Whyte Classification of Steam Locomotive Wheel Arrangements

Total Page:16

File Type:pdf, Size:1020Kb

Whyte Classification of Steam Locomotive Wheel Arrangements Lindsay & District Model Railroaders P.O. Box 452, Lindsay, ON, K9V 4S5 Email: [email protected] http://www.ldmr.org Steam Locomotive Wheel Arrangements Whyte-Notation American name picture scheme 2-2-0 Planet oO 2-2-2 Patentee oOo 4-2-0 Crampton, Norris ooO 6-2-0 Crampton oooO 0-4-0 Four-Wheel-Switcher OO 2-4-0 Hanscom oOO 2-4-2 Columbia oOOo 4-4-0 American, Eight-Wheeler ooOO 4-4-2 Atlantic ooOOo 4-4-4 Jubilee ooOOoo 0-6-0 Six-Wheel-Switcher OOO 2-6-0 Mogul oOOO 4-6-0 Ten-Wheeler ooOOO 2-6-2 Prairie oOOOo 4-6-2 Pacific ooOOOo 2-6-4 Adriatic oOOOoo 4-6-4 Hudson, Baltic ooOOOoo 0-8-0 Eight-Wheel-Switcher OOOO 2-8-0 Consolidation oOOOO 2-8-2 Mikado, Mac Arthur oOOOOo 2-8-4 Berkshire oOOOOoo 4-8-0 Twelve-Wheeler, Mastodon ooOOOO 4-8-2 Mountain, Mohawk (NYC) ooOOOOo 4-8-4 General Service (SP), Golden State (SP), Northern, Niagara (NYC), Wyoming ooOOOOoo 0-10-0 Ten-Wheel Switcher OOOOO 0-10-2 Union OOOOOo 2-10-0 Decapod oOOOOO 4-10-0 Mastodon ooOOOOO 2-10-2 Santa Fe oOOOOOo 2-10-4 Texas oOOOOOoo 4-10-2 Texas, Southern Pacific, Overland ooOOOOOo 2-12-0 Centipede oOOOOOO 2-12-2 Javanic oOOOOOOo 4-12-2 Union Pacific ooOOOOOOo 0-6-6-0 Erie (Mallet-Lok) OOO OOO 2-6-6-0 nameless (Mallet-Lok) oOOO OOO 2-6-6-2 Mallet Mogul (SP), Prairie Mallet (ATSF) oOOO OOOo 2-6-6-4 nameless (Mallet-Lok) oOOO OOOoo 4-6-6-4 Challenger (Mallet-Lok) ooOOO OOOoo 2-6-6-6 Allegheny (Mallet-Lok) oOOO OOOooo 0-8-8-0 Angus (Mallet-Lok) OOOO OOOO 2-8-8-0 Bullmoose (Mallet-Lok) oOOOO OOOO 2-8-8-2 Chesapeake, Mallet consolidation (Mallet-Lok) oOOOO OOOOo 2-8-8-4 Yellowstone (Mallet-Lok) oOOOO OOOOoo 4-8-8-2 Articulated consolidation (Mallet-Lok) ooOOOO OOOOo 4-8-8-4 Big Boy (Mallet-Lok) ooOOOO OOOOoo 2-10-10-2 Virginian (Mallet-Lok) oOOOOO OOOOOo 4-6-2 + 2-6-4 Double Pacific (Garratt-Lok) ooOOOo oOOOoo 4-8-2 + 2-8-4 Double Mountain (Garratt-Lok) ooOOOOo oOOOOoo Page 1 of 1 .
Recommended publications
  • Baldwin Locomotive Works Location: Philadelphia (Eddystone, PA, in 1912) Operating Dates: 1831-1956 Principals: Matthias W
    BUILDERS OF COLORADO OFFICE OF ARCHEOLOGY AND HISTORIC PRESERVATION BIOGRAPHICAL SKETCH COLORADO HISTORICAL SOCIETY Firm: Baldwin Locomotive Works Location: Philadelphia (Eddystone, PA, in 1912) Operating Dates: 1831-1956 Principals: Matthias W. Baldwin Information Jeweler and silversmith Matthias Baldwin founded the Baldwin Locomotive Works in 1831. The original manufacturing plant was on Broad Street in Philadelphia where the company did business for 71 years until moving in 1912 to Eddystone, PA. Baldwin made its reputation building steam locomotives for the Pennsylvania Railroad, the Baltimore & Ohio Railroad, the Atchison, Topeka & Santa Fe, and many of the other North American railroads, as well as for overseas railroads in England, France, India, Haiti and Egypt. Baldwin locomotives found their way onto the tracks of most Colorado railroads, both standard and narrow gauge. Baldwin built a huge number of 4-4-0 American type locomotives, but was perhaps best known for the 2-8-2 Mikado (D&RGW No. 491) and 2-8-0 Consolidation types (D&RGW No. 346 and DSP&P No. 191).1 It was also well known for the unique cab-forward 4-8-8-2 articulated locomotives built for the Southern Pacific Railroad and the massive 2-10-2 engines for the Santa Fe Railroad. One of Baldwin's last new and improved locomotive designs was the 4-8-4 (Northern) locomotive (Santa Fe No. 2911). In 1939, Baldwin offered its first standard line of diesel locomotives, all designed for rail yard service. Two years later, America's entry into World War II destroyed Baldwin's diesel development program when the War Production Board dictated that ALCO (American Locomotive Company) and Baldwin produce only diesel-electric yard switching engines.
    [Show full text]
  • Assessing Steam Locomotive Dynamics and Running Safety by Computer Simulation
    TRANSPORT PROBLEMS 2015 PROBLEMY TRANSPORTU Volume 10 Special Edition steam locomotive; balancing; reciprocating; hammer blow; rolling stock and track interaction Dāvis BUŠS Institute of Transportation, Riga Technical University Indriķa iela 8a, Rīga, LV-1004, Latvia Corresponding author. E-mail: [email protected] ASSESSING STEAM LOCOMOTIVE DYNAMICS AND RUNNING SAFETY BY COMPUTER SIMULATION Summary. Steam locomotives are preserved on heritage railways and also occasionally used on mainline heritage trips, but since they are only partially balanced reciprocating piston engines, damage is made to the railway track by dynamic impact, also known as hammer blow. While causing a faster deterioration to the track on heritage railways, the steam locomotive may also cause deterioration to busy mainline tracks or tracks used by high speed trains. This raises the question whether heritage operations on mainline can be done safely and without influencing the operation of the railways. If the details of the dynamic interaction of the steam locomotive's components are examined with computerised calculations they show differences with the previous theories as the smaller components cannot be disregarded in some vibration modes. A particular narrow gauge steam locomotive Gr-319 was analyzed and it was found, that the locomotive exhibits large dynamic forces on the track, much larger than those given by design data, and the safety of the ride is impaired. Large unbalanced vibrations were found, affecting not only the fatigue resistance of the locomotive, but also influencing the crew and passengers in the train consist. Developed model and simulations were used to check several possible parameter variations of the locomotive, but the problems were found to be in the original design such that no serious improvements can be done in the space available for the running gear and therefore the running speed of the locomotive should be limited to reduce its impact upon the track.
    [Show full text]
  • PACIFIC’ Coupling Rods Fitted to Tornado at Darlington Locomotive Works
    60163 Tornado 60163 Tornado 60163 Tornado THE A1 STEAM LOCOMOTIVE TRUST Registered Office, All Enquiries: Darlington Locomotive Works, Hopetown Lane, Darlington DL3 6RQ Hotline Answerphone: 01325 4 60163 E-mail: [email protected] Internet address: www.a1steam.com PRESS INFORMATION – PRESS INFORMATION - PRESS INFORMATION PR04/04 Monday 4 October 2004 MAJOR STEP FORWARD AS NEW STEAM LOCOMOTIVE BECOMES A ‘PACIFIC’ Coupling rods fitted to Tornado at Darlington Locomotive Works The A1 Steam Locomotive Trust, the registered charity that is building the first new mainline steam locomotive in Britain for over 40 years, today announced that No. 60163 Tornado is now a Pacific following the fitting of all four coupling rods to its six 6ft8in driving wheels (the name Pacific refers to the 4-6-2 wheel arrangement under the Whyte Notation of steam locomotive wheel arrangements) which now rotate freely together for the first time. Each of the four 7ft 6in rods weighs around two hundredweight and after forging, extensive machining and heat treatment, the four cost around £22,000 to manufacture. These rods are vital components within the £150,000 valve gear and motion assemblies, which are now the focus of work on Tornado at the Trust’s Darlington Locomotive Works. The Trust has also started work on the fitting of the rest of the outside motion. The bushes for the connecting rods are currently being machined at Ian Howitt Ltd, Wakefield and one side of the locomotive has now been fitted with a mock-up of parts of its valve gear. This is to enable accurate measurements to be taken to set the length of the eccentric rod as the traditional method of heating the rod to stretch/shrink it used when the original Peppercorn A1s were built in 1948/9 is no longer recommended as it can affect the rod’s metallurgical properties.
    [Show full text]
  • Royal Historical Society of Queensland Journal
    1 ROYAL HISTORICAL SOCIETY OF QUEENSLAND JOURNAL Volume XIV, No.1 February 1990 Queensland v. The Commonwealth: The State's Objection to the Australian Standard Garratt Programme by Alan Whiting Presented at a meeting of the Society, 22 June, 1989 The entry of Japan into the Second World War brought massive traffic demands to the government railway system of Queensland (QGR). As a partial resolution to those demands the Commonwealth resolved to construct a number of locomotives for use on some of the narrow (3'6") gauge rail systems, including the QGR. That locomotive type became known as the Australian Standard Garratt (ASG), a name that even now, almost fifty years later evokes acrimonious memories in some circles. The ASG project ultimately cost Australia dearly, not only in the direct losses of millions of pounds of public funds but more importantly in the waste of thousands of tons of fabricated metal, and countless hours of added congestion to valuable workshop resources and, worse still, to overcrowded lines, which became so vital to the defence of Australia. The ASG's most outstanding feature was controversy and what this paper examines is not the public controversy that resulted after the locomotive had proved itself as an horrendous and indeed dangerous mechanical failure, but the bitter, relatively private dispute that raged between the Commonwealth and Queensland primarily before and during the construction of the machine. Essentially, that contest was over who, as between the Commonwealth and the State, had the right to determine how the QGR as the State's largest enterprise was to be managed, as it was Alan Whiting, BA, LLB, is a solicitor who has extensively researched the role of Queensland Railways during World War II and pubUshed Engine of Destruction.
    [Show full text]
  • The Evolution of the Steam Locomotive, 1803 to 1898 (1899)
    > g s J> ° "^ Q as : F7 lA-dh-**^) THE EVOLUTION OF THE STEAM LOCOMOTIVE (1803 to 1898.) BY Q. A. SEKON, Editor of the "Railway Magazine" and "Hallway Year Book, Author of "A History of the Great Western Railway," *•., 4*. SECOND EDITION (Enlarged). £on&on THE RAILWAY PUBLISHING CO., Ltd., 79 and 80, Temple Chambers, Temple Avenue, E.C. 1899. T3 in PKEFACE TO SECOND EDITION. When, ten days ago, the first copy of the " Evolution of the Steam Locomotive" was ready for sale, I did not expect to be called upon to write a preface for a new edition before 240 hours had expired. The author cannot but be gratified to know that the whole of the extremely large first edition was exhausted practically upon publication, and since many would-be readers are still unsupplied, the demand for another edition is pressing. Under these circumstances but slight modifications have been made in the original text, although additional particulars and illustrations have been inserted in the new edition. The new matter relates to the locomotives of the North Staffordshire, London., Tilbury, and Southend, Great Western, and London and North Western Railways. I sincerely thank the many correspondents who, in the few days that have elapsed since the publication: of the "Evolution of the , Steam Locomotive," have so readily assured me of - their hearty appreciation of the book. rj .;! G. A. SEKON. -! January, 1899. PREFACE TO FIRST EDITION. In connection with the marvellous growth of our railway system there is nothing of so paramount importance and interest as the evolution of the locomotive steam engine.
    [Show full text]
  • The Unauthorised History of ASTER LOCOMOTIVES THAT CHANGED the LIVE STEAM SCENE
    The Unauthorised History of ASTER LOCOMOTIVES THAT CHANGED THE LIVE STEAM SCENE fredlub |SNCF231E | 8 februari 2021 1 Content 1 Content ................................................................................................................................ 2 2 Introduction ........................................................................................................................ 5 3 1975 - 1985 .......................................................................................................................... 6 Southern Railway Schools Class .................................................................................................................... 6 JNR 8550 .......................................................................................................................................................... 7 V&T RR Reno ................................................................................................................................................. 8 Old Faithful ...................................................................................................................................................... 9 Shay Class B ..................................................................................................................................................... 9 JNR C12 ......................................................................................................................................................... 10 PLM 231A .....................................................................................................................................................
    [Show full text]
  • The Economics of Coal As a Locomotive Fuel on US Class I Railroads
    The Economics of Coal as a Locomotive Fuel on US Class I Railroads By John Rhodes Overview • Coal‐Burning Steam Locomotive: 73% Fuel Savings US Class I RR’s • $8.9 Billion 2007 Class I Diesel Fuel Bill • $2.5 Billion Coal Bill Instead • $6.4 Billion Cost Saving • 2007 Operating Ratio Could Have Been 67% Instead Of 78% Presentation Outline • Mechanical Engineers of Modern Steam • The Modern Steam Locomotive • Important Technologies Of Modern Steam • American Class I Railroad: Needs • Maintenance: Modern Steam and Diesel • Comparisons: Modern Steam and Diesel • Infrastructure and Servicing: Modern Steam • Next Steps • Other Locomotive Alternatives The Mechanical Engineers of Modern Steam Pioneers (Deceased): • Andre Chapelon • Livio Dante Porta Current: • David Wardale • Phil Girdlestone • Shaun McMahon • Roger Waller • Nigel Day Andre Chapelon • French Mechanical Engineer 1892‐1978 • SNCF, Steam Locomotive Design Division • Grandfather Of Modern Steam • Applied Thermodynamics And Fluid Dynamics To The Steam Locomotive • Chapelon’s Former Boss, George Chan, From The SNCF Described Him As “The Man Who Gave New Life To The Steam Locomotive” Andre Chapelon cont. • 1946 Design And Construction Of The 3- Cylinder Compound: SNCF 242A.1 – Rebuilt From A 3-Cylinder Simple Locomotive – Raised IHP From 2,800 To 5,500; 96% Increase – Twice The Thermal Efficiency Of American Steam Livio Dante Porta • Argentinean Mechanical Engineer 1922‐2003 • Father Of Modern Steam • Developed 3 Most Important Parts Of Modern Steam: • Clean High Efficiency Combustion • High Efficiency Exhaust • Heavy‐Duty Boiler Water Treatment Livio Dante Porta Cont. • 1949 Built “Argentina” From A 4-6-2 – 2,100 DBHP – High Power-to-Weight Ratio: 65 lb.
    [Show full text]
  • The A1steam Locomotive Trust Tornado to Be
    60163 Tornado 60163 Tornado 60163 Tornado THE A1 STEAM LOCOMOTIVE TRUST Registered Office, All Enquiries: Darlington Locomotive Works, Hopetown Lane, Darlington DL3 6RQ Hotline Answerphone: 01325 4 60163 E-mail: [email protected] Internet address: www.a1steam.com PRESS INFORMATION – PRESS INFORMATION - PRESS INFORMATION PR05/04 Sunday 17 October 2004 TORNADO TO BE COMPLETED IN THREE YEARS Coal fired 60163 in steam by end of 2007 and on mainline in 2008 The A1 Steam Locomotive Trust, the registered charity that is building the first new mainline steam locomotive in Britain for over 40 years at a cost of over £2m, today announced that No. 60163 Tornado is to be completed by the end of 2007 and will be running on the mainline in 2008. The announcement follows a successful 11th Annual Convention attended by around 200 supporters at the Trust’s Darlington Locomotive Works on Saturday 9th October where No. 60163 Tornado is under construction. Having just fitted the coupling rods to No. 60163 Tornado, the Trust rotated the six 6ft8in driving wheels together on the incomplete locomotive for the first time in public at the Convention. The Trust also unveiled several significant new components for Tornado including other valve gear and motion components ready for fitting to the locomotive. The following key announcements were made at the Convention: 1. Following meetings with financial institutions the Trust’s strategy has been changed to reflect their requirement for supporting us 2. Having raised and spent over £1m on Tornado to-date, around £1m is now required to complete the locomotive 3.
    [Show full text]
  • The Steam Locomotive Table, V1
    The Steam Locomotive Table, v1 If you’re reading this; you either like steam trains, or want to know more about them. Hopefully, either way, I can scratch your itch with this; a set of randomizer/dice-roll tables of my own making; as inspired by some similar tables for tanks and aircrafts. Bear with me, I know not everyone knows the things I do, and I sure know I don’t know a lot of things other train enthusiasts do; but hopefully the descriptions and examples will be enough to get anyone through this smoothly. To begin, you’ll either want a bunch of dice or any online dice-rolling/number generating site (or just pick at your own whim); and somewhere or something to keep track of the details. These tables will give details of a presumed (roughly) standard steam locomotive. No sentinels or other engines with vertical boilers; no climax, shay, etc specially driven locomotives; are considered for this listing as they can change many of the fundamental details of an engine. Go in expecting to make the likes of mainline, branchline, dockyard, etc engines; not the likes of experiments like Bulleid’s Leader or specific industry engines like the aforementioned logging shays. Some dice rolls will have uneven distribution, such as “1-4, and 5-6”. Typically this means that the less likely detail is also one that is/was significantly less common in real life, or significantly more complex to depict. For clarity sake examples will be linked, but you’re always encouraged to look up more as you would like or feel necessary.
    [Show full text]
  • Railway Locomotive and Rollingstock Drawings
    Railway locomotive and rollingstock drawings Research Guide to Railway locomotive and rollingstock drawings records at Queensland State Archives Research Guide to Railway Locomotive and Rollingstock Drawings Records This research guide provides an overview of the drawings produced by or for the Chief Mechanical Engineer’s Branch (or Locomotive Branch) of the Railway Department. The drawings are available on microfilm at Queensland State Archives (QSA). These railway drawings trace the development of Queensland railway locomotive and rollingstock from 1864. Most of the drawings consist of general arrangement and working drawings for the construction of rollingstock. The QSA references for these records are in the Queensland State Archives’ catalogue. Note: QSA does not hold all drawings proposed for or adopted by Queensland Rail (QR). Queensland Rail Heritage Collection The Queensland Rail Heritage Collection consists of 72 series of records transferred to Queensland State Archives from the Workshops Rail Museum, Ipswich, in 2019. The QRHS spans the years 1864 to 2007. All the records are open. These holdings give us a glimpse into Queensland’s past with railway brass bands, railway refreshment rooms and clock repair registers. There are many treasures in the plans, drawings, photographs and audio-visual material. A search of our catalogue using the keywords - Queensland Rail Heritage Collection - will find all the series of records including hyperlinks to descriptions. Interested researchers are welcome to visit Queensland State Archives to request and view the records. Each series has a Queensland Rail/Queensland Museum catalogue number. A list in numerical order by catalogue numbers is in the Research Guide to railway records at Queensland State Archives.
    [Show full text]
  • Union Pacific 844 4-8-4 FEF “Northern”
    True Sound Project for Zimo Sounds designed by Heinz Daeppen US Steam Page 1 Version 160328 Union Pacific 844 4-8-4 FEF “Northern” The Prototype The category FEF locomotives of the Union Pacific Railroad (UP), also known as class 800, are steam locomotives with the wheel arrangement 2'D2 '(Northern). In the total of 45 locomotives, there are three series of delivery or subclasses FEF 1 FEF 2 and FEF-3, where the FEF-2 and -3 differ in driving axels and cylinder diameter to the FEF-1. The last locomotive of this series, no. 844, was the last steam locomotive built for UP. It was never taken out of service and is kept operational by the UP today. In the late 1930s, the pulling loads on train operations were so large that the 2'D1 locomotives Class 7000 reached its limits. After the failure of such a locomotive, which happened to be pulling a train containing the official car of the US President, ALCO was commissioned to build a stronger engine, which could pull 20 coaches with 90 mph (145 km/h) on the flat. The first 20 locomotives were delivered 1937. They got the numbers 800-819 and the name FEF, which stood for "four-eight-four" (the wheel arrangement 4-8-4 in the Whyte notation). They had a driving wheels of 77 inches (1956 mm). The first driving axel was displaced laterally, so that despite a solid wheelbase of 6.7 m the locomotive could still handle the same radius curves . Despite the size of the locomotives only two cylinders were used, as was almost always common in the United States.
    [Show full text]
  • 2A. Bluebell Railway Education Department
    2a. Bluebell Railway Education Department The main parts of a locomotive Based on a Somerset and Dorset Joint Railway locomotive, built in 1925 From the book “Steam Railways Explained”, author Stan Yorke, with permission of Countryside Books BLUEBELL RAILWAY EDUCATION DEPARTMENT 2b. The development of the railway locomotive 1. The steam locomotive is, in essence, a large kettle which heats water until it turns into steam, that steam is then used, under pressure, to move the engine and the train. One of the earliest and most successful locomotives was “The Rocket” used on the Liverpool and Manchester Railway which opened in 1830. The Rocket Wheel arrangement 0-2-2 Built 1829 2. This early design was rapidly improved upon and the locomotive soon assumed the shape that we recognise today. “Captain Baxter was built in 1877 and can be seen today at the Bluebell Railway. Dorking Greystone Lime Company No 3 “Captain Baxter” Wheels 0-4-0T Built 1877 3. A the years went by bigger and faster locomotives were developed to meet the needs of both passengers and freight as illustrated by this South Eastern & Chatham Railway engine which ran between London and the Kent coast. South Eastern & Chatham Railway No. 263 Wheel arrangement 0-4-4T Built 1905 4. As passenger traffic grew in the 20th century still larger and more powerful engines were required. This Southern Railway engine, built in 1936, was sent to Barry Scrapyard in South Wales following the end of steam on British Railways in 1968. It was rescued by the Bluebell and delivered to Sheffield Park Station in 1978, where it was restored to running order.
    [Show full text]