J. H. CROTHERS Egypt Cottage, Fair Cross, Washford, Watchet, Somerset TA23 0LY ABSTRACT Rocky sea shores are amongst the best habitats in which to carry out biological field projects. In that habitat, marine snails (prosobranchs) offer the most opportunities for individual investigations, being easy to find, to identify, to count and to measure and beng sufficiently robust to survive the experience. A key is provided for the identification of the larger species and suggestions are made for investigations to exploit selected features of individual species. INTRODUCTION Rocky sea shores offer one of the best habitats for individual or group investigations. Not only is there de facto public access (once you have got there) but also the physical factors that dominate the environment - tides (inundation versus desiccation), waves, heat, cold, light, dark, salinity etc. - change significantly over a few metres in distance. As a bonus, most of the fauna and flora lives out on the open rock surface and patterns of distribution may be clearly visible to the naked eye. Finally, they are amongst the most ‘natural’ of habitats in the British Isles; unless there has been an oil spill, rocky sea shores are unlikely to have been greatly affected by covert human activity. Some 270 species of marine snail (Phylum Mollusca, Class Gastropoda; Sub-Class Prosobranchia) live in the seas around the British Isles (Graham, 1988) and their empty shells may be found on many beaches. Most of these species are small (less than 3 mm long) or live beneath the tidemarks.
    [Show full text]
  • An Assessment of the Influence of Host Species, Age, and Thallus Part
    diversity Article An Assessment of the Influence of Host Species, Age, and Thallus Part on Kelp-Associated Diatoms Ntambwe Albert Serge Mayombo 1,* , Roksana Majewska 2,3 and Albertus J. Smit 1,4,* 1 Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville 7535, South Africa 2 Unit for Environmental Sciences and Management, School of Biological Sciences, North-West University, Potchefstroom 2520, South Africa; [email protected] 3 South African Institute for Aquatic Biodiversity (SAIAB), Grahamstown 6140, South Africa 4 Elwandle Coastal Node, South African Environmental Observation Network (SAEON), Port Elizabeth 6013, South Africa * Correspondence: [email protected] (N.A.S.M.); [email protected] (A.J.S.) Received: 26 June 2020; Accepted: 17 August 2020; Published: 8 October 2020 Abstract: Diatom community composition and abundances on different thallus parts of adult and juvenile specimens of Ecklonia maxima and Laminaria pallida were examined in False Bay, South Africa, using light and scanning electron microscopy. Altogether, 288 thallus portions were analysed. 2 Diatom abundances ranged from 0 to 404 cells mm− and were generally higher on E. maxima and juvenile thalli than L. pallida and adult specimens. Moreover, diatom abundances differed between the various thallus parts, being highest on the upper blade and lowest on the primary blade. A total of 48 diatom taxa belonging to 28 genera were found. Gomphoseptatum Medlin, Nagumoea Witkowski and Kociolek, Cocconeis Ehrenberg, and Navicula Bory were the most frequently occurring genera, being present in 84%, 65%, 62.5%, and 45% of the analysed samples, respectively. Among these, Cocconeis and Gomphoseptatum were the most abundant, contributing 50% and 27% of total diatom cells counted collectively across all samples.
    [Show full text]
  • Foot-Raising Behaviour and Active Participation During the Initial Phase of Post-Metamorphic Drifting in the Gastropod Lacuna Spp
    MARINE ECOLOGY PROGRESS SERIES Vol. 72: 247-254, 1991 Published June 4 Mar. Ecol. Prog. Ser. l Foot-raising behaviour and active participation during the initial phase of post-metamorphic drifting in the gastropod Lacuna spp. Andre Martel*,Fu-Shiang Chia Department of Zoology, University of Alberta, Edmonton, Alberta. Canada T6G 2E9 and Bamfield Marine Station, Bamfield, British Columbia, Canada VOR 1BO ABSTRACT Macroc~nematographicvideo recordings showed that Lacuna spp can ploduce a mucous thread and Initiate drifting when exposed to water flows (parhcularly oscillating currents) The gastropods can play an active role in thelr dispersal by raislng the metapodlum - regardless of their orientahon to water flow direction - until most of the sole s surface no longer contacts the substratum (only the most antenor [propodial] region remalns flued) The mucus produced and accumulated at the posterior of the sole of the foot is then taken away \mth the water current, and stretched up to 160 times the length of the gastropod The mucous thread pulled by water currents then transports the gastropod enabling it to drift in an almost neutrally buoyant fashion In Lacuna spp , the productton of a mucous thread also greatly reduces sinking rates (3- to 8-fold),while extension of the foot and antennae during the descent does not Mucous threads also increase the drifting gastropod s ability to obtain rapid contact with, and attach to, nearby substrata INTRODUCTION long invisible mucous threads Increase the hydrody- namic drag on juveniles and allow drifting in the water Post-metamorphic drifting is a widespread phenome- column as juveniles are transported by water currents non in benthic marine molluscs.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Caenogastropoda
    13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.
    [Show full text]