Genomic and Physiological Characterization of Lignin-Derived Aromatic Catabolism Pathways in Roseobacters

Total Page:16

File Type:pdf, Size:1020Kb

Genomic and Physiological Characterization of Lignin-Derived Aromatic Catabolism Pathways in Roseobacters University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2018 Genomic and Physiological Characterization of Lignin-Derived Aromatic Catabolism Pathways in Roseobacters Michelle June Chua University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Chua, Michelle June, "Genomic and Physiological Characterization of Lignin-Derived Aromatic Catabolism Pathways in Roseobacters. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5295 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Michelle June Chua entitled "Genomic and Physiological Characterization of Lignin-Derived Aromatic Catabolism Pathways in Roseobacters." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Alison Buchan, Major Professor We have read this dissertation and recommend its acceptance: Shawn R. Campagna, Elizabeth Fozo, Jill Mikucki, Erik Zinser Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Genomic and Physiological Characterization of Lignin-Derived Aromatic Catabolism Pathways in Roseobacters A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Michelle June Chua December 2018 Copyright © 2018 by Michelle Chua. All rights reserved. ii ACKNOWLEDGEMENTS I would like to first thank my parents and brother for supporting me and all my decisions. You have been the most reliable people throughout my life, and I am so lucky to have you as my family members. Secondly, I would like to acknowledge everyone in Knoxville I have formed (what I believe are meaningful) relationships with: former and current members of the Buchan lab, Eric O., Alicia P., Kevin S., Yu-Kai W., and Jia W., the relationships with whom are too long to praise within these acknowledgements. Elizabeth McPherson is included in this group. She has listened to me yammer on for countless hours (something I am obviously not known for) and for some reason, still enjoys seeing me. I am also happy to have joined the Dungeons & Dragons group spear-headed by Alex Grossman. It is not often I feel like I fit in in a group, but the people there make me feel welcome, despite my awkwardness. I also offer my gratitude to my committee members. Words cannot express how grateful I am that Drs. Alison Buchan, Shawn Campagna, Elizabeth Fozo, Jill Mikucki, and Erik Zinser joined and have stayed on my committee. I have said this before, I thank them all for their patience and helping me (what I hope) grow throughout my graduate school experience. A defining moment for me with Dr. Campagna was when he gave me a pep talk after I failed my first preliminary exam, a moment he may not remember, but is one I will remember for years to come. Thank you, Dr. Fozo, (during the irregular moments we have interacted) for being a kind and caring cheerleader for me. I thank Dr. Mikucki for supporting me (not only with emotional support, but food!) during my time as a graduate student with her and afterwards. I also thank Dr. Zinser for letting me rotate in his lab during my first semester at UT and for continuing to play a role in my dissertation. I very much enjoyed his Microbial Physiology class and non- standard Journal Clubs, which I will miss. iii Lastly, I want to acknowledge Dr. Buchan. I am extremely pleased that she let me join her lab. I have not only enjoyed the projects I have worked on, but also my interactions with Dr. Buchan. I appreciate her being patient with me when I am being difficult and also providing me with (emotional) support when I have needed it most. She is also hilarious, which makes my meetings with her and lab meetings quite enjoyable. Thank you, Alison. iv ABSTRACT Lignin provides vascular plants with structural rigidity and is the most abundant aromatic polymer on Earth. Lignin is rich in phenolic structures and its structural complexity contributes to its biological recalcitrance, yet it is susceptible to degradation via microbial enzymes. Biogeochemically relevant marine bacteria in the Roseobacter clade are capable of transforming lignin and mineralizing lignin-derived aromatic monomers. Roseobacters are prevalent in temperate and polar oceans, marine sediments, sea ice, and hydrothermal vents, and representatives are readily cultivated in the lab. Roseobacter abundances are frequently highest in coastal oceans, including the salt marshes of the Southeastern United States, where the dissolved organic carbon pool is enriched in aromatic moeities. This dissertation provides new insight into the aromatic compound catabolism potential by members of the Roseobacter lineage through both genomic analyses of publicly available genome sequences and genetic and physiological characterization of the Roseobacter strain Sagitulla stellata. Approximately 85% of the 311 Roseobacter genomes analyzed in this study have genes that encode for enzymes for at least one ring-cleaving pathway. These findings highlight the prevalence of this trait amongst lineage members, but also revealed little correlation between phylogeny, based on 89 conserved protein sequences, and genomic potential. Laboratory-based studies focused on the ligninolytic Roseobacter, S. stellata, with an emphasis on pathways mediating the degradation of the hydroxycinnamates (HCAs) ferulate and p-coumarate, which are important for cross-linking in lignin. Two genes annotated as feruloyl-CoA- synthases, enzymes that catalyze the first step of HCA degradation, were found to have overlapping specificities for the two HCAs in S. stellata, highlighting a functional redundancy not yet reported for other aromatic compound degrading bacteria. Additional studies were performed to examine the physiological response of S. stellata to mixtures of aromatic monomers. A series of studies performed with binary mixtures of aromatic compounds revealed a strong substrate preference for HCAs and their catabolic intermediates relative to v benzoate. Collectively, these data indicate S. stellata is adapted to growing on a mixture of lignin-derived aromatics, which would be advantageous in the aromatic compound-rich salt marshes in which it and its relatives are found. vi TABLE OF CONTENTS CHAPTER I: INTRODUCTION ............................................................................. 1 I. Aromatic compounds in the environment ................................................... 2 Sources ......................................................................................................... 2 Lignin ............................................................................................................. 2 II. Aerobic catabolism of aromatic compounds in bacteria ............................. 3 Aromatic catabolism: classic aerobic pathways ............................................. 3 Aromatic catabolism: aerobic “hybrid” pathways ............................................ 3 III. Significance of Roseobacter species ...................................................... 4 Roseobacter species in the environment ....................................................... 4 Aromatic catabolism by Roseobacter species ............................................... 4 Sagittula stellata E-37 .................................................................................... 5 IV. Objectives ............................................................................................... 6 V. References ................................................................................................. 8 VI. Appendix ............................................................................................... 12 CHAPTER II: CHARACTERIZATION OF RING-CLEAVING PATHWAYS IN ROSEOBACTER GENOMES ............................................................................. 14 I. Abstract .................................................................................................... 15 II. Introduction .............................................................................................. 17 III. Methods ................................................................................................ 20 IV. Roseobacter genomes.......................................................................... 21 V. Aerobic peripheral pathways .................................................................... 22 Protocatechuate, gentisate, and homogentisate pathways .......................... 23 Benzoate and phenylacetate pathways ....................................................... 25 VI. Evolutionary ecology of the marine Roseobacter clade ........................ 26 VII. Conclusions .......................................................................................... 28 VIII. References ........................................................................................... 30 IX. Appendix ..............................................................................................
Recommended publications
  • Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins
    Technical note Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins: A Study for Peptidyl-Prolyl cis/trans Isomerases (PPIase) Andrzej Galat Retired from: Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA-Université Paris-Saclay, France; [email protected]; Tel.: +33-0164465072 Received: 21 December 2018; Accepted: 21 January 2019; Published: 11 February 2019 Abstract: In this technical note, we describe analyses of more than 15,000 sequences of FK506- binding proteins (FKBP) and cyclophilins, also known as peptidyl-prolyl cis/trans isomerases (PPIases). We have developed a novel way of displaying relative changes of amino acid (AA)- residues at a given sequence position by using heat-maps. This type of representation allows simultaneous estimation of conservation level in a given sequence position in the entire group of functionally-related paralogues (multigene family of proteins). We have also proposed that at least two FKBPs, namely FKBP36, encoded by the Fkbp6 gene and FKBP51, encoded by the Fkbp5 gene, can form dimers bound via a disulfide bridge in the nucleus. This type of dimer may have some crucial function in the regulation of some nuclear complexes at different stages of the cell cycle. Keywords: FKBP; cyclophilin; PPIase; heat-map; immunophilin 1 Introduction About 30 years ago, an exciting adventure began in finding some correlations between pharmacological activities of macrocyclic hydrophobic drugs, namely the cyclic peptide cyclosporine A (CsA), and two macrolides, namely FK506 and rapamycin, which have profound and clinically useful immunosuppressive effects, especially in organ transplantations and in combating some immune disorders.
    [Show full text]
  • Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations
    fmicb-09-02879 December 1, 2018 Time: 14:0 # 1 ORIGINAL RESEARCH published: 04 December 2018 doi: 10.3389/fmicb.2018.02879 Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations Klervi Crenn, Delphine Duffieux and Christian Jeanthon* CNRS, Sorbonne Université, Station Biologique de Roscoff, Adaptation et Diversité en Milieu Marin, Roscoff, France Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. The cosmopolitan diatoms Thalassiosira and Chaetoceros often dominate phytoplankton communities in marine systems. Past studies of diatom-bacterial associations have employed community- level methods and culture-based or natural diatom populations. Although bacterial assemblages attached to individual diatoms represents tight associations little is known on their makeup or interactions. Here, we examined the epibiotic bacteria of 436 Thalassiosira and 329 Chaetoceros single cells isolated from natural samples and Edited by: collection cultures, regarded here as short- and long-term associations, respectively. Matthias Wietz, Epibiotic microbiota of single diatom hosts was analyzed by cultivation and by cloning- Alfred Wegener Institut, Germany sequencing of 16S rRNA genes obtained from whole-genome amplification products. Reviewed by: The prevalence of epibiotic bacteria was higher in cultures and dependent of the host Lydia Jeanne Baker, Cornell University, United States species. Culture approaches demonstrated that both diatoms carry distinct bacterial Bryndan Paige Durham, communities in short- and long-term associations. Bacterial epibonts, commonly University of Washington, United States associated with phytoplankton, were repeatedly isolated from cells of diatom collection *Correspondence: cultures but were not recovered from environmental cells.
    [Show full text]
  • Article-Associated Bac- Teria and Colony Isolation in Soft Agar Medium for Bacteria Unable to Grow at the Air-Water Interface
    Biogeosciences, 8, 1955–1970, 2011 www.biogeosciences.net/8/1955/2011/ Biogeosciences doi:10.5194/bg-8-1955-2011 © Author(s) 2011. CC Attribution 3.0 License. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea C. Jeanthon1,2, D. Boeuf1,2, O. Dahan1,2, F. Le Gall1,2, L. Garczarek1,2, E. M. Bendif1,2, and A.-C. Lehours3 1Observatoire Oceanologique´ de Roscoff, UMR7144, INSU-CNRS – Groupe Plancton Oceanique,´ 29680 Roscoff, France 2UPMC Univ Paris 06, UMR7144, Adaptation et Diversite´ en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France 3CNRS, UMR6023, Microorganismes: Genome´ et Environnement, Universite´ Blaise Pascal, 63177 Aubiere` Cedex, France Received: 21 April 2011 – Published in Biogeosciences Discuss.: 5 May 2011 Revised: 7 July 2011 – Accepted: 8 July 2011 – Published: 20 July 2011 Abstract. Aerobic anoxygenic phototrophic (AAP) bac- detected in the eastern basin, reflecting the highest diver- teria play significant roles in the bacterioplankton produc- sity of pufM transcripts observed in this ultra-oligotrophic tivity and biogeochemical cycles of the surface ocean. In region. To our knowledge, this is the first study to document this study, we applied both cultivation and mRNA-based extensively the diversity of AAP isolates and to unveil the ac- molecular methods to explore the diversity of AAP bacte- tive AAP community in an oligotrophic marine environment. ria along an oligotrophic gradient in the Mediterranean Sea By pointing out the discrepancies between culture-based and in early summer 2008. Colony-forming units obtained on molecular methods, this study highlights the existing gaps in three different agar media were screened for the production the understanding of the AAP bacteria ecology, especially in of bacteriochlorophyll-a (BChl-a), the light-harvesting pig- the Mediterranean Sea and likely globally.
    [Show full text]
  • Synthesis and Application of Light-Switchable Arylazopyrazole Rapamycin Analogs
    Organic & Biomolecular Chemistry Synthesis and Application of Light-Switchable Arylazopyrazole Rapamycin Analogs Journal: Organic & Biomolecular Chemistry Manuscript ID OB-COM-08-2019-001719.R1 Article Type: Communication Date Submitted by the 25-Aug-2019 Author: Complete List of Authors: Courtney, Taylor; University of Pittsburgh, Chemistry Horst, Trevor; University of Pittsburgh, Chemistry Hankinson, Chasity; University of Pittsburgh, Chemistry Deiters, Alexander; University of Pittsburgh, Chemistry Page 1 of 11 Organic & Biomolecular Chemistry Synthesis and Application of Light-Switchable Arylazopyrazole Rapamycin Analogs Taylor M. Courtney, Trevor J. Horst, Chasity P. Hankinson, and Alexander Deiters* Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States [email protected] Abstract: Rapamycin-induced dimerization of FKBP and FRB has been utilized as a tool for co-localizing two proteins of interest in numerous applications. Due to the tight binding interaction of rapamycin with FKBP and FRB, the ternary complex formation is essentially irreversible. Since biological processes occur in a highly dynamic fashion with cycles of protein association and dissociation to generate a cellular response, it is useful to have chemical tools that function in a similar manner. We have developed arylazopyrazole-modified rapamycin analogs which undergo a configurational change upon light exposure and we observed enhanced ternary complex formation for the cis-isomer over the trans-isomer for one of the analogs. Introduction: Chemical inducers of dimerization (CIDs) are prominent tools used by chemical biologists to place biological processes under conditional control.1-4 The most commonly utilized CID is rapamycin, a natural product that binds to FK506 binding protein (FKBP) with a 0.2 nM Kd.
    [Show full text]
  • The Immunophilins, Fk506 Binding Protein and Cyclophilin, Are Discretely Localized in the Brain: Relationship to Calcineurin
    NeuroscienceVol. 62,NO. 2, pp. 569-580,1994 Elsevier Sctence Ltd Copyright 0 1994 IBRO Pergamon 0306-4522(94)E0182-4 Printed in Great Britain. All rights reserved 0306-4522194 $7.00 + 0.00 THE IMMUNOPHILINS, FK506 BINDING PROTEIN AND CYCLOPHILIN, ARE DISCRETELY LOCALIZED IN THE BRAIN: RELATIONSHIP TO CALCINEURIN T. M. DAWSON,*t J. P. STEINER,* W. E. LYONS,*11 M. FOTUHI,* M. BLUE? and S. H. SNYDER*f§l Departments of *Neuroscience, tNeurology, $Pharmacology and Molecular Sciences, and §Psychiatry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A. (IDivision of Toxicological Science, Johns Hopkins University School of Hygiene and Public Health Abstract-The immunosuppressant drugs cyclosporin A and FK506 bind to small, predominantly soluble proteins cyclophilin and FK506 binding protein, respectively, to mediate their pharmacological actions. The immunosuppressant actions of these drugs occur through binding of cyclophilin-cyclosporinA and FK506 binding protein-FK506 complexes to the calcium-calmodulin-dependent protein phosphatase, calcineurin, inhibiting phosphatase activity, Utilizing immunohistcchemistry, in situ hybridization and autoradiography, we have localized protein and messenger RNA for FKS06 binding protein, cyclophilin and calcineurin. All three proteins and/or messages exhibit a heterogenous distribution through the brain and spinal cord, with the majority of the localizations being neuronal. We observe a striking co-localiz- ation of FK506 binding protein and calcineurin in most
    [Show full text]
  • University of Warwick Institutional Repository
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Warwick Research Archives Portal Repository University of Warwick institutional repository: http://go.warwick.ac.uk/wrap This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information. To see the final version of this paper please visit the publisher’s website. Access to the published version may require a subscription. Author(s): Hendrik Schäfer, Natalia Myronova and Rich Boden Article Title: Microbial degradation of dimethylsulphide and related C1- sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere Year of publication: 2010 Link to published version: http://dx.doi.org/ 10.1093/jxb/erp355 Publisher statement: This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Journal of Experimental Botany following peer review. The definitive publisher-authenticated version Schäfer, H. et al. (2010). Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. Journal of Experimental Botany, Vol. 61(2), pp. 315-334 is available online at: http://jxb.oxfordjournals.org/cgi/content/full/61/2/315 Microbial degradation of dimethylsulfide and related C1-sulfur compounds: organisms and pathways controlling fluxes of sulfur in the biosphere Hendrik Schäfer*1, Natalia Myronova1, Rich Boden2 1 Warwick HRI, University of Warwick, Wellesbourne, CV35 9EF, UK 2 Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK * corresponding author Warwick HRI University of Warwick Wellesbourne CV35 9EF Tel: +44 2476 575052 [email protected] For submission to: Journal of Experimental Botany 1 Abstract 2 Dimethylsulfide (DMS) plays a major role in the global sulfur cycle.
    [Show full text]
  • Genome Characteristics of a Generalist Marine Bacterial Lineage
    The ISME Journal (2010), 1–15 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 $32.00 www.nature.com/ismej ORIGINAL ARTICLE Genome characteristics of a generalist marine bacterial lineage Ryan J Newton1, Laura E Griffin1, Kathy M Bowles1, Christof Meile1, Scott Gifford1, Carrie E Givens1, Erinn C Howard1, Eric King1, Clinton A Oakley2, Chris R Reisch3, Johanna M Rinta-Kanto1, Shalabh Sharma1, Shulei Sun1, Vanessa Varaljay3, Maria Vila-Costa1,4, Jason R Westrich5 and Mary Ann Moran1 1Department of Marine Sciences, University of Georgia, Athens, GA, USA; 2Department of Plant Biology, University of Georgia, Athens, GA, USA; 3Department of Microbiology, University of Georgia, Athens, GA, USA; 4Group of Limnology-Department of Continental Ecology, Centre d’Estudis Avanc¸ats de Blanes-CSIS, Catalunya, Spain and 5Odum School of Ecology, University of Georgia, Athens, GA, USA Members of the marine Roseobacter lineage have been characterized as ecological generalists, suggesting that there will be challenges in assigning well-delineated ecological roles and biogeochemical functions to the taxon. To address this issue, genome sequences of 32 Roseobacter isolates were analyzed for patterns in genome characteristics, gene inventory, and individual gene/ pathway distribution using three predictive frameworks: phylogenetic relatedness, lifestyle strategy and environmental origin of the isolate. For the first framework, a phylogeny containing five deeply branching clades was obtained from a concatenation of 70 conserved single-copy genes. Somewhat surprisingly, phylogenetic tree topology was not the best model for organizing genome characteristics or distribution patterns of individual genes/pathways, although it provided some predictive power. The lifestyle framework, established by grouping isolates according to evidence for heterotrophy, photoheterotrophy or autotrophy, explained more of the gene repertoire in this lineage.
    [Show full text]
  • Sagittula Stellata Gen. Nov., Sp. Nov., a Lignin-Transforming Bacterium from a Coastal Environment
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1997, p. 773-780 Vol. 47, No. 3 0020-7713/97/$04.00+0 Copyright 0 1997, International Union of Microbiological Societies Sagittula stellata gen. nov., sp. nov., a Lignin-Transforming Bacterium from a Coastal Environment J. M. GONZALEZ,' F. MAYER,2 M. A. MORAN,193R. E. HODSON,1,3 AND W. B. WHITMAN1,3* Department of Microbiology,' and Department of Marine Sciences and Institute of Ecology, University of Georgia, Athens, Georgia 30602, and Institut fur Mikrobiologie, Universitat Gottingen, 37077 Gottingen, Germany2 A numerically important member of marine enrichment cultures prepared with lignin-rich, pulp mill emuent was isolated. This bacterium was gram negative and rod shaped, did not form spores, and was strictly aerobic. The surfaces of its cells were covered by blebs or vesicles and polysaccharide fibrils. Each cell also had a holdfast structure at one pole. The cells formed rosettes and aggregates. During growth in the presence of lignocellulose or cellulose particles, cells attached to the surfaces of the particles. The bacterium utilized a variety of monosaccharides, disaccharides, amino acids, and volatile fatty acids for growth. It hydrolyzed cellulose, and synthetic lignin preparations were partially solubilized and mineralized. As determined by 16s rRNA analysis, the isolate was a member of the (Y subclass of the phylum Proteobacteria and was related to the genus Roseobacter. A signature secondary structure of the 16s rRNA is proposed. The guanine-plus-cytosine content of the genomic DNA was 65.0 mol%. On the basis of the results of 16s rRNA sequence and phenotypic characterizations, the isolate was sufficiently different to consider it a member of a new genus.
    [Show full text]
  • Mapping the Diversity of Microbial Lignin Catabolism: Experiences from the Elignin Database
    Applied Microbiology and Biotechnology (2019) 103:3979–4002 https://doi.org/10.1007/s00253-019-09692-4 MINI-REVIEW Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database Daniel P. Brink1 & Krithika Ravi2 & Gunnar Lidén2 & Marie F Gorwa-Grauslund1 Received: 22 December 2018 /Revised: 6 February 2019 /Accepted: 9 February 2019 /Published online: 8 April 2019 # The Author(s) 2019 Abstract Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings. Keywords Lignin . Database . Aromatic metabolism . Catabolic pathways
    [Show full text]
  • FKBP Family Proteins: Immunophilins with Versatile Biological Functions
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. FKBP family proteins : immunophilins with versatile biological functions Kang, Cong Bao; Ye, Hong; Dhe‑Paganon, Sirano; Yoon, Ho Sup 2008 Kang, C. B., Ye, H., Dhe‑Paganon, S., & Yoon, H. S. (2008). FKBP family proteins : immunophilins with versatile biological functions. Neurosignals, 16(4), 318–325. https://hdl.handle.net/10356/95238 https://doi.org/10.1159/000123041 © 2008 S. Karger AG, Basel. This is the author created version of a work that has been peer reviewed and accepted for publication by Neurosignals, S. Karger AG, Basel. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1159/000123041. Downloaded on 28 Sep 2021 01:49:48 SGT FKBP Family Proteins: Immunophilins with Versatile Biological Functions Cong Bao Kang a, Hong Ye a, Sirano Dhe-Paganon b, Ho Sup Yoon a,* a School of Biological Science, Nanyang Technological University, Singapore , Singapore; b Structural Genomics Consortium and Physiology, Banting Institute, University of Toronto, Toronto, Ont. , Canada * Tel. +65 6316 2846, Fax +65 6791 3856, E-Mail [email protected] Key Words Immunophilin • FK506-binding protein • Peptidylprolyl cis/trans isomerase • Immunophilin ligand • Neuroprotection • FK506 • Rapamycin Abstract Immunophilins consist of a family of highly conserved proteins binding with immunosuppressive drugs such as FK506, rapamycin and cyclosporin A. FK506-binding protein (FKBP) is one of two major immunophilins and most of FKBP family members bind FK506 and show peptidylprolyl cis/trans isomerase (PPIase) activity.
    [Show full text]
  • Enzyme Activity and Structural Features of Three Single-Domain Phloem Cyclophilins from Brassica Napus
    www.nature.com/scientificreports OPEN Enzyme activity and structural features of three single-domain phloem cyclophilins from Brassica Received: 20 September 2018 Accepted: 14 June 2019 napus Published: xx xx xxxx Patrizia Hanhart1, Sven Falke2, Marcel Garbe1, Victoria Rose1, Melanie Thieß1, Christian Betzel2 & Julia Kehr 1 Cyclophilins (CYPs) are a group of ubiquitous prolyl cis/trans isomerases (PPIases). It was shown that plants possess the most diverse CYP families and that these are abundant in the phloem long-distance translocation stream. Since phloem exudate showed PPIase activity, three single-domain CYPs that occur in phloem samples from Brassica napus were characterised on functional and structural levels. It could be shown that they exhibit isomerase activity and that this activity is controlled by a redox regulation mechanism, which has been postulated for divergent CYPs. The structure determination by small-angle X-ray scattering experiments revealed a conserved globular shape. In addition, the high-resolution crystal structure of BnCYP19-1 was resolved and refned to 2.0 Å resolution, and the active sites of related CYPs as well as substrate binding were modelled. The obtained data and results support the hypothesis that single domain phloem CYPs are active phloem PPIases that may function as chaperones. Cyclophilins (CYPs) are ubiquitous proteins involved in a number of fundamental cellular functions in a large number of organisms, such as animals, plants, fungi, bacteria and viruses1. Together with the structurally unre- lated FK506-binding proteins (FKBPs), they belong to the superfamily of immunophilins that have originally been discovered as proteins binding to the immunosuppressant peptide drug cyclosporin A (CsA)2 or FK506/ rapamycin3, respectively.
    [Show full text]
  • Microbial Diversity and Cyanobacterial Production in Dziani Dzaha Crater Lake, a Unique Tropical Thalassohaline Environment
    RESEARCH ARTICLE Microbial Diversity and Cyanobacterial Production in Dziani Dzaha Crater Lake, a Unique Tropical Thalassohaline Environment Christophe Leboulanger1*, HeÂlène Agogue 2☯, CeÂcile Bernard3☯, Marc Bouvy1☯, Claire Carre 1³, Maria Cellamare3¤³, Charlotte Duval3³, Eric Fouilland4☯, Patrice Got4☯, Laurent Intertaglia5³, CeÂline Lavergne2³, Emilie Le Floc'h4☯, CeÂcile Roques4³, GeÂrard Sarazin6☯ a1111111111 1 UMR MARBEC, Institut de Recherche pour le DeÂveloppement, Sète-Montpellier, France, 2 UMR LIENSs, Centre National de la Recherche Scientifique, La Rochelle, France, 3 UMR MCAM, MuseÂum National a1111111111 d'Histoire Naturelle, Paris, France, 4 UMR MARBEC, Centre National de la Recherche Scientifique, Sète- a1111111111 Montpellier, France, 5 Observatoire OceÂanologique de Banyuls-sur-Mer, Universite Pierre et Marie Curie, a1111111111 Banyuls-sur-Mer, France, 6 UMR7154 Institut de Physique du Globe de Paris, Universite Paris Diderot, a1111111111 Paris, France ☯ These authors contributed equally to this work. ¤ Current address: Phyto-Quality, 15 rue PeÂtrarque, Paris, France ³ These authors also contributed equally to this work. * [email protected] OPEN ACCESS Citation: Leboulanger C, Agogue H, Bernard C, Bouvy M, Carre C, Cellamare M, et al. (2017) Abstract Microbial Diversity and Cyanobacterial Production in Dziani Dzaha Crater Lake, a Unique Tropical This study describes, for the first time, the water chemistry and microbial diversity in Dziani Thalassohaline Environment. PLoS ONE 12(1): e0168879. doi:10.1371/journal.pone.0168879 Dzaha, a tropical crater lake located on Mayotte Island (Comoros archipelago, Western Indian Ocean). The lake water had a high level of dissolved matter and high alkalinity (10.6± Editor: Jean-FrancËois Humbert, INRA, FRANCE -1 2- 14.5 g L eq.
    [Show full text]