Howland Final CCP.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Howland Final CCP.Pdf Howland Island National Wildlife Refuge Comprehensive Conservation Plan FINDING OF NO SIGNIFICANT IMPACT Howland Island National Wildlife Refuge Comprehensive Conservation Plan Unincorporated U.S. Territory, Central Pacific Ocean The U.S. Fish and Wildlife Service (Service) has completed the Comprehensive Conservation Plan (CCP) for Howland Island National Wildlife Refuge (Refuge). The CCP will guide management of the Refuge for the next 15 years. The CCP describes the Service’s preferred alternative for managing the Refuge and its effects on the human environment. Decision Following comprehensive review and analysis, the Service selected Alternative B in the Environmental Assessment (EA) for implementation because it is the alternative that best meets the following criteria: Achieves the mission of the National Wildlife Refuge System. Achieves the purposes of the Refuge. Will be able to achieve the vision and goals for the Refuge. Maintains and restores the ecological integrity of the habitats and plant and animal populations on the Refuge. Addresses the important issues identified during the scoping process. Addresses the legal mandates of the Service and the Refuge. Is consistent with the scientific principles of sound wildlife management. Can be implemented within the projected fiscal and logistical management constraints associated with the Refuge’s remote location. As described in detail in the CCP and EA, implementing the selected alternative will have no significant impacts on any of the natural or cultural resources identified in the CCP and EA. Public Review The planning process incorporated a variety of public involvement techniques in developing and reviewing the CCP. This included three planning updates, meetings with partners, and public review and comment on the draft planning documents. The details of the Service’s public involvement program are described in the CCP. Conclusions Based on review and evaluation of the information contained in the supporting references, I have determined that implementing Alternative B as the CCP for management of Howland Island National Wildlife Refuge is not a major Federal action that would significantly affect the quality of the human environment within the meaning of section 102(2)(C) of the National Environmental Policy Act of 1969. Accordingly, the Service is not required to prepare an environmental impact statement. FONSI-i Howland Island National Wildlife Refuge Comprehensive Conservation Plan Table of Contents CHAPTER 1: INTRODUCTION Introduction..................................................................................................................................1-1 The U.S. Fish and Wildlife Service .............................................................................................1-1 National Wildlife Refuge System ................................................................................................1-1 National Wildlife Refuges in the Pacific .....................................................................................1-4 Refuge Establishment, Purpose and Boundary............................................................................1-6 Regional and Ecosystem Conservation Plans..............................................................................1-9 Refuge Vision Statement ...........................................................................................................1-10 Refuge Goals..............................................................................................................................1-11 CHAPTER 2: PLANNING PURPOSE, NEED, AND ISSUES Planning Process ..........................................................................................................................2-1 Purpose and Need ........................................................................................................................2-1 Planning Issues and Opportunities...............................................................................................2-2 CHAPTER 3: MANAGEMENT DIRECTION Overview......................................................................................................................................3-1 Goals, Objectives, Strategies, and Rationale ...............................................................................3-4 CHAPTER 4: REFUGE AND RESOURCE DESCRIPTION Geographic/Ecosystem Setting ....................................................................................................4-1 Climate.........................................................................................................................................4-1 Global Climate Change................................................................................................................4-2 Geology and Soils........................................................................................................................4-7 Hydrology ....................................................................................................................................4-9 Air and Water Quality..................................................................................................................4-9 Environmental Contaminants.......................................................................................................4-9 Terrestrial Vegetation and Habitats .............................................................................................4-9 Terrestrial Wildlife.....................................................................................................................4-10 Marine Habitats, Fish and Wildlife............................................................................................4-12 Threatened and Endangered Species .........................................................................................4-16 Invasive Species ........................................................................................................................4-17 Wilderness Resources ................................................................................................................4-17 Archaeology and Paleontology..................................................................................................4-17 Recent Cultural History .............................................................................................................4-18 Socio-economics........................................................................................................................4-21 ToC-i Howland Island National Wildlife Refuge Comprehensive Conservation Plan APPENDICES Appendix A. Glossary of Terms and Acronyms Appendix B. Species Lists Appendix C. References Appendix D. Planning Team Members Appendix E. Quarantine Protocol Appendix F. Wilderness Review Appendix G. Statement of Compliance Appendix H. Plan Implementation and Costs Appendix I. Consultation and Coordination Appendix J. Responses to Comments LIST OF FIGURES Figure 1.1 National Wildlife Refuges in the Pacific…………………………………………1-5 Figure 1.2 Howland Island National Wildlife Refuge: Geographic Location and Boundary..1-8 ToC-ii Howland Island National Wildlife Refuge Comprehensive Conservation Plan Chapter 1: INTRODUCTION Introduction This document is a Comprehensive Conservation Plan (CCP) for Howland Island National Wildlife Refuge (Howland). It will guide management of refuge operations, site visitation, and habitat restoration for 15 years. Guidance within the CCP is in the form of goals, objectives, strategies (Chapter 3), and wilderness study findings (Appendix F). The CCP was revised as appropriate based upon public comments. The refuge manager of the Pacific Remote Islands National Wildlife Refuge Complex (Remotes Complex) in Honolulu, Hawaii, is responsible for implementing the CCP. The U.S. Fish and Wildlife Service Howland is managed by the Fish and Wildlife Service (Service), within the U.S. Department of the Interior. The Service is the primary Federal entity responsible for conserving and enhancing the Nation’s fish and wildlife populations and their habitats. Although the Service shares this responsibility with other Federal, State, tribal, local, and private entities, the Service has specific trust resource responsibilities for migratory birds, threatened and endangered species, certain anadromous fish, certain marine mammals, coral reef ecosystems, wetlands, and other special aquatic habitats. The Service also has similar trust responsibilities for the lands and waters it administers to support the conservation and enhancement of all fish and wildlife and their associated habitats. National Wildlife Refuge System President Theodore Roosevelt established Pelican Island, Florida as the first national wildlife refuge in 1903. Since that time, the number of refuges has expanded to include 548, totaling approximately100 million acres. These refuges, found in every state and several U.S. Territories, are administered collectively as a national system of lands with the specific mandate of managing for “wildlife first.” This System is the largest collection of lands specifically managed for fish and wildlife conservation in the Nation and perhaps the world. The “wildlife first” mandate of the System means the needs of wildlife and their habitats take priority on refuges, in contrast to other public lands that are managed for multiple uses. The following is a description of some of the most relevant acts and policies that guide the management
Recommended publications
  • Chromis Katoi, a New Species of Damselfish from the Izu Islands, Japan, with a Key to Species in the Chromis Notata Species Complex (Perciforms: Pomacentridae)
    aqua, International Journal of Ichthyology Chromis katoi, a new species of damselfish from the Izu Islands, Japan, with a key to species in the Chromis notata species complex (Perciforms: Pomacentridae) Hiroki Iwatsubo1 and Hiroyuki Motomura2* 1) Kagoshima Museum of Aquatic Biodiversity, Kagoshima MS Building, 11-21 Nishisengoku, Kagoshima 892-0847, Japan 2) Kagoshima University Museum, 1-21-30 Korimoto, Kagoshima 890-0065, Japan *Corresponding author: E-mail: [email protected] Received: 09 May 2018 – Accepted: 31 May 2018 Keywords Schwanzflosse bei erwachsenen Tieren (im Gegensatz zu Western Pacific Ocean, damselfishes, new species, einem breiten, waagerechten Band, das beide Lappen der Chromis kennensis, Chromis notata, Chromis pura, Chromis Schwanzflosse bei notata aufweisen), die gelbe Farbe des yamakawai, Chromis westaustralis ganzen Körpers bei Jungtieren (im Gegensatz zum gräulichen bis bräunlichen Farbton während des ganzen Abstract Lebens bei notata); außerdem hat die neue Art weniger we- Chromis katoi n. sp., a new damselfish (Pomacentridae) iche Rückenflossenstrahlen, mehr röhrenförmige Seiten- belonging to the Chromis notata species complex, is de- linien-Schuppen, Brustflossenstrahlen und Kiemen- scribed on the basis of 11 specimens collected at a depth of blättchen sowie eine größere Rumpftiefe und Prä- 18 m off Hachijo Island, Izu Islands, Japan. The new Analflossenlänge. Angefügt ist ein Bestimmungsschlüssel species is similar to C. notata in having an indistinct white für die Arten des C.-notata-Komplexes. blotch at the end of the dorsal-fin base, and 4 or 5 and 11 or 12 scale rows above and below the lateral line, respec- Sommario tively, but differs in having the spinous portion of the dor- Chromis katoi n.
    [Show full text]
  • Trait Decoupling Promotes Evolutionary Diversification of The
    Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes rspb.royalsocietypublishing.org Bruno Fre´de´rich1, Damien Olivier1, Glenn Litsios2,3, Michael E. Alfaro4 and Eric Parmentier1 1Laboratoire de Morphologie Fonctionnelle et Evolutive, Applied and Fundamental Fish Research Center, Universite´ de Lie`ge, 4000 Lie`ge, Belgium 2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Research 3Swiss Institute of Bioinformatics, Ge´nopode, Quartier Sorge, 1015 Lausanne, Switzerland 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Cite this article: Fre´de´rich B, Olivier D, Litsios G, Alfaro ME, Parmentier E. 2014 Trait decou- Trait decoupling, wherein evolutionary release of constraints permits special- pling promotes evolutionary diversification of ization of formerly integrated structures, represents a major conceptual the trophic and acoustic system of damsel- framework for interpreting patterns of organismal diversity. However, few fishes. Proc. R. Soc. B 281: 20141047. empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase http://dx.doi.org/10.1098/rspb.2014.1047 following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis Received: 2 May 2014 by examining the evolutionary consequences of the loss of the ceratomandib- Accepted: 9 June 2014 ular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • FAMILY Ophichthidae Gunther, 1870
    FAMILY Ophichthidae Gunther, 1870 - snake eels and worm eels SUBFAMILY Myrophinae Kaup, 1856 - worm eels [=Neenchelidae, Aoteaidae, Muraenichthyidae, Benthenchelyini] Notes: Myrophinae Kaup, 1856a:53 [ref. 2572] (subfamily) Myrophis [also Kaup 1856b:29 [ref. 2573]] Neenchelidae Bamber, 1915:478 [ref. 172] (family) Neenchelys [corrected to Neenchelyidae by Jordan 1923a:133 [ref. 2421], confirmed by Fowler 1934b:163 [ref. 32669], by Myers & Storey 1956:21 [ref. 32831] and by Greenwood, Rosen, Weitzman & Myers 1966:393 [ref. 26856]] Aoteaidae Phillipps, 1926:533 [ref. 6447] (family) Aotea [Gosline 1971:124 [ref. 26857] used Aotidae; family name sometimes seen as Aoteidae or Aoteridae] Muraenichthyidae Whitley, 1955b:110 [ref. 4722] (family) Muraenichthys [name only, used as valid before 2000?; not available] Benthenchelyini McCosker, 1977:13, 57 [ref. 6836] (tribe) Benthenchelys GENUS Ahlia Jordan & Davis, 1891 - worm eels [=Ahlia Jordan [D. S.] & Davis [B. M.], 1891:639] Notes: [ref. 2437]. Fem. Myrophis egmontis Jordan, 1884. Type by original designation (also monotypic). •Valid as Ahlia Jordan & Davis, 1891 -- (McCosker et al. 1989:272 [ref. 13288], McCosker 2003:732 [ref. 26993], McCosker et al. 2012:1191 [ref. 32371]). Current status: Valid as Ahlia Jordan & Davis, 1891. Ophichthidae: Myrophinae. Species Ahlia egmontis (Jordan, 1884) - key worm eel [=Myrophis egmontis Jordan [D. S.], 1884:44, Leptocephalus crenatus Strömman [P. H.], 1896:32, Pl. 3 (figs. 4-5), Leptocephalus hexastigma Regan [C. T.] 1916:141, Pl. 7 (fig. 6), Leptocephalus humilis Strömman [P. H.], 1896:29, Pl. 2 (figs. 7-9), Myrophis macrophthalmus Parr [A. E.], 1930:10, Fig. 1 (bottom), Myrophis microps Parr [A. E.], 1930:11, Fig. 1 (top)] Notes: [Proceedings of the Academy of Natural Sciences of Philadelphia v.
    [Show full text]
  • Annotated Checklist of the Fishes of Wake Atoll1
    Annotated Checklist ofthe Fishes ofWake Atoll 1 Phillip S. Lobel2 and Lisa Kerr Lobel 3 Abstract: This study documents a total of 321 fishes in 64 families occurring at Wake Atoll, a coral atoll located at 19 0 17' N, 1660 36' E. Ten fishes are listed by genus only and one by family; some of these represent undescribed species. The first published account of the fishes of Wake by Fowler and Ball in 192 5 listed 107 species in 31 families. This paper updates 54 synonyms and corrects 20 misidentifications listed in the earlier account. The most recent published account by Myers in 1999 listed 122 fishes in 33 families. Our field surveys add 143 additional species records and 22 new family records for the atoll. Zoogeo­ graphic analysis indicates that the greatest species overlap of Wake Atoll fishes occurs with the Mariana Islands. Several fish species common at Wake Atoll are on the IUCN Red List or are otherwise of concern for conservation. Fish pop­ ulations at Wake Atoll are protected by virtue of it being a U.S. military base and off limits to commercial fishing. WAKE ATOLL IS an isolated atoll in the cen­ and Strategic Defense Command. Conse­ tral Pacific (19 0 17' N, 1660 36' E): It is ap­ quentially, access has been limited due to the proximately 3 km wide by 6.5 km long and military mission, and as a result the aquatic consists of three islands with a land area of fauna of the atoll has not received thorough 2 approximately 6.5 km • Wake is separated investigation.
    [Show full text]
  • Report Re Report Title
    ASSESSMENT OF CORAL REEF BIODIVERSITY IN THE CORAL SEA Edgar GJ, Ceccarelli DM, Stuart-Smith RD March 2015 Report for the Department of Environment Citation Edgar GJ, Ceccarelli DM, Stuart-Smith RD, (2015) Reef Life Survey Assessment of Coral Reef Biodiversity in the Coral Sea. Report for the Department of the Environment. The Reef Life Survey Foundation Inc. and Institute of Marine and Antarctic Studies. Copyright and disclaimer © 2015 RLSF To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of RLSF. Important disclaimer RLSF advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, RLSF (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Cover Image: Wreck Reef, Rick Stuart-Smith Back image: Cato Reef, Rick Stuart-Smith Catalogue in publishing details ISBN ……. printed version ISBN ……. web version Chilcott Island Contents Acknowledgments ........................................................................................................................................ iv Executive summary........................................................................................................................................ v 1 Introduction ...................................................................................................................................
    [Show full text]
  • 6-Siu 1013 [Cybium 2017, 413]245-278.Indd
    Shore fishes of French Polynesia by Gilles SIU* (1), Philippe BACCHET (2), Giacomo BERNARDI (3), Andrew J. BROOKS (4), Jeremy CARLOT (1), Romain CAUSSE (5), Joachim CLAUDET (1), Éric CLUA (1), Erwan DELRIEU-TROTTIN (6), Benoit ESPIAU (1), Mireille HARMELIN-VIVIEN (7), Philippe KEITH (5), David LECCHINI (1), Rakamaly MADI-MOUSSA (1), Valeriano PARRAVICINI (1), Serge PLANES (1), Cédric PONSONNET (8), John E. RANDALL (9), Pierre SASAL (1), Marc TAQUET (10), Jeffrey T. WILLIAMS (11) & René GALZIN (1) Abstract. – On the occasion of the 10th Indo-Pacific Fish Conference (http://ipfc10.criobe.pf/) to be held in Tahiti in October 2017, it seemed timely to update Randall’s 1985 list of the fishes known from French Polynesia. Many studies focusing on fishes in this area have been published since 1985, but Randall’s list remains the authoritative source. Herein we present an expanded species list of 1,301 fishes now known to occur in French Polynesia and we review the expeditions and information sources responsible for the over 60% increase in the number of known species since the publication of Randall’s checklist in 1985. Our list of the fishes known from French Polynesia includes only those species with a reliably verifiable presence in these waters. In cases where there was any doubt about the identity of a species, or of the reliability of a reported sighting, the species was not included in our list. © SFI Received: 2 Jan. 2017 Résumé. – Liste des poissons côtiers de Polynésie française. Accepted: 3 May 2017 Editor: Jean-Yves Sire À l’occasion de l’organisation de la 10e conférence sur les poissons de l’Indo-Pacifique (http://ipfc10.criobe.
    [Show full text]
  • 227 2006 527 Article-Web 1..10
    Mar Biol (2007) 151:793–802 DOI 10.1007/s00227-006-0527-6 RESEARCH ARTICLE Anguilliform Wshes and sea kraits: neglected predators in coral-reef ecosystems I. Ineich · X. Bonnet · F. Brischoux · M. Kulbicki · B. Séret · R. Shine Received: 13 June 2006 / Accepted: 20 October 2006 / Published online: 18 November 2006 © Springer-Verlag 2006 Abstract Despite intensive sampling eVorts in coral snakes capture approximately 36,000 eels (972 kg) per reefs, densities and species richness of anguilliform year, suggesting that eels and snakes play key roles in Wshes (eels) are diYcult to quantify because these the functioning of this reef ecosystem. Wshes evade classical sampling methods such as under- water visual census and rotenone poisoning. An alter- native method revealed that in New Caledonia, eels Introduction are far more abundant and diverse than previously suspected. We analysed the stomach contents of two Coral reef ecosystems are renowned as biodiversity hot species of sea snakes that feed on eels (Laticauda spots (Roberts et al. 2002), but many are in crisis due laticaudata and L. saintgironsi). This technique is feasi- to threats such as global warming, over-Wshing and ble because the snakes return to land to digest their marine pollution (Walker and Ormond 1982; Linden prey, and (since they swallow their prey whole) undi- 1999; Hughes et al. 2003; Riegl 2003). Such threats are gested food items are identiWable. The snakes’ diet worsening over time (Rogers 1990; Hughes 1994; Guin- consisted almost entirely (99.6%) of eels and included otte et al. 2003; PandolW et al. 2003; Sheppard 2003; 14 species previously unrecorded from the area.
    [Show full text]
  • Rapid Biodiversity Assessment of REPUBLIC of NAURU
    RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU JUNE 2013 NAOERO GO T D'S W I LL FIRS SPREP Library/IRC Cataloguing-in-Publication Data McKenna, Sheila A, Butler, David J and Wheatley, Amanda. Rapid biodiversity assessment of Republic of Nauru / Sheila A. McKeena … [et al.] – Apia, Samoa : SPREP, 2015. 240 p. cm. ISBN: 978-982-04-0516-5 (print) 978-982-04-0515-8 (ecopy) 1. Biodiversity conservation – Nauru. 2. Biodiversity – Assessment – Nauru. 3. Natural resources conservation areas - Nauru. I. McKeena, Sheila A. II. Butler, David J. III. Wheatley, Amanda. IV. Pacific Regional Environment Programme (SPREP) V. Title. 333.959685 © SPREP 2015 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPREP authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPREP and the source document are properly acknowledged. Permission to reproduce the document and / or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Secretariat of the Pacific Regional Environment Programme P.O. Box 240, Apia, Samoa. Telephone: + 685 21929, Fax: + 685 20231 www.sprep.org The Pacific environment, sustaining our livelihoods and natural heritage in harmony with our cultures. RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU SHEILA A. MCKENNA, DAVID J. BUTLER, AND AmANDA WHEATLEY (EDITORS) NAOERO GO T D'S W I LL FIRS CONTENTS Organisational Profiles 4 Authors and Participants 6 Acknowledgements
    [Show full text]
  • Table E-8. Fish Species Found on Wake Atoll
    Table E-8. Fish Species Found on Wake Atoll RHINCODONTIDAE (Whale Shark) CLUPEIDAE (Herrings) Rhincodon typus Spratelloides sp. CARCHARHINIDAE (Requiem Sharks) EXOCOETIDAE (Flyingfishes) Carcharhinus amblyrhynchos Cypselurus poecilopterus Carcharhinus melanopterus Exocoetus volitans Eulamia commersoni Cypselurus rondelitii Triaenodon obesus HEMIRAMPHIDAE (Halfbeaks) MYLIOBATIDAE (Eagle Rays) Hyporhamphus acutus acutus Aetobatus narinari Oxyporhampus micropterus MOBULIDAE (Manta Rays) HOLOCENTRIDAE (Soldierfishes and Squirrelfishes) Albula glossodonta Myripristis adusta MORINGUIDAE (Spaghetti Eels) Myripristis amaena Moringua abbreviata Myripristis berndti CHLOPSIDAE (False Morays) Myripristis kuntee Kaupichthys sp. Myripristis murdjan MURAENIDAE (Moray Eels) Myripristis violacea Anarchias sp. Holocentrus opercularis Anarchias cantonensis Holocentrus sammara Anarchias seychellensis Sargocentron melanospilos Echidna leucotaenia Holocentrus microstomus Gymnomuraena zebra Holocentrus laeteoguttatus Gymnothorax buroensis Neoniphon opercularis Gymnothorax enigmaticus Sargocentrum spiniferum Gymnothorax fiavimarginatus Holocentrus spinifer Lycondontis flavomarginata Sargocentron tiere Gymnothorax javanicus SYGNATHIDAE (Pipefishes and Seahorses) Gymnothorax meleagris Corythoichthys conspicillatus Gymnothorax pictus Doryrhampus excisus Gymnothorax ruppelliae AULOSTOMIDAE (Trumpetfishes) Gymnothorax undulatus Aulostomus chinensis Lycodontis undulata FISTULARIIDAE (Cornetfishes) Uropterygius macrocephalus Fistularia commersonii Uropterygius xanthopterus
    [Show full text]
  • View/Download
    ANGUILLIFORMES (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 27.0 - 12 April 2021 Order ANGUILLIFORMES (part 2 of 3) Family OPHICHTHIDAE Snake Eels and Worm Eels 66 genera/subgenera · 355 species Subfamily Ophichthinae Snake Eels Allips McCosker 1972 allos, another; ips, worm, i.e., a worm-shaped eel in addition to Evips, described in the same paper Allips concolor McCosker 1972 colored uniformly, referring to uniform brown color in isopropanol Aplatophis Böhlke 1956 aplatos, terrible or unapproachable, referring to fearsome appearance of large mouth and “extremely highly developed” dentition; ophis, snake, conventional termination for generic names of snake eels, referring to snake-like shape Aplatophis chauliodus Böhlke 1956 chaulios, referring to deep-sea genus Chauliodus (Stomiidae); odon, tooth, referring to prominent, tusky teeth that both genera feature Aplatophis zorro McCosker & Robertson 2001 “for the remarkable coloration of the pore pattern along the face, reminiscent of the slash mark of the swordsman Zorro” Aprognathodon Böhlke 1967 a-, without; pro-, in front of; gnathos, jaw; odon, tooth, referring to lack of anterior teeth in upper jaw Aprognathodon platyventris Böhlke 1967 platys, flat; ventralis, of the belly, referring to flattened pre-anal region Apterichtus Duméril 1806 a-, without, pteron, fin, referring to absence of fins; ichtus, variant spelling of ichthys, fish Apterichtus anguiformis (Peters 1877) Anguis, slow worm genus; formis, shape, referring to elongate, worm-like
    [Show full text]
  • Guam Marine Biosecurity Action Plan
    GuamMarine Biosecurity Action Plan September 2014 This Marine Biosecurity Action Plan was prepared by the University of Guam Center for Island Sustainability under award NA11NOS4820007 National Oceanic and Atmospheric Administration Coral Reef Conservation Program, as administered by the Office of Ocean and Coastal Resource Management and the Bureau of Statistics and Plans, Guam Coastal Management Program. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration. Guam Marine Biosecurity Action Plan Author: Roxanna Miller First Released in Fall 2014 About this Document The Guam Marine Biosecurity Plan was created by the University of Guam’s Center for Island Sustainability under award NA11NOS4820007 National Oceanic and Atmospheric Administration Coral Reef Conservation Program, as administered by the Office of Ocean and Coastal Resource Management and the Bureau of Statistics and Plans, Guam Coastal Management Program. Information and recommendations within this document came through the collaboration of a variety of both local and federal agencies, including the National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service (NMFS), the NOAA Coral Reef Conservation Program (CRCP), the University of Guam (UOG), the Guam Department of Agriculture’s Division of Aquatic and Wildlife Resources (DAWR), the United States Coast Guard (USCG), the Port Authority of Guam, the National Park Service
    [Show full text]