Synthesis of the First Nitrogen-Heterocycles in Interstellar
MNRAS 000,1–16 (2021) Preprint 11 June 2021 Compiled using MNRAS LATEX style file v3.0 Synthesis of the first nitrogen-heterocycles in interstellar ice analogs containing methylamine (CH3NH2) exposed to UV radiation: Formation of trimethylentriamine (TMT, c-(-CH2-NH)3) and hexamethylentetramine (HMT, (CH2)6N4). H. Carrascosa,1¢ C. González Díaz, 1 G. M. Muñoz Caro,1y P. C. Gómez,2 M. L. Sanz, 3 1Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain 2Dep. Química Física, Fac. Química, Univ. Complutense, 28040 Madrid, Spain 3Department of instrumental analysis and environmental chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Hexamethylentetramine has drawn a lot of attention due to its potential to produce prebiotic species. This work aims to gain a better understanding in the chemical processes concerning methylamine under astrophysically relevant conditions. In particular, this work deeps into the formation of N-heterocycles in interstellar ice analogs exposed to UV radiation, which may lead to the formation of prebiotic species. Experimental simulations of interstellar ice analogs were carried out in ISAC. ISAC is an ultra-high vacuum chamber equipped with a cryostat, where gas and vapour species are frozen forming ice samples. Infrared and ultraviolet spectroscopy were used to monitor the solid phase, and quadrupole mass spectrometry served to measure the composition of the gas phase. The variety of species detected after UV irradiation of ices containing methylamine revealed the presence of 12 species which have been already detected in the ISM, being 4 of them typically classified as complex organic molecules: formamide (HCONH2), methyl cyanide (CH3CN), CH3NH and CH3CHNH.
[Show full text]