Implementing a Vau-Based Language with Multiple Evaluation Strategies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Document Number Scco24
Stanford University Libraries Dept. of Special Cr*l!«ctkjns &>W Title Box Series I Fol 5C Fo<. Title " LISP/360 REFERENCE MANUAL FOURTH EDITION # CAMPUS COMPUTER FACILITY STANFORD COMPUTATION CENTER STANFORD UNIVERSITY STANFORD, CALIFORNIA DOCUMENT NUMBER SCCO24 " ■ " PREFACE This manual is intended to provide the LISP 1.5 user with a reference manual for the LISP 1.5 interpreter, assembler, and compiler on the Campus Facility 360/67. It assumes that the reader has a working knowledge by of LISP 1.5 as described in the LISP_I.is_Primer Clark Weissman, and that the reader has a general knowledge of the operating environment of OS 360. Beginning users of LISP will find the sections The , Functions, LI SRZIi O_Syst em , Organiz ation_of_St orage tlSP_Job_Set-]i£» and t.tsp/360 System Messages Host helpful in obtaining a basic understanding of the LISP system. Other sections of the manual are intended for users desiring a more extensive knowledge of LISP. The particular implementation to which this reference manual is directed was started by Mr. J. Kent while he was at the University of Waterloo. It is modeled after his implemention of LISP 1.5 for the CDC 3600. Included in this edition is information on the use of the time-shared LISP system available on the 360/67 which was implemented by Mr. Robert Berns of the " Computer staff. Campus Facility " II TABLE OF CONTENTS Section PREFACE " TABLE OF CONTENTS xxx 1. THE LISP/360 SYSTEM 1 2. ORGANIZATION OF STORAGE 3 2.1 Free Cell Storage (FCS) 3 2.1.1 Atoms 5 2.1.2 Numbers 8 2.1.3 Object List 9 2.2 Push-down Stack (PDS) 9 2.3 System Functions 9 2.4 Binary Program Space (BPS) 9 W 2.5 Input/Output Buffers 9 10 3. -
A Scalable Provenance Evaluation Strategy
Debugging Large-scale Datalog: A Scalable Provenance Evaluation Strategy DAVID ZHAO, University of Sydney 7 PAVLE SUBOTIĆ, Amazon BERNHARD SCHOLZ, University of Sydney Logic programming languages such as Datalog have become popular as Domain Specific Languages (DSLs) for solving large-scale, real-world problems, in particular, static program analysis and network analysis. The logic specifications that model analysis problems process millions of tuples of data and contain hundredsof highly recursive rules. As a result, they are notoriously difficult to debug. While the database community has proposed several data provenance techniques that address the Declarative Debugging Challenge for Databases, in the cases of analysis problems, these state-of-the-art techniques do not scale. In this article, we introduce a novel bottom-up Datalog evaluation strategy for debugging: Our provenance evaluation strategy relies on a new provenance lattice that includes proof annotations and a new fixed-point semantics for semi-naïve evaluation. A debugging query mechanism allows arbitrary provenance queries, constructing partial proof trees of tuples with minimal height. We integrate our technique into Soufflé, a Datalog engine that synthesizes C++ code, and achieve high performance by using specialized parallel data structures. Experiments are conducted with Doop/DaCapo, producing proof annotations for tens of millions of output tuples. We show that our method has a runtime overhead of 1.31× on average while being more flexible than existing state-of-the-art techniques. CCS Concepts: • Software and its engineering → Constraint and logic languages; Software testing and debugging; Additional Key Words and Phrases: Static analysis, datalog, provenance ACM Reference format: David Zhao, Pavle Subotić, and Bernhard Scholz. -
The Evolution of Lisp
1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp. -
Comparative Studies of Programming Languages; Course Lecture Notes
Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management . -
Obstacles to Compilation of Rebol Programs
Obstacles to Compilation of Rebol Programs Viktor Pavlu TU Wien Institute of Computer Aided Automation, Computer Vision Lab A-1040 Vienna, Favoritenstr. 9/183-2, Austria [email protected] Abstract. Rebol’s syntax has no explicit delimiters around function arguments; all values in Rebol are first-class; Rebol uses fexprs as means of dynamic syntactic abstraction; Rebol thus combines the advantages of syntactic abstraction and a common language concept for both meta-program and object-program. All of the above are convenient attributes from a programmer’s point of view, yet at the same time pose severe challenges when striving to compile Rebol into reasonable code. An approach to compiling Rebol code that is still in its infancy is sketched, expected outcomes are presented. Keywords: first-class macros, dynamic syntactic abstraction, $vau calculus, fexpr, Ker- nel, Rebol 1 Introduction A meta-program is a program that can analyze (read), transform (read/write), or generate (write) another program, called the object-program. Static techniques for syntactic abstraction (macro systems, preprocessors) resolve all abstraction during compilation, so the expansion of abstractions incurs no cost at run-time. Static techniques are, however, conceptionally burdensome as they lead to staged systems with phases that are isolated from each other. In systems where different syntax is used for the phases (e. g., C++), it results in a multitude of programming languages following different sets of rules. In systems where the same syntax is shared between phases (e. g., Lisp), the separa- tion is even more unnatural: two syntactically largely identical-looking pieces of code cannot interact with each other as they are assigned to different execution stages. -
Computer Performance Evaluation Users Group (CPEUG)
COMPUTER SCIENCE & TECHNOLOGY: National Bureau of Standards Library, E-01 Admin. Bidg. OCT 1 1981 19105^1 QC / 00 COMPUTER PERFORMANCE EVALUATION USERS GROUP CPEUG 13th Meeting NBS Special Publication 500-18 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards 3-18 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following -
Directly Reflective Meta-Programming
Directly Reflective Meta-Programming ∗ Aaron Stump Computer Science and Engineering Washington University in St. Louis St. Louis, Missouri, USA [email protected] Abstract Existing meta-programming languages operate on encodings of pro- grams as data. This paper presents a new meta-programming language, based on an untyped lambda calculus, in which structurally reflective pro- gramming is supported directly, without any encoding. The language fea- tures call-by-value and call-by-name lambda abstractions, as well as novel reflective features enabling the intensional manipulation of arbitrary pro- gram terms. The language is scope safe, in the sense that variables can neither be captured nor escape their scopes. The expressiveness of the language is demonstrated by showing how to implement quotation and evaluation operations, as proposed by Wand. The language's utility for meta-programming is further demonstrated through additional represen- tative examples. A prototype implementation is described and evaluated. Keywords: lambda calculus, reflection, meta-programming, Church en- coding, Mogensen-Scott encoding, Wand-style fexprs, alpha equivalence, language implementation. 1 Introduction This paper presents a new meta-programming language called Archon, in which programs can operate directly on other programs as data. Existing meta- programming languages suffer from defects such as encoding programs at too low a level of abstraction, or in a way that bloats the encoded program terms. Other issues include the possibility for variables either to be captured or escape their static scopes. Archon rectifies these defects by trading the complexity of the reflective encoding for additional programming constructs. We adopt ∗This work is supported by funding from the U.S. -
Needed Reduction and Spine Strategies for the Lambda Calculus
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector INFORMATION AND COMPUTATION 75, 191-231 (1987) Needed Reduction and Spine Strategies for the Lambda Calculus H. P. BARENDREGT* University of Ngmegen, Nijmegen, The Netherlands J. R. KENNAWAY~ University qf East Anglia, Norwich, United Kingdom J. W. KLOP~ Cenfre for Mathematics and Computer Science, Amsterdam, The Netherlands AND M. R. SLEEP+ University of East Anglia, Norwich, United Kingdom A redex R in a lambda-term M is called needed if in every reduction of M to nor- mal form (some residual of) R is contracted. Among others the following results are proved: 1. R is needed in M iff R is contracted in the leftmost reduction path of M. 2. Let W: MO+ M, + Mz --t .._ reduce redexes R,: M, + M,, ,, and have the property that Vi.3j> i.R, is needed in M,. Then W is normalising, i.e., if M, has a normal form, then Ye is finite and terminates at that normal form. 3. Neededness is an undecidable property, but has several efhciently decidable approximations, various versions of the so-called spine redexes. r 1987 Academic Press. Inc. 1. INTRODUCTION A number of practical programming languages are based on some sugared form of the lambda calculus. Early examples are LISP, McCarthy et al. (1961) and ISWIM, Landin (1966). More recent exemplars include ML (Gordon etal., 1981), Miranda (Turner, 1985), and HOPE (Burstall * Partially supported by the Dutch Parallel Reduction Machine project. t Partially supported by the British ALVEY project. -
Typology of Programming Languages E Evaluation Strategy E
Typology of programming languages e Evaluation strategy E Typology of programming languages Evaluation strategy 1 / 27 Argument passing From a naive point of view (and for strict evaluation), three possible modes: in, out, in-out. But there are different flavors. Val ValConst RefConst Res Ref ValRes Name ALGOL 60 * * Fortran ? ? PL/1 ? ? ALGOL 68 * * Pascal * * C*?? Modula 2 * ? Ada (simple types) * * * Ada (others) ? ? ? ? ? Alphard * * * Typology of programming languages Evaluation strategy 2 / 27 Table of Contents 1 Call by Value 2 Call by Reference 3 Call by Value-Result 4 Call by Name 5 Call by Need 6 Summary 7 Notes on Call-by-sharing Typology of programming languages Evaluation strategy 3 / 27 Call by Value – definition Passing arguments to a function copies the actual value of an argument into the formal parameter of the function. In this case, changes made to the parameter inside the function have no effect on the argument. def foo(val): val = 1 i = 12 foo(i) print (i) Call by value in Python – output: 12 Typology of programming languages Evaluation strategy 4 / 27 Pros & Cons Safer: variables cannot be accidentally modified Copy: variables are copied into formal parameter even for huge data Evaluation before call: resolution of formal parameters must be done before a call I Left-to-right: Java, Common Lisp, Effeil, C#, Forth I Right-to-left: Caml, Pascal I Unspecified: C, C++, Delphi, , Ruby Typology of programming languages Evaluation strategy 5 / 27 Table of Contents 1 Call by Value 2 Call by Reference 3 Call by Value-Result 4 Call by Name 5 Call by Need 6 Summary 7 Notes on Call-by-sharing Typology of programming languages Evaluation strategy 6 / 27 Call by Reference – definition Passing arguments to a function copies the actual address of an argument into the formal parameter. -
CONS Y X)))) Which Sets Z to Cdr[X] If Cdr[X] Is Not NIL (Without Recomputing the Value As Woirld Be Necessary in LISP 1.5
NO. 1 This first (long delayed) LISP Bulletin contains samples of most of those types of items which the editor feels are relevant to this publication. These include announcements of new (i.e. not previously announced here) implementations of LISP !or closely re- lated) systems; quick tricks in LISP; abstracts o. LISP related papers; short writeups and listings of useful programs; and longer articles on problems of general interest to the entire LISP com- munity. Printing- of these last articles in the Bulletin does not interfere with later publications in formal journals or books. Short write-ups of new features added to LISP are of interest, preferably upward compatible with LISP 1.5, especially if they are illustrated by programming examples. -A NEW LISP FEATURE Bobrow, Daniel G., Bolt Beranek and Newman Inc., 50 oulton Street, Cambridge, Massachusetts 02138. An extension of ro 2, called progn is very useful. Tht ralue of progn[el;e ; ,..;e Y- is the value of e . In BBN-LISP on t .e SDS 940 we ha6e extenaed -cond to include $n implicit progn in each clause, putting It In the general form (COND (ell e ) . (e21 . e 2n2) (ekl e )) In1 ... ... kn,_ where nl -> 1. This form is identical to the LISP 1.5 form if n ni = 2. If n > 2 then each expression e in a clause is evaluated (in order) whh e is the first true (nohkN1~)predicate found. The value of the &And Is the value of the last clause evaluated. This is directly Gapolated to the case where n, = 1, bxre the value of the cond is the value of this first non-~ILprewcate. -
HPP) Cooperative Agreement
Hospital Preparedness Program (HPP) Cooperative Agreement FY 12 Budget Period Hospital Preparedness Program (HPP) Performance Measure Manual Guidance for Using the New HPP Performance Measures July 1, 2012 — June 30, 2013 Version: 1.0 — This Page Intentionally Left Blank — U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES ASSISTANT SECRETARY FOR PREPAREDNESS AND RESPONSE Hospital Preparedness Program (HPP) Performance Measure Manual Guidance for Using the New HPP Performance Measures July 1, 2012 — June 30, 2013 The Hospital Preparedness Program (HPP) Performance Measure Manual, Guidance for Using the New HPP Performance Measures (hereafter referred to as Performance Measure Manual) is a highly iterative document. Subsequent versions will be subject to ongoing updates and changes as reflected in HPP policies and direction. CONTENTS Contents Contents Preface: How to Use This Manual .................................................................................................................. iii Document Organization .................................................................................................................... iii Measures Structure: HPP-PHEP Performance Measures ............................................................................... iv Definitions: HPP Performance Measures ........................................................................................................v Data Element Responses: HPP Performance Measures ..................................................................................v -
On Abstraction and the Expressive Power of Programming Languages
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Science of Computer Programming 21 (1993) 141-163 141 Elsevier On abstraction and the expressive power of programming languages John C. Mitchell* Departmentof Computer Science, Stanford University, Stanford, CA 94305, UsA Communicated by M. Hagiya Revised October 1992 Abstract Mitchell, J.C., On abstraction and the expressive power of programming languages, Science of Computer Programming 21 (1993) 141-163. This paper presents a tentative theory of programming language expressiveness based on reductions (language translations) that preserve observational equivalence. These are called “abstraction- preserving” reductions because of a connection with a definition of “abstraction” or “information- hiding” mechanisms. If there is an abstraction-preserving reduction from one language to another, then (essentially) every function on natural numbers that is definable in the first is also definable in the second. Moreover, an abstraction-preserving reduction must map every abstraction construct in the source language to a construct that hides analogous distinctions in the target language. Several examples and counterexamples to abstraction-preserving reductions are given. It is not known whether any language is universal with respect to abstraction-preserving reduction. 1. Introduction This paper presents a tentative theory of programming language expressiveness, originally described in unpublished notes that were circulated in 1986. The original motivation was to compare languages according to their ability to make sections of a program “abstract” by hiding some details of the internal workings of the code. This led to the definition of abstraction-preserving reductions, which are syntax-directed (homomorphic) language translations that preserve observational equivalence.