A LUNAR BASE EXHIBIT PROPOSAL an Interactive Qualifying Project

Total Page:16

File Type:pdf, Size:1020Kb

A LUNAR BASE EXHIBIT PROPOSAL an Interactive Qualifying Project A LUNAR BASE EXHIBIT PROPOSAL An Interactive Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by Ethan Warner Paul Crosby Michael Sack Date: March 15, 2011 Professor John Wilkes, Advisor This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. 2 Abstract The goal of this project was to explore the potential in a lunar base exhibit to enhance science education. A Lunar Base (circa 2069) architectural competition sponsored by SHIFTboston provided us the opportunity to examine several promising concepts when the AIAA New England Chapter assigned us to reevaluate 89 entries based on technical feasibility and technological elegance. The results were presented to numerous audiences ranging from aerospace specialists to 5th graders. We persuaded SHIFTboston to run a second architectural competition with a lunar theme- this time focusing on a simulated lunar base as a science exhibit designed for grades 5-10. 3 Acknowledgments Dan Benoit, Architect, Member of Team Goddard Bruce Mackenzie, Member of Team Goddard Alessandra Anderson, Artist Kim Poliquin, Executive Director, SHIFTboston Dr. Fred Bortz, Author, Distinguished Lecturer Cecelia Gray, Principal, Midland St School, Worcester MA 4 Table of Contents Abstract ...................................................................................................................................................... 2 Acknowledgments ...................................................................................................................................... 3 Table of Contents ........................................................................................................................................ 4 Table of Figures ........................................................................................................................................... 6 Introduction ................................................................................................................................................ 7 The Campaign ........................................................................................................................................... 17 Team Goddard in the SHIFTBoston Contest .............................................................................................. 19 SHIFTBoston Contest Results and Moon Ball 2010 ................................................................................... 25 SHIFTBoston Judging Process and Criteria ................................................................................................ 30 AIAA Judging Presentations .................................................................................................................. 39 Composite Base ........................................................................................................................................ 42 Exhibit Design ........................................................................................................................................... 52 Tying the SHIFTboston Judging back to the Curriculum Team .................................................................. 60 The Midland School Presentations ....................................................................................................... 66 Future Momentum ................................................................................................................................... 69 Conclusion ................................................................................................................................................ 72 Bibliography .............................................................................................................................................. 75 Appendix ................................................................................................................................................... 76 Our Poster Finalists for the Technical Feasibility and Elegance Award ................................................. 76 Origins of the USAF Space Program 1945-1956 .................................................................................... 87 Chapter 1 - The Beginnings ............................................................................................................... 87 Proposal to the City of Worcester ......................................................................................................... 91 Introduction ...................................................................................................................................... 91 The Lunar Base Exhibit ...................................................................................................................... 92 The Competition ............................................................................................................................... 95 The Ideal Location ............................................................................................................................. 98 Current Support .............................................................................................................................. 105 Conclusion....................................................................................................................................... 106 5 References ...................................................................................................................................... 109 ORIGINS OF THE USAF SPACE PROGRAM 1945-1956 .......................................................................... 109 Independent Study Project by David Linke ......................................................................................... 113 Entry Rankings & Validation ............................................................................................................ 113 Discussion of Results ....................................................................................................................... 115 Frequency Distributions .................................................................................................................. 115 Categories ....................................................................................................................................... 115 Standard Variables .......................................................................................................................... 115 Compound Variables ....................................................................................................................... 117 Relationships ................................................................................................................................... 118 Standard Variables .......................................................................................................................... 118 Compound Variables ....................................................................................................................... 120 Technical Feasibility ........................................................................................................................ 122 Moon Capital Competition 2010 ..................................................................................................... 122 6 Table of Figures Figure 1 - Lunar sling design concept ........................................................................................................ 20 Figure 2 - Nuclear facility overview ........................................................................................................... 21 Figure 3 - Classroom facility overview ...................................................................................................... 23 Figure 4 - Craterville rendering ................................................................................................................. 24 Figure 5 - Living quarters from Moon Capital ........................................................................................... 45 Figure 6 - Living quarters from Craterville ................................................................................................ 45 Figure 7 - Living quarters from L.E.A.P. ..................................................................................................... 46 Figure 8 - Moon Captial light reflector ...................................................................................................... 47 Figure 9 - Composite Base depictions ....................................................................................................... 51 Figure 10 - Moon Capital........................................................................................................................... 77 Figure 11 - Craterville ................................................................................................................................ 78 Figure 12 - The Crater Colony ................................................................................................................... 79 Figure 13 - Seed of Life ............................................................................................................................
Recommended publications
  • ANNUAL REPORT Academic Year 2019-2020
    ANNUAL REPORT Academic Year 2019-2020 International Space University The International Space University, founded in 1987 in Massachusetts, US, and now headquartered in Stras- bourg, France, is the world’s premier international space education institution. It is supported by major space agencies and aerospace organizations from around the world. The graduate level programs offered by ISU are dedicated to promoting international, interdisciplinary and intercultural cooperation in space activities. ISU offers the Master of Science in Space Studies program at its Central Campus in Strasbourg. Since the summer of 1988, ISU conducts the two-month Space Studies Program at different host institutions in locations spanning the globe; more recently the Southern Hemisphere Space Studies Program; and the online Interactive Space Program. ISU programs are delivered by over 100 ISU faculty members in concert with invited industry and agency experts from institutions around the world. Since its founding, more than 5000 students from 110 countries graduated from ISU. Contact Info: 1 rue Jean-Dominique Cassini Parc d’Innovation 67400 Illkirch-Graffenstaden, France [email protected] Phone: +33-3-88-65-54-30 Fax: +33-3-88-65-54-47 Table of Contents INTRODUCTION Page 1 1. Summary and Key Figures Page 3 2. Master of Space Studies - MSS20 Page 4 3. Interactive Space Program - ISP20 in lieu of SSP20 Page 9 4. Southern Hemisphere Space Studies Program - SHSSP20 Page 12 5. Commercial Space Course - CSP20 Page 15 6. Short Courses Page 17 7. Research and Publications Page 19 8. Space start-up Incubator Page 23 9. Alumni Affairs Page 24 10. Faculty and Executive Appointments Page 27 11.
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Traverse Planning for Human and Robotic Missions to Hadley Rille
    NASA/TM-2008-215367 Traverse Planning for Human and Robotic Missions to Hadley Rille Michael Broxton, Matthew C. Deans, Terrence Fong, Trey Smith, NASA Ames Research Center Mark Helper, University of Texas / Austin Kip V. Hodges, Arizona State University, Gerald G. Schaber, USGS (retired) Harrison H. Schmitt IHMC National Aeronautics and Space Administration Ames Research Center Moffett Field, California, 94035-1000 January 2009 NASA/TM-2008-215367 Traverse Planning for Human and Robotic Missions to Hadley Rille Michael Broxton, Matthew C. Deans, Terrence Fong, Trey Smith, NASA Ames Research Center Mark Helper, University of Texas / Austin Kip V. Hodges, Arizona State University, Gerald G. Schaber, USGS (retired) Harrison H. Schmitt IHMC National Aeronautics and Space Administration Ames Research Center Moffett Field, California, 94035-1000 January 2009 Traverse Planning for Human and Robotic Missions to Hadley Rille (report) Michael Broxton1, Matthew C. Deans1, Terrence Fong1, Mark Helper2, Kip V. Hodges3, Gerald G. Schaber4, Harrison H. Schmitt5, and Trey Smith1 1NASA Ames Research Center, 2University of Texas / Austin, 3Arizona State University, 4USGS (retired), 5IHMC Summary On November 6, 2008, we conducted a short lunar traverse planning exercise at the NASA Ames Research Center. The objective was to establish an initial EVA traverse plan for a hypothetical, manned mission to the Apollo 15 region and then to identify where ground-level data (e.g., collected by robotic recon) would help refine the plan. The planning for this mission, which we named “Apollo 15B”, focused on Hadley Rille near Hadley C, and the ejecta blanket from Hadley C that is deposited on to Hadley Rille.
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • Lunar Sourcebook : a User's Guide to the Moon
    4 LUNAR SURFACE PROCESSES Friedrich Hörz, Richard Grieve, Grant Heiken, Paul Spudis, and Alan Binder The Moon’s surface is not affected by atmosphere, encounters with each other and with larger planets water, or life, the three major agents for altering throughout the lifetime of the solar system. These terrestrial surfaces. In addition, the lunar surface has orbital alterations are generally minor, but they not been shaped by recent geological activity, because ensure that, over geological periods, collisions with the lunar crust and mantle have been relatively cold other bodies will occur. and rigid throughout most of geological time. When such a collision happens, two outcomes are Convective internal mass transport, which dominates possible. If “target” and “projectile” are of comparable the dynamic Earth, is therefore largely absent on the size, collisional fragmentation and annihilation Moon, and so are the geological effects of such occurs, producing a large number of much smaller internal motions—volcanism, uplift, faulting, and fragments. If the target object is very large compared subduction—that both create and destroy surfaces on to the projectile, it behaves as an “infinite halfspace,” Earth. The great contrast between the ancient, stable and the result is an impact crater in the target body. Moon and the active, dynamic Earth is most clearly For collisions in the asteroid belt, many of the shown by the ages of their surfaces. Nearly 80% of the resulting collisional fragments or crater ejecta escape entire solid surface of Earth is <200 m.y. old. In the gravitational field of the impacted object; many of contrast, >99% of the lunar surface formed more than these fragments are then further perturbed into 3 b.y.
    [Show full text]
  • Space Resources : Social Concerns / Editors, Mary Fae Mckay, David S
    Frontispiece Advanced Lunar Base In this panorama of an advanced lunar base, the main habitation modules in the background to the right are shown being covered by lunar soil for radiation protection. The modules on the far right are reactors in which lunar soil is being processed to provide oxygen. Each reactor is heated by a solar mirror. The vehicle near them is collecting liquid oxygen from the reactor complex and will transport it to the launch pad in the background, where a tanker is just lifting off. The mining pits are shown just behind the foreground figure on the left. The geologists in the foreground are looking for richer ores to mine. Artist: Dennis Davidson NASA SP-509, vol. 4 Space Resources Social Concerns Editors Mary Fae McKay, David S. McKay, and Michael B. Duke Lyndon B. Johnson Space Center Houston, Texas 1992 National Aeronautics and Space Administration Scientific and Technical Information Program Washington, DC 1992 For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328 ISBN 0-16-038062-6 Technical papers derived from a NASA-ASEE summer study held at the California Space Institute in 1984. Library of Congress Cataloging-in-Publication Data Space resources : social concerns / editors, Mary Fae McKay, David S. McKay, and Michael B. Duke. xii, 302 p. : ill. ; 28 cm.—(NASA SP ; 509 : vol. 4) 1. Outer space—Exploration—United States. 2. Natural resources. 3. Space industrialization—United States. I. McKay, Mary Fae. II. McKay, David S. III. Duke, Michael B. IV. United States.
    [Show full text]
  • JAXA's Lunar Exploration Activities
    June 17th 2019, 62nd Session of COPUOS, Vienna JAXA’s Lunar Exploration Activities Hiroshi Sasaki Director, JAXA Space Exploration Center (JSEC) Japan Aerospace Exploration Agency 1 JAXA’s Space Exploration Scenario Mars, others Activities on/beyond Mars ©JAXA MMX JFY2024 Kaguya ©JAXA ©JAXA ©JAXA ©JAXA Moon SLIM Lunar Polar Exploration Robotic Sample Return Pinpoint Landing Water Prospecting Sustainable JFY2021 (HERACLES) prox.2023- Technology Demo Exploration/Utilization Approx.2026- HTV-X derivatives Gateway Approx. 2026- Operation OMOTENASHI EQUULEUS CubeSat Innovative launched by small mission Gateway (construction phase) SLS/EM1 2022- Earth Promote Commercialization International Space Station 2 ©NASA International Space Exploration Coordination Group (ISECG): • ISECG is a non-political agency coordination forum of space organization from 18 countries and regions. • JAXA is currently the chair of ISECG. • ISECG agencies work collectively in a non-binding, consensus-driven manner towards advancing the Global Exploration Strategy. The Global Exploration Roadmap (GER3) recognizes the importance of increasing synergies with robotic missions while demonstrating the role humans play in realizing societal benefits. GER3, released in January 2018 3 Significance of Lunar Exploration Expand Human Activities Gain Knowledge International Cooperation ©NASA Promote Industry Inspire Young Generation 4 JAXA’s Lunar Exploration Roadmap (Long-Team) Lunar Base (International Space Agency, Private Sector) 2060- Sustainable Exploration (Private Utilization)
    [Show full text]
  • Apollo 15 Mission
    THE APOLLO 15 MISSION On July 30, 1971, the Apollo 15 lunar module Falcon, descending over the 4,000 meter Apennine Mountain front, landed at one of the most geologically diverse sites selected in the Apollo program, the Hadley-Apennine region. Astronauts Dave Scott and Jim Irwin brought the spacecraft onto a mare plain just inside the most prominent mountain ring structure of the Imbrium basin, the Montes Apennines chain which marks its southeastern topographic rim, and close to the sinuous Hadley Rille (Fig. 1). The main objectives of the mission were to investigate and sample materials of the Apennine Front itself (expected to be Imbrium ejecta and pre-Imbrium materials), of Hadley Rille, and of the mare lavas of Palus Putredinis (Fig. 2). A package of seven surface experiments, including heat flow and passive seismic, was also set up and 1152 surface photographs were taken. A television camera, data acquisition (sequence) camera, and orbital photography and chemical data provided more information. The Apollo 15 mission was the first devoted almost entirely to science, and the first to use a Rover vehicle which considerably extended the length of the traverses, from a total of 3.5 km on Apollo 14 to 25.3 km during three separate traverses on Apollo 15 (Fig. 3). The collected sample mass was almost doubled, from 43 kg on Apollo 14 to 78 kg on Apollo 15. A reduction in the planned traverse length was made necessary, in part by unexpected and time-consuming difficulties in the collection of the deep core sample (at the experiments package area).
    [Show full text]
  • Rine and the Apennine Mountains. INSTITUTION National Aeronautics and Space Administration, Washington, D.C
    DOCUMENT RESUME ED 053 930 SE 012 016 AUTHOR Simmons, Gene TITLE On the Moon with Apollo 15,A Guidebook to Hadley Rine and the Apennine Mountains. INSTITUTION National Aeronautics and Space Administration, Washington, D.C. PUB DATE Jun 71 NOTE 52p. AVAILABLE FROM Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (3300-0384 $0.50) EDRS PRICE EDRS Price MF-$0.65 HC-$3.29 DESCRIPTORS *Aerospace Technology, Geology, Reading Materials, Resource Materials IDENTIFIERS *Lunar Studies, Moon ABSTRACT The booklet, published before the Apollo 15 mission, gives a timeline for the mission; describes and illustrates the physiography of the landing site; and describes and illustrates each lunar surface scientific experiment. Separate timelines are included for all traverses (the traverses are the Moon walks and, for Apollo 15, the Moon rides in the Rover) with descriptions of activities at each traverse stop. Each member of the crew and the backup crew is identified. Also included is a bibliography of lunar literature and glossary of terms used in lunar studies. Photographs and diagrams are utilized throughout. Content is descriptive and informative but with a minimum of technical detail. (Author/PR) , ON THE MOON WITH APOLLO 15 A Guidebook to Hadley Rille and the Apennine Mountains U.S. DEPARTMENT OFHEALTH, EDUCATION,& WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS SEENREPRO- DUCED EXACTLY AS RECEIVEDFROM THE PERSON OR ORGANIZATIONORIG INATING IT. POINTS OF VIEWOR OPIN IONS STATED DO NOTNECESSARILY REPRESENT OFFICIAL OFFICEOF EDU CATION POSITION OR POLICY isr) 1..r1 w fl R CO iiii0OP" O NATIONAL AERONAUTICS AND SPACE ADMINISTRATION June 1971 1 \n ON THE MOON WITH APOLLO 15 A uidebook to Hadley Rille and the Apennine Mountains by Gene Simmons Chief Scientist Manned Spacecraft Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION June 1971 2 For sale by the Superintendent of Documents, U.S.
    [Show full text]
  • Hill & Valley Parish Magazine for Hurstbourne Priors, Longparish And
    Issue No. 247 Hill & Valley THE PARISH MAGAZINE OF HURSTBOURNE PRIORS, LONGPARISH, ST MARY BOURNE & WOODCOTT 50p April 2021 Happy Easter Hill & Valley Parish Magazine for Hurstbourne Priors, Longparish and St Mary Bourne & Woodcott April 2021 Dear Friends, April is upon us, the gateway to spring can, of course, be very mixed with hail and even snow, whilst at other times we may bask in warm sunshine, and often we can experience all four seasons in one day! Day by day the polyphony of morning birdsong increases and we cannot but notice the garden waking up with fresh buds and plants, all of which I find quite exciting. The new life and new beginnings that April speaks of, is something very relevant to us all as we begin to embrace change and adapt to life after Covid in anticipation of lockdown being eased. Life, new beginnings and hope are also central themes of the Easter story. Christian hope is not rooted in a distant or romantic past, remembering a one off event two thousand years ago. Easter faith is prophetically grounded in the here and now as the death and resurrection of Jesus spans across time and space and speaks to us today. If we look about our world today, we can see the tragic consequences of the Pandemic across our planet, and indeed our own nation, we also note the human condition is very much alive as our broken humanity continues to inflict war and violence on other human beings. In all these situations, Holy week and the Passion of Christ points to the opportunity of life transformed, redeemed and transfigured; Easter life.
    [Show full text]
  • An Overview of the EMMIHS-II Analog Mission to the Moon
    EPSC Abstracts Vol. 14, EPSC2020-1020, 2020, updated on 01 Oct 2021 https://doi.org/10.5194/epsc2020-1020 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The Second EuroMoonMars IMA at HI-SEA Field Campaign: An Overview of The EMMIHS-II Analog Mission to the Moon Michaela Musilova1,2,3, Ana Nunes1, Sabrina Kerber1, Charlotte Pouwels1,4, Ariane Wanske1, Joseph D'Angelo1, Bernard Foing1,5,6, and Henk Rogers1 1International Moonbase Alliance, United States of America ([email protected]) 2Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology STU in Bratislava, Slovakia 3Slovak Organisation for Space Activities (SOSA), Bratislava, Slovakia 4Applied physics, Hague University of Applied Sciences, Delft 5ESA ESTEC, Noordwijk & ILEWG 6Vrije Universiteit Amsterdam Introduction: Simulated missions to the Moon and Mars have been taking place at the analog research station HI- SEAS (Hawaii - Space Exploration Analog and Simulation) since 2013. The so-called Martian and lunar habitat, HI-SEAS, is located in Hawaii and its research projects are run by the International Moonbase Alliance (IMA) [1]. Numerous aspects of space missions are simulated in order to make them be as realistic as possible, including time delays in communication, emergency procedures and performing relevant research. In 2019, the EuroMoonMars campaign was launched at HI-SEAS, bringing together researchers from the European Space Agency (ESA), IMA, the International Lunar Exploration Working Group (ILEWG), VU Amsterdam and many other international organizations [2,3]. The campaign aims to increase awareness about the research and technology testing that can be performed in analog environments, in order to help humans become multi-planetary species.
    [Show full text]