Downloaded and the Kinasefrom Domainthe Pubmed of TOR Server As Input at the Templates

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded and the Kinasefrom Domainthe Pubmed of TOR Server As Input at the Templates biomolecules Review Peptidylprolyl Isomerases as In Vivo Carriers for Drugs That Target Various Intracellular Entities Andrzej Galat Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, F-91191 Gif/Yvette, France; [email protected]; Fax: +33-169089137 Academic Editor: John A. Carver Received: 24 August 2017; Accepted: 26 September 2017; Published: 29 September 2017 Abstract: Analyses of sequences and structures of the cyclosporine A (CsA)-binding proteins (cyclophilins) and the immunosuppressive macrolide FK506-binding proteins (FKBPs) have revealed that they exhibit peculiar spatial distributions of charges, their overall hydrophobicity indexes vary within a considerable level whereas their points isoelectric (pIs) are contained from 4 to 11. These two families of peptidylprolyl cis/trans isomerases (PPIases) have several distinct functional attributes such as: (1) high affinity binding to some pharmacologically-useful hydrophobic macrocyclic drugs; (2) diversified binding epitopes to proteins that may induce transient manifolds with altered flexibility and functional fitness; and (3) electrostatic interactions between positively charged segments of PPIases and negatively charged intracellular entities that support their spatial integration. These three attributes enhance binding of PPIase/pharmacophore complexes to diverse intracellular entities, some of which perturb signalization pathways causing immunosuppression and other system-altering phenomena in humans. Keywords: PPIase; FKBP; cyclophilin; rapamycin; FK506 1. Introduction About forty years ago, two different types of macrocyclic molecules were isolated and shown to possess immunosuppressive activities, such as the cyclic peptide containing non-standard amino acid residues (AAs) cyclosporine A (CsA) and its homologues [1], and two polyketides having L-pipecolic acid ring, namely immunosuppressive macrolide FK506 [2] and rapamycin [3,4]. Rapamycin and its different natural and synthetic derivatives such as everolimus, temsirolimus (CCI-779) or zotarolimus (ABT-578) have been used as anticancer drugs [5–7]. Some natural homologues of CsA, FK506 and rapamycin are devoid of immunosuppressive activity [7,8]. All those compounds have been found in soil samples coming from three different regions of Earth, namely CsA and its derivatives were purified from the ascomycete fungus Tolypocladium inflatum found in a soil sample from Norway [1], FK506 (tacrolimus) was isolated from a bacterial culture of Streptomyces tsukubaensis found in a soil sample from Japan [2] whereas rapamycin (sirolimus) was recuperated from a filament-forming bacterium, Streptomyces hygroscopicus found in a soil sample of Rapa Nui (Easter Island) [3,4], respectively. Several other natural polyketides have some structural similarity to FK506, namely meridamycin from Streptomyces hydroscopicus that was found in a soil sample from Venezuela [9], nocardiopsins isolated from a marine sediment sample found off the cost of Brisbane [10], or antascomicins purified from Micromonospora species found in a Chinese soil sample [11]. Even if they bind to 12 kDa FK506-binding protein (FKBP12), curiously these molecules are not immunosuppressive but instead they antagonize the actions caused by FK506 [11]. Moreover, non-immunosuppressive meridamycin [9] has neuroprotective activity [12,13]. The macrolide sanglifehrin-A and its natural homologues bind to cyclophilin A (CyPA) and perturb some immune responses [14], but its mode of Biomolecules 2017, 7, 72; doi:10.3390/biom7040072 www.mdpi.com/journal/biomolecules Biomolecules 2017, 7, 72 2 of 21 Biomolecules 2017, 7, 72 2 of 21 action is different from that of the CsA-driven immunosuppression [15]. These different effects are depicted in Figure1. Figure 1. 1. SchemeScheme depicting depicting two polyketides two polyketides (FK506 and (FK506 rapamycin) and rapamycin) and cyclic peptide and cyclic cyclosporine peptide Acyclosporine (CsA) with A (CsA)a brief with asummary brief summary of their of theirintracellular intracellular targets targets whose whose blocking blocking by immunophilin/(immunosuppressive drug) drug) complex complex causes causes diverse diverse clinically clinically useful useful effects. effects. Pioneer works leading to isolation and characterization of several natural isoforms of peptidylprolyl ciscis/trans/trans isomeraseisomerase (PPIases) (PPIases) [16] such [16] as such CyPA as [17], CyPA CyPB, [17], CyPD, CyPB, CyP40 CyPD, (reviewed CyP40 (reviewedin [8]), and in FKBP12a [8]), and [18], FKBP12a FKBP13, [18 ],FKBP25 FKBP13, and FKBP25 FKBP52 and (reviewed FKBP52 in (reviewed [7]) revealed in [7 ])that revealed these immunophilinsthat these immunophilins have sizeable have expression sizeable levels expression in diverse levels organs in diverse (reviewed organs in [1 (reviewed9]). The principal in [19]). Theintracellular principal binders intracellular of CsA bindersare: (1) CyPA of CsA (cytoplasm) are: (1) CyPA[17]; (2) (cytoplasm) cyclophilin [ 17B ];(CyPB, (2) cyclophilin endoplasmic B (CyPB,reticulum endoplasmic (ER)) [20], reticulum and (3) cyclophilin (ER)) [20], andD (CyPD, (3) cyclophilin mitochondrial D (CyPD, membrane) mitochondrial (reviewed membrane) in [8]) (reviewedwhereas abundantly in [8]) whereas expressed abundantly heat‐shock expressed protein heat-shock‐associated protein-associated CyP40 binds weakly CyP40 bindsto CsA weakly [21]. FKBP12ato CsA [21 (cytoplasm)]. FKBP12a (cytoplasm)[18], FKBP25 [18 (cytoplasm,], FKBP25 (cytoplasm,diverse organelles diverse organellesand nucleus) and ],[22 nucleus) FKBP13 [22], (ERFKBP13‐protein), (ER-protein), or tetratricopeptide or tetratricopeptide domain (TPR) domain‐containing (TPR)-containing FKBP51 and FKBP51 FKBP52 and (reviewed FKBP52 (reviewed in [7,19]) bindin [7 ,to19 ])FK506 bind or to rapamycin FK506 or rapamycin and their structural and their analogues structural [23]. analogues It has been [23]. shown It has beenthat either shown of that the followingeither of the two following complexes, two namely complexes, CyPA/CsA namely or CyPA/CsAFKBP12a/FK506 or FKBP12a/FK506 hinders the access hinders to phosphatase the access activityto phosphatase site of calcineurin activity site heterodimer of calcineurin [24]. heterodimerIn consequence, [24]. the In phosphoryla consequence,ted the pool phosphorylated of the nuclear poolfactor of of the activated nuclear factorT cells of transcription activated T cells factor transcription (NF‐ATc) remains factor (NF-ATc) in the cytoplasm remains in (see the cytoplasm Figure 2) (see[25,26]. Figure FKBP12/rapamycin2)[ 25,26]. FKBP12/rapamycin binds to serine‐threonine binds to serine-threonine kinase mTOR and kinase it hinders mTOR the and access it hinders to its kinasethe access activity to its site kinase [27,28], activity which site causes [27,28 anergy], which of causesT cells. anergy These ofhypotheses T cells. Theseimply hypothesesthat under physiologicalimply that under conditions physiological the intracellular conditions contents the intracellular of calcineurin contents heterodimer of calcineurin and mTOR heterodimer in T cells areand mTORsmall, inthus T cells their are small, enzymatic thus their activities enzymatic could activities be could effectively be effectively blocked blocked by by the immunophilin/(iimmunophilin/(immunosuppressivemmunosuppressive drug) drug) complexes. complexes. Biomolecules 2017, 7, 72 3 of 21 Biomolecules 2017, 7, 72 3 of 21 FigureFigure 2. 2. SchemeScheme of of the the X‐ray X-ray structure structure of a of complex a complex between between human human cyclophilin cyclophilin (hCyPA) (hCyPA) (green (greenribbon) ribbon) bound bound to cyclosporine to cyclosporine A (CsA) A (violet (CsA) spheres) (violet and spheres) the calcineurin and the calcineurin heterodimer, heterodimer, calcineurin calcineurinA (CnA), yellow A (CnA), ribbon), yellow calcineurin ribbon), calcineurin B (CnB) (red B (CnB) ribbon) (red with ribbon) four with Ca+2 four ions Ca shown+2 ions as shown green asspheres. green spheres. The cyclophilin The cyclophilin A (CyPA)/CsA A (CyPA)/CsA complex hinders complex access hinders to phosphatase access to phosphatase activity site activity (shown siteas (shownbound asphosphate bound phosphate ion in ionlight in lightred spheres) red spheres) (1mf8.pdb (1mf8.pdb [29]). [29 ]).Similar Similar action action causescauses thethe FK506/FKBP12aFK506/FKBP12a complexcomplex ifif itit is is bound bound to to CnA–CnB CnA–CnB (data (data not not shown). shown). Different Different phosphorylated phosphorylated componentscomponents of of transcription transcription machinery machinery rest rest immobilized immobilized in in the the cytoplasm, cytoplasm, namely namely cytoplasmic cytoplasmic form form ofof transcription transcription factor factor NF-ATc. NF‐ATc. On theOn leftthe panel left panel is shown is shown the X-ray the structure X‐ray structure (1s9k.pdb) (1s9k.pdb) of a complex of a betweencomplex human between interleukin-2 human interleukin (IL-2) ARRE1‐2 (IL promoter‐2) ARRE1 element promoter (blue/red element ribbon) (blue/red and the ribbon) fragments and ofthe thefragments activator of protein the activator (AP-1) transcription protein (AP complex,‐1) transcription namely nuclearcomplex, form namely of NF-ATn nuclear (cyan), form cFos of NF (violet)‐ATn and(cyan), cJun cFos (orange) (violet) [30 ].and cJun (orange) [30]. RecentRecent analyses analyses of of a human a human interactome interactome have have shown shown that the that expression the expression
Recommended publications
  • Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
    Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P.
    [Show full text]
  • FKBP2 Antibody Cat
    FKBP2 Antibody Cat. No.: 23-414 FKBP2 Antibody Western blot analysis of extracts of various cell lines, using FKBP2 antibody (23-414) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit. Exposure time: 90s. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat Recombinant fusion protein containing a sequence corresponding to amino acids 22-142 IMMUNOGEN: of human FKBP2 (NP_004461.2). TESTED APPLICATIONS: IF, IHC, WB October 2, 2021 1 https://www.prosci-inc.com/fkbp2-antibody-23-414.html WB: ,1:500 - 1:2000 APPLICATIONS: IHC: ,1:100 - 1:200 IF: ,1:50 - 1:200 POSITIVE CONTROL: 1) MCF7 2) SKOV3 3) Jurkat 4) HeLa 5) Mouse thymus 6) Mouse liver PREDICTED MOLECULAR Observed: 14kDa WEIGHT: Properties PURIFICATION: Affinity purification CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: PBS with 0.02% sodium azide, 50% glycerol, pH7.3. STORAGE CONDITIONS: Store at -20˚C. Avoid freeze / thaw cycles. Additional Info OFFICIAL SYMBOL: FKBP2 FKBP-13, FKBP13, PPIase, peptidyl-prolyl cis-trans isomerase FKBP2, 13 kDa FK506-binding protein, 13 kDa FKBP, FK506 binding protein 2, 13kDa, FK506-binding protein 2, PPIase ALTERNATE NAMES: FKBP2, epididymis secretory sperm binding protein, immunophilin FKBP13, proline isomerase, rapamycin-binding protein, rotamase GENE ID: 2286 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References October 2, 2021 2 https://www.prosci-inc.com/fkbp2-antibody-23-414.html The protein encoded by this gene is a member of the immunophilin protein family, which play a role in immunoregulation and basic cellular processes involving protein folding and trafficking.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins
    Technical note Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins: A Study for Peptidyl-Prolyl cis/trans Isomerases (PPIase) Andrzej Galat Retired from: Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA-Université Paris-Saclay, France; [email protected]; Tel.: +33-0164465072 Received: 21 December 2018; Accepted: 21 January 2019; Published: 11 February 2019 Abstract: In this technical note, we describe analyses of more than 15,000 sequences of FK506- binding proteins (FKBP) and cyclophilins, also known as peptidyl-prolyl cis/trans isomerases (PPIases). We have developed a novel way of displaying relative changes of amino acid (AA)- residues at a given sequence position by using heat-maps. This type of representation allows simultaneous estimation of conservation level in a given sequence position in the entire group of functionally-related paralogues (multigene family of proteins). We have also proposed that at least two FKBPs, namely FKBP36, encoded by the Fkbp6 gene and FKBP51, encoded by the Fkbp5 gene, can form dimers bound via a disulfide bridge in the nucleus. This type of dimer may have some crucial function in the regulation of some nuclear complexes at different stages of the cell cycle. Keywords: FKBP; cyclophilin; PPIase; heat-map; immunophilin 1 Introduction About 30 years ago, an exciting adventure began in finding some correlations between pharmacological activities of macrocyclic hydrophobic drugs, namely the cyclic peptide cyclosporine A (CsA), and two macrolides, namely FK506 and rapamycin, which have profound and clinically useful immunosuppressive effects, especially in organ transplantations and in combating some immune disorders.
    [Show full text]
  • Fkbp10 (NM 010221) Mouse Untagged Clone – MC201811 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MC201811 Fkbp10 (NM_010221) Mouse Untagged Clone Product data: Product Type: Expression Plasmids Product Name: Fkbp10 (NM_010221) Mouse Untagged Clone Tag: Tag Free Symbol: Fkbp10 Synonyms: AI325255; FKBP-10; FKBP-65; Fkbp-rs1; Fkbp1-rs; Fkbp6; FKBP65; Fkbprp Vector: PCMV6-Kan/Neo E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 Fkbp10 (NM_010221) Mouse Untagged Clone – MC201811 Fully Sequenced ORF: >BC029546 sequence for NM_010221 GTCCGCTCTCACTGCCGGCGTCCCTGGTCTGGGCACCATGTTCCTTGTGGGGTCCTCCAGCCACACCCTC CATCGGCTCCGCATACTGCCGTTGCTGTTGCTTCTACAGACCTTGGAGAGGGGACTGGGCCGTGCCAGCC CGGCCGGAGCCCCCTTGGAAGATGTGGTCATCGAGAGATACCACATCCCTCGGGCCTGTCCCCGAGAAGT GCAGATGGGGGATTTTGTGCGTTACCACTACAATGGCACTTTCGAAGACGGGAAAAAGTTTGACTCCAGC TATGACCGTAGCACCCTGGTGGCCATCGTTGTGGGCGTAGGCCGCCTCATCACCGGCATGGACCGGGGTC TCATGGGCATGTGTGTCAACGAGCGCCGCCGCCTCATTGTGCCTCCCCACCTGGGCTACGGCAGCATCGG TGTGGCGGGCCTCATCCCCCCTGATGCCACCCTCTATTTTGACGTGGTCCTGCTGGACGTGTGGAACAAA GCAGACACGGTGCAGTCAACTATCCTCCTGCGCCCTCCCTACTGCCCCCGAATGGTGCAGAACAGTGACT TTGTGCGCTATCACTACAATGGCACTCTGCTGGATGGCACTGCCTTTGACAACAGCTACAGTAGGGGAGG CACTTATGACACCTACATCGGCTCTGGTTGGCTGATCAAAGGCATGGACCAGGGGCTGCTGGGCATGTGC
    [Show full text]
  • Prostate Cancer Prognostics Using Biomarkers Prostatakrebsprognostik Mittels Biomarkern Prognostic Du Cancer De La Prostate Au Moyen De Biomarqueurs
    (19) TZZ Z_T (11) EP 2 885 640 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 33/574 (2006.01) C12Q 1/68 (2018.01) 18.07.2018 Bulletin 2018/29 C40B 30/04 (2006.01) (21) Application number: 13829137.2 (86) International application number: PCT/US2013/055429 (22) Date of filing: 16.08.2013 (87) International publication number: WO 2014/028884 (20.02.2014 Gazette 2014/08) (54) PROSTATE CANCER PROGNOSTICS USING BIOMARKERS PROSTATAKREBSPROGNOSTIK MITTELS BIOMARKERN PROGNOSTIC DU CANCER DE LA PROSTATE AU MOYEN DE BIOMARQUEURS (84) Designated Contracting States: • GHADESSI, Mercedeh AL AT BE BG CH CY CZ DE DK EE ES FI FR GB New Westminster, British Columbia V3M 6E2 (CA) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • JENKINS, Robert, B. PL PT RO RS SE SI SK SM TR Rochester, Minnesota 55902 (US) • VERGARA CORREA, Ismael A. (30) Priority: 16.08.2012 US 201261684066 P Bundoora, Victoria 3083 (AU) 13.02.2013 US 201361764365 P 14.03.2013 US 201361783124 P (74) Representative: Cornish, Kristina Victoria Joy et al Kilburn & Strode LLP (43) Date of publication of application: Lacon London 24.06.2015 Bulletin 2015/26 84 Theobalds Road London WC1X 8NL (GB) (73) Proprietors: • Genomedx Biosciences, Inc. (56) References cited: Vancouver BC V6B 2W9 (CA) WO-A1-2009/143603 WO-A1-2013/090620 • MAYO FOUNDATION FOR MEDICAL WO-A2-2006/091776 WO-A2-2006/110264 EDUCATION AND RESEARCH WO-A2-2007/056049 US-A1- 2006 134 663 Rochester, MN 55905 (US) US-A1- 2007 037 165 US-A1- 2007 065 827 US-A1-
    [Show full text]
  • FKBP8 Antibody Cat
    FKBP8 Antibody Cat. No.: 62-126 FKBP8 Antibody With HepG2 cell line lysate, the resolved proteins were electrophoretically transferred to PVDF membrane and incubated sequentially with primary antibody FKBP38 (1:1000, 4˚C,overnight ) and horseradish peroxidase–conjugated second antibody. After washing, the bound antibody complex was detected using an ECL chemiluminescence reagentand XAR film (Kodak). Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human HOMOLOGY: Predicted species reactivity based on immunogen sequence: Mouse, Rat This FKBP8 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 199-226 amino acids from the Central region of human FKBP8. TESTED APPLICATIONS: WB APPLICATIONS: For WB starting dilution is: 1:1000 PREDICTED MOLECULAR 45 kDa WEIGHT: September 28, 2021 1 https://www.prosci-inc.com/fkbp8-antibody-62-126.html Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: FKBP8 Peptidyl-prolyl cis-trans isomerase FKBP8, PPIase FKBP8, 38 kDa FK506-binding protein, ALTERNATE NAMES: 38 kDa FKBP, FKBP-38, hFKBP38, FK506-binding protein 8, FKBP-8, FKBPR38, Rotamase, FKBP8, FKBP38 ACCESSION NO.: Q14318 PROTEIN GI NO.: 193806337 GENE ID: 23770 USER NOTE: Optimal dilutions for each application to be determined by the researcher.
    [Show full text]
  • Naringenin Regulates FKBP4/NR3C1/TMEM173 Signaling Pathway in Autophagy and Proliferation of Breast Cancer and Tumor-Infltrating Dendritic Cell Maturation
    Naringenin Regulates FKBP4/NR3C1/TMEM173 Signaling Pathway in Autophagy and Proliferation of Breast Cancer and Tumor-Inltrating Dendritic Cell Maturation Hanchu Xiong ( [email protected] ) Zhejiang Provincial People's Hospital https://orcid.org/0000-0001-6075-6895 Zihan Chen First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Aliated Hospital Baihua Lin Zhejiang Provincial People's Hospital Cong Chen Zhejiang University School of Medicine Sir Run Run Shaw Hospital Zhaoqing Li Zhejiang University School of Medicine Sir Run Run Shaw Hospital Yongshi Jia Zhejiang Provincial People's Hospital Linbo Wang Zhejiang University School of Medicine Sir Run Run Shaw Hospital Jichun Zhou Zhejiang University School of Medicine Sir Run Run Shaw Hospital Research Keywords: FKBP4, TMEM173, Autophagy, Exosome, Dendritic cell, Breast cancer Posted Date: July 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-659646/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/38 Abstract Background TMEM173 is a pattern recognition receptor detecting cytoplasmic nucleic acids and transmits cGAS related signals that activate host innate immune responses. It has also been found to be involved in tumor immunity and tumorigenesis. Methods Bc-GenExMiner, PROMO and STRING database were used for analyzing clinical features and interplays of FKBP4, TMEM173 and NR3C1. Transient transfection, western blotting, quantitative real-time PCR, luciferase reporter assay, immunouorescence and nuclear and cytoplasmic fractionation were used for regulation of FKBP4, TMEM173 and NR3C1. Both knockdown and overexpression of FKBP4, TMEM173 and NR3C1 were used to analyze effects on autophagy and proliferation of breast cancer (BC) cells.
    [Show full text]
  • Synthesis and Application of Light-Switchable Arylazopyrazole Rapamycin Analogs
    Organic & Biomolecular Chemistry Synthesis and Application of Light-Switchable Arylazopyrazole Rapamycin Analogs Journal: Organic & Biomolecular Chemistry Manuscript ID OB-COM-08-2019-001719.R1 Article Type: Communication Date Submitted by the 25-Aug-2019 Author: Complete List of Authors: Courtney, Taylor; University of Pittsburgh, Chemistry Horst, Trevor; University of Pittsburgh, Chemistry Hankinson, Chasity; University of Pittsburgh, Chemistry Deiters, Alexander; University of Pittsburgh, Chemistry Page 1 of 11 Organic & Biomolecular Chemistry Synthesis and Application of Light-Switchable Arylazopyrazole Rapamycin Analogs Taylor M. Courtney, Trevor J. Horst, Chasity P. Hankinson, and Alexander Deiters* Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States [email protected] Abstract: Rapamycin-induced dimerization of FKBP and FRB has been utilized as a tool for co-localizing two proteins of interest in numerous applications. Due to the tight binding interaction of rapamycin with FKBP and FRB, the ternary complex formation is essentially irreversible. Since biological processes occur in a highly dynamic fashion with cycles of protein association and dissociation to generate a cellular response, it is useful to have chemical tools that function in a similar manner. We have developed arylazopyrazole-modified rapamycin analogs which undergo a configurational change upon light exposure and we observed enhanced ternary complex formation for the cis-isomer over the trans-isomer for one of the analogs. Introduction: Chemical inducers of dimerization (CIDs) are prominent tools used by chemical biologists to place biological processes under conditional control.1-4 The most commonly utilized CID is rapamycin, a natural product that binds to FK506 binding protein (FKBP) with a 0.2 nM Kd.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • The Immunophilins, Fk506 Binding Protein and Cyclophilin, Are Discretely Localized in the Brain: Relationship to Calcineurin
    NeuroscienceVol. 62,NO. 2, pp. 569-580,1994 Elsevier Sctence Ltd Copyright 0 1994 IBRO Pergamon 0306-4522(94)E0182-4 Printed in Great Britain. All rights reserved 0306-4522194 $7.00 + 0.00 THE IMMUNOPHILINS, FK506 BINDING PROTEIN AND CYCLOPHILIN, ARE DISCRETELY LOCALIZED IN THE BRAIN: RELATIONSHIP TO CALCINEURIN T. M. DAWSON,*t J. P. STEINER,* W. E. LYONS,*11 M. FOTUHI,* M. BLUE? and S. H. SNYDER*f§l Departments of *Neuroscience, tNeurology, $Pharmacology and Molecular Sciences, and §Psychiatry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A. (IDivision of Toxicological Science, Johns Hopkins University School of Hygiene and Public Health Abstract-The immunosuppressant drugs cyclosporin A and FK506 bind to small, predominantly soluble proteins cyclophilin and FK506 binding protein, respectively, to mediate their pharmacological actions. The immunosuppressant actions of these drugs occur through binding of cyclophilin-cyclosporinA and FK506 binding protein-FK506 complexes to the calcium-calmodulin-dependent protein phosphatase, calcineurin, inhibiting phosphatase activity, Utilizing immunohistcchemistry, in situ hybridization and autoradiography, we have localized protein and messenger RNA for FKS06 binding protein, cyclophilin and calcineurin. All three proteins and/or messages exhibit a heterogenous distribution through the brain and spinal cord, with the majority of the localizations being neuronal. We observe a striking co-localiz- ation of FK506 binding protein and calcineurin in most
    [Show full text]
  • De Novo Phosphatidylcholine Synthesis in Intestinal Lipid Metabolism and Disease
    De Novo Phosphatidylcholine Synthesis in Intestinal Lipid Metabolism and Disease by John Paul Kennelly A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Nutrition and Metabolism Department of Agricultural, Food and Nutritional Science University of Alberta © John Paul Kennelly, 2018 Abstract Phosphatidylcholine (PC), the most abundant phospholipid in eukaryotic cells, is an important component of cellular membranes and lipoprotein particles. The enzyme CTP: phosphocholine cytidylyltransferase (CT) regulates de novo PC synthesis in response to changes in membrane lipid composition in all nucleated mammalian cells. The aim of this thesis was to determine the role that CTα plays in metabolic function and immune function in the murine intestinal epithelium. Mice with intestinal epithelial cell-specific deletion of CTα (CTαIKO mice) were generated. When fed a chow diet, CTαIKO mice showed normal lipid absorption after an oil gavage despite a ~30% decrease in small intestinal PC concentrations relative to control mice. These data suggest that biliary PC can fully support chylomicron output under these conditions. However, when acutely fed a high-fat diet, CTαIKO mice showed impaired intestinal fatty acid and cholesterol uptake from the intestinal lumen into enterocytes, resulting in lower postprandial plasma triglyceride concentrations. Impaired intestinal fatty acid uptake in CTαIKO mice was linked to disruption of intestinal membrane lipid transporters (Cd36, Slc27a4 and Npc1l1) and higher postprandial plasma Glucagon-like Peptide 1 and Peptide YY. Unexpectedly, there was a shift in expression of bile acid transporters to the proximal small intestine of CTαIKO mice, which was associated with enhanced biliary bile acid, PC and cholesterol output relative to control mice.
    [Show full text]