C7X99-OCE.Pdf
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
How to Hack a Turned-Off Computer Or Running Unsigned
HOW TO HACK A TURNED-OFF COMPUTER, OR RUNNING UNSIGNED CODE IN INTEL ME Contents Contents ................................................................................................................................ 2 1. Introduction ...................................................................................................................... 3 1.1. Intel Management Engine 11 overview ............................................................................. 4 1.2. Published vulnerabilities in Intel ME .................................................................................. 5 1.2.1. Ring-3 rootkits.......................................................................................................... 5 1.2.2. Zero-Touch Provisioning ........................................................................................... 5 1.2.3. Silent Bob is Silent .................................................................................................... 5 2. Potential attack vectors ...................................................................................................... 6 2.1. HECI ............................................................................................................................... 6 2.2. Network (vPro only)......................................................................................................... 6 2.3. Hardware attack on SPI interface ..................................................................................... 6 2.4. Internal file system ......................................................................................................... -
Developing Solutions for the Internet of Things
Cloud Data Gateways Analytics Things WHITE PAPER Internet of Things Developing Solutions for the Internet of Things Intel® products, solutions, and services are enabling secure and seamless solutions for the Internet of Things (IoT). Introduction The world is undergoing a dramatic transformation, rapidly transitioning from isolated systems to ubiquitous Internet-enabled ‘things’ capable of generating data that can be analyzed to extract valuable information. Commonly referred to as the Internet of Things (IoT), this new reality will enrich everyday life, increase business productivity, improve government efficiency, and the list goes on. Intel is working with a large community of solution providers to develop IoT solutions for a wide range of organizations and businesses, including industrial, retail, automotive, energy, and healthcare industries. The solutions generate actionable information by running analytic Powering software and services on data that moves between devices and the cloud in a manner that is Business always secure, manageable, and user-friendly. Transformation Whether connecting a consumer wearable device, vehicle, or factory controller to the Internet, everyone wants it to be quick and seamless. This paper describes how Intel® products and technologies are helping make this a reality by providing fundamental building blocks for a robust ecosystem that is developing end-to-end IoT solutions. Building Blocks for Thing to Cloud Innovation The IoT vision is to create opportunities to transform businesses, people’s lives, and the world in countless ways by enabling billions of systems across the globe to share and analyze data over the cloud. With these capabilities, IoT solutions can improve medical outcomes, create better products faster, lower development cost, make shopping more enjoyable, or optimize energy generation and consumption. -
Lambert-Mastersreport-2016
Copyright by Timothy Michael Lambert 2016 The Report Committee for Timothy Michael Lambert Certifies that this is the approved version of the following report: Enterprise Platform Systems Management Security Threats and Mitigation Techniques APPROVED BY SUPERVISING COMMITTEE: Supervisor: Suzanne Barber Elie Jreij Enterprise Platform Systems Management Security Threats and Mitigation Techniques by Timothy Michael Lambert, B.S.E.E., M.B.A. Report Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering The University of Texas at Austin December 2016 Dedication For Jake Lambert, whose life and passing spurned the author’s commitment to enter and dedication to complete this degree program. Acknowledgements I would like to express special thanks to my family and employer, Dell Technologies, Inc., for allowing me the time to pursue my educational and professional interests via this superb graduate program. Additionally, I would like to thank my supervisor, Dr. Suzanne Barber, and reader, Elie Jreij, who is a professional mentor in this research area. v Abstract Enterprise Platform Systems Management Security Threats and Mitigation Techniques Timothy Michael Lambert, MSE The University of Texas at Austin, 2016 Supervisor: Suzanne Barber Developers and technologists of enterprise systems such as servers, storage and networking products must constantly anticipate new cybersecurity threats and evolving security requirements. These requirements are typically sourced from marketing, customer expectations, manufacturing and evolving government standards. Much ongoing major research focus has been on securing the main enterprise system purpose functionality, operating system, network and storage. -
BRKINI-2390.Pdf
BRKINI-2390 Data Center security within modern compute and attached fabrics - servers, IO, management Dan Hanson Director UCS Architectures and Technical Marketing Cisco Spark Questions? Use Cisco Spark to communicate with the speaker after the session How 1. Find this session in the Cisco Live Mobile App 2. Click “Join the Discussion” 3. Install Spark or go directly to the space 4. Enter messages/questions in the space cs.co/ciscolivebot#BRKINI-2390 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public Recent Press Items © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public Agenda • x86 Architecture Review • BIOS and Kernel Manipulation • Device Firmware Manipulation • On Server Data Storage Manipulation • Segmentation and Device access • Root of Trust Flow • Policy Control vs. Component Configuration (Cisco UCS and ACI) • Example of Security Offloading: Skyport Systems • Conclusion x86 Architecture Review Many Points of possible attack X86 Reference Legacy Elements • You may see many terms in various articles shown here • Over time, items moving on the CPU itself • Memory • PCIe • Processors/Servers differentiation in some areas • Front Side Bus speeds • Direct Media Interface • Southbridge Configurations BRKINI-2390 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 X86 Reference Fundamental Architecture • Not shown: Quick Path Interconnect/UltraPath Interconnect for CPU to CPU communications • Varied counts and speeds for multi-socket systems • Current Designs have On-Die PCIe and Memory controllers • Varied numbers and DIMMs in memory channels by CPU • Platform Controller Hub varies and can even offer server acceleration and security functions BRKINI-2390 © 2018 Cisco and/or its affiliates. -
Dell EMC Poweredge C4140 Technical Guide
Dell EMC PowerEdge C4140 Technical Guide Regulatory Model: E53S Series Regulatory Type: E53S001 Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2017 - 2019 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 2019 - 09 Rev. A00 Contents 1 System overview ......................................................................................................................... 5 Introduction............................................................................................................................................................................ 5 New technologies.................................................................................................................................................................. 5 2 System features...........................................................................................................................7 Specifications......................................................................................................................................................................... 7 Product comparison............................................................................................................................................................. -
C610 Series Chipset and Intel® X99 Chipset Platform Controller Hub (PCH) External Design Specification (EDS) Specification Update
Intel® C610 Series Chipset and Intel® X99 Chipset Platform Controller Hub (PCH) External Design Specification (EDS) Specification Update June 2016 Reference Number: 330789-004 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation. -
(PCH) Thermal Mechanical Specifications and Design Guid
Intel® 6 Series Chipset and Intel® C200 Series Chipset Thermal Mechanical Specifications and Design Guidelines (TMSDG) May 2011 324647-004 INFORMATIONLegal Lines and Disclaimers IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. -
Creating a Pci Express Interconnect in the Gem5 Simulator
CREATING A PCI EXPRESS INTERCONNECT IN THE GEM5 SIMULATOR BY KRISHNA PARASURAM SRINIVASAN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Adviser: Associate Professor Nam Sung Kim ABSTRACT In this thesis, the objective was to implement a PCI (Peripheral Component Interconnect) Express interconnect in the gem5 architecture simulator. The interconnect was designed with the goal of aiding accurate modeling of PCI Express-based devices in gem5 in the future. The PCI Express interconnect that was created consisted of a root complex, PCI Express switch, as well as individual PCI Express links. Each of these created components can work independently, and can be easily integrated into the existing gem5 platforms for the ARM Instruction Set Architecture. The created PCI Express interconnect was evaluated against a real PCI Express interconnect present on an Intel Xeon server platform. The bandwidth offered by both interconnects was compared by reading data from storage devices using the Linux utility “dd”. The results indicate that the gem5 PCI Express interconnect can provide between 81% - 91.6% of the bandwidth of the real PCI Express interconnect. However, architectural differences between the gem5 and Intel Xeon platforms used, as well as unimplemented features of the PCI Express protocol in the gem5 PCI Express interconnect, necessitate more strenuous validation -
United States Securities and Exchange Commission Form
UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 8-K CURRENT REPORT Pursuant to Section 13 OR 15(d) of The Securities Exchange Act of 1934 Date of Report: November 20, 2014 (Date of earliest event reported) INTEL CORPORATION (Exact name of registrant as specified in its charter) Delaware 000-06217 94-1672743 (State or other jurisdiction (Commission (IRS Employer of incorporation) File Number) Identification No.) 2200 Mission College Blvd., Santa Clara, California 95054-1549 (Address of principal executive offices) (Zip Code) (408) 765-8080 (Registrant's telephone number, including area code) (Former name or former address, if changed since last report) Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions (see General Instruction A.2. below): [ ] Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425) [ ] Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12) [ ] Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b)) [ ] Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4c)) Item 7.01 Regulation FD Disclosure The information in this report shall not be treated as filed for purposes of the Securities Exchange Act of 1934, as amended. On November 20, 2014, Intel Corporation presented business and financial information to institutional investors, analysts, members of the press and the general public at a publicly available webcast meeting (the "Investor Meeting"). -
Double Play Intel’S Haswell-E & Skylake Lineups Offer Power for All
Double Play Intel’s Haswell-E & Skylake Lineups Offer Power For All ho is a power user? Sure, it’s really Intel Smart Cache is the most W easy to point to a $10,000 gaming you’ll find among PC—complete with a flagship processor, any of Intel’s desktop four graphics cards, PCIe SSDs, and all chips. The 5960X’s the requisite trimmings—and say, “that 3GHz stock clock guy,” but there’s a better answer. We think speed is expected for a that being a power user is more a state processor that boasts of mind than a state of hardware. True so many discrete cores, power users are those who make the most and it’s capable of of the hardware available to them. dialing in a 3.5GHz With a fleet of terrific, cutting-edge Turbo frequency for CPUs, Intel wants to make power users lightly threaded loads. out of everyone, regardless of budget. A pair of ruthless six- Thanks to a pair of processor families, core processors join the enthusiasts with a passion for pushing 5960X in formation. their CPUs have plenty of options. The Core i7-5930K and i7- 5820K are clocked at 3.5GHz Hail To The King and 3.3GHz, respectively, and The undisputed champ of desktop as you’ll soon find out, there’s performance continues its reign. The potential for much higher clocks. leader of the Haswell-E Dynasty, Both of these chips are equipped with 15MB you pair a Haswell-E CPU with a capable Intel’s Core i7-5960X is as good as it of Intel Smart Cache. -
HPC Software Cluster Solution
Architetture innovative per il calcolo e l'analisi dati Marco Briscolini Workshop di CCR La Biodola, Maggio 16-20. 2016 2015 Lenovo All rights reserved. Agenda . Cooling the infrastructure . Managing the infrastructure . Software stack 2015 Lenovo 2 Target Segments - Key Requirements Data Center Cloud Computing Infrastructure Key Requirements: Key Requirements: • Low-bin processors (low • Mid-high bin EP cost) processors High Performance • Smaller memory (low • Lots of memory cost) Computing (>256GB/node) for • 1Gb Ethernet virtualization Key Requirements: • 2 Hot Swap • 1Gb / 10Gb Ethernet drives(reliability) • 1-2 SS drives for boot • High bin EP processors for maximum performance Virtual Data • High performing memory Desktop Analytics • Infiniband Key Requirements: • 4 HDD capacity Key Requirements: • Mid-high bin EP processors • GPU support • Lots of memory (> • Lots of memory (>256GB per 256GB per node) for node) virtualization • 1Gb / 10Gb Ethernet • GPU support • 1-2 SS drives for boot 3 A LOOK AT THE X86 MARKET BY USE . HPC is ~6.6 B$ growing 8% annually thru 2017 4 Some recent “HPC” EMEA Lenovo 2015 Client wins 5 This year wins and installations in Europe 1152 nx360M5 DWC 1512 nx360M5 BRW EDR 3600 Xeon KNL 252 nx360M5 nodes 392 nx360M5 nodes GPFS, GSS 10 PB IB FDR14, Fat Tree IB FDR14 3D Torus OPA GPFS, 150 TB, 3 GB/s GPFS 36 nx360M5 nodes 312 nx360M5 DWC 6 nx360M5 with GPU 1 x 3850X6 GPFS, IB FDR14, 2 IB FDR, GPFS GSS24 6 2 X 3 PFlops SuperMUC systems at LRZ Phase 1 and Phase 2 Phase 1 Ranked 20 and 21 in Top500 June 2015 • Fastest Computer in Europe on Top 500, June 2012 – 9324 Nodes with 2 Intel Sandy Bridge EP CPUs – HPL = 2.9 PetaFLOP/s – Infiniband FDR10 Interconnect – Large File Space for multiple purpose • 10 PetaByte File Space based on IBM GPFS with 200GigaByte/s I/O bw Phase 2 • Innovative Technology for Energy Effective . -
ATS9130 User Manual 1 2 Bit, 2 Channel, 50 MS/S Waveform Digitizer for PCI Express Bus
ATS9130 User Manual 1 2 Bit, 2 Channel, 50 MS/s Waveform Digitizer for PCI Express Bus Written for Hardware Version 1.1 July 2019 Edition Copyright © 2019 Alazar Technologies Inc. All rights reserved. Alazar Technologies Inc. Contact Information AlazarTech, Inc. 6600 Trans-Canada Highway Suite 310 Pointe-Claire, QC Canada H9R 4S2 Telephone: (514) 426-4899 Fax: (514) 426-2723 E-mail: [email protected] Web site: www.alazartech.com To comment on the documentation for ATS9130, send e-mail to [email protected]. Information required when contacting AlazarTech for technical support: Owned by: Serial Number: Purchase Date: Purchased From: Software Driver Version: SDK Version: ATS-GPU Version: AlazarDSO Version: Operating System: ATS9130 User Manual i Important Information Warranty The ATS9130 is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. Alazar Technologies Inc. (hereafter “AlazarTech”) will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor. The media on which you receive AlazarTech software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. AlazarTech will, at its option, repair or replace software media that do not execute programming instructions if AlazarTech receives notice of such defects during the warranty period. AlazarTech does not warrant that the operation of the software shall be uninterrupted or error free.