Evolution of the Southern Kenya Rift from Miocene to Present with a Focus on the Magadi Area

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Southern Kenya Rift from Miocene to Present with a Focus on the Magadi Area Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2007 Evolution of the Southern Kenya Rift from Miocene to present with a focus on the Magadi area Alexandria L. Guth Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Geology Commons Copyright 2007 Alexandria L. Guth Recommended Citation Guth, Alexandria L., "Evolution of the Southern Kenya Rift from Miocene to present with a focus on the Magadi area", Master's Thesis, Michigan Technological University, 2007. https://doi.org/10.37099/mtu.dc.etds/321 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Geology Commons Evolution of the Southern Kenya Rift from Miocene to Present with a Focus on the Magadi Area By Alexandria L. Guth A THESIS submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2007 Keywords: Geology, Geochronology, Remote Sensing, Mapping, Lake Magadi, Soda Lakes, Chert, Kenya Rift Copyright Alexandria L. Guth ii This thesis, “Evolution of the Southern Kenya Rift from Miocene to Present with a Focus on the Magadi Area” is hereby approved in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in the field of GEOLOGY Department of Geological and Mining Engineering and Sciences Thesis Advisor: James R. Wood Department Chair: Wayne D. Pennington Committee Members: William I. Rose, Ph.D. William J. Gregg, Ph.D. Susan T. Bagley, Ph.D. Date: August 9, 2007 iii Alexandria L. Guth August 09, 2007 Abstract The Kenya (a.k.a., Gregory) Rift is a geologically active area located within the eastern branch of the larger East African Rift System (EARS). The study area is located in the southern Kenya Rift between 1° South and the Kenya-Tanzania border (covering approximately 1.5 square degrees, semi-centered on Lake Magadi) and is predominantly filled with extrusive igneous rocks (mostly basalts, phonolites and trachytes) of Miocene age or younger. Sediments are thin, less than 1.5Ma, and are confined to small grabens. The EARS can serve both as an analogue for ancient continental rifting and as a modern laboratory to observe the geologic processes responsible for rifting. This study demonstrates that vintage (as in older, quality maps published by the Kenya Geological Survey, that may be outdated based on newer findings) quarter-degree maps can be successfully combined with recently published data, and used to interpret satellite (mainly Landsat 7) images to produce versatile, updated digital maps. The study area has been remapped using this procedure and although it covers a large area, the mapping retains a quadrangle level of detail. Additionally, all geologic mapping elements (formations, faults, etc.) have been correlated across older map boundaries so that geologic units don't end artificially at degree boundaries within the study area. These elements have also been saved as individual digital files to facilitate future analysis. A series of maps showing the evolution of the southern Kenya rift from the Miocene to the present was created by combining the updated geologic map with age dates for geologic formations and fault displacements. Over 200 age dates covering the entire length of the Kenya Rift have been compiled for this study, and 6 paleo-maps were constructed to iv demonstrate the evolution of the area, starting with the eruption of the Kishalduga and Lisudwa melanephelinites onto the metamorphic basement around 15Ma. These eruptions occurred before the initial rift faulting and were followed by a massive eruption of phonolites between 13-10 Ma that covered most of the Kenya dome. This was followed by a period of relative quiescence, until the initial faulting defined the western boundary of the rift around 7Ma. The resulting graben was asymmetrical until corresponding faults to the east developed around 3Ma. The rift valley was flooded by basalts and trachytes between 3Ma and 700ka, after which the volcanic activity slowed to a near halt. Since 700ka most of the deposition has been comprised of sediments, mainly from lakes occupying the various basins in the area. The main results of this study are, in addition to a detailed interpretation of the rift development, a new geologic map that correlates dozens of formations across old map boundaries and a compilation of over 300 age dates. Specific products include paleo- maps, tables of fault timing and displacement, and volume estimates of volcanic formations. The study concludes with a generalization of the present environment at Magadi including discussions of lagoon chemistry, mantle gases in relation to the trona deposit, and biology of the hot springs. Several biologic samples were collected during the 2006 field season in an attempt to characterize the organisms that are commonly seen in the present Lake Magadi environment. Samples were selected to represent the different, distinctive forms that are found in the hotsprings. Each sample had it own distinctive growth habit, and analysis showed that each was formed by a different cyanobacterial. Actual algae was rare in the collected samples, and represented by a few scattered diatoms. Copyright Alexandria L. Guth v Acknowledgements This project was made possible through various awards granted to Dr. Wood by the United States Department of Energy and the ACS Petroleum Research Fund. I would like to thank my advisor Dr. Wood for providing me with this amazing research opportunity and for agreeing to hold our morning meetings at a nearby coffee shop. L. Kiema at the Magadi Soda Company deserves thanks for letting us borrow his copy of Baker’s 1958 “Geology of the Magadi Area” map when we were unable to attain it otherwise, and for providing us with company core data from the lake. Anthony Mbuthia, another employee of the Magadi Soda Company, also deserves recognition for his help in the field as a guide around Magadi. The list of in-field help would not be complete without gratefully mentioning Billy Wanzala who was our driver every year in Kenya, showed amazing skill in navigating Nairobi traffic, and, most importantly, kept us safe and out of trouble. As for local help, I wish to recognize my committee members, Bill Rose, Bill Gregg and Susan Bagley who provided numerous helpful comments and ideas in our meetings, in addition to Bill Everham who provided very useful feedback on my figure captions for this thesis. Thanks also go to Abass S. A., for his help in providing tips on biologic sample collection and preservation. Lastly, I would like to thank my family, friends and Fraggle for supporting me in a myriad of ways, not the least of being their ability to put up with me in kind and tolerant ways when I was sleep-deprived and a little crazy. vi Table of Contents Abstract _________________________________________________________________ iii Table of Contents __________________________________________________________vi List of Figures ___________________________________________________________ viii List of Files _____________________________________________________________ xiii List of abbreviations and acronyms ___________________________________________xiv Introduction_______________________________________________________________ 1 Purpose ___________________________________________________________________1 Regional Setting ____________________________________________________________4 Literature Review __________________________________________________________ 5 Geologic Introduction______________________________________________________ 13 Methods _________________________________________________________________ 17 Geologic Mapping __________________________________________________________17 Part B: ___________________________________________________________________21 Time Series_____________________________________________________________________ 21 Volume and Petrographic Analysis __________________________________________________ 22 Results and Discussion _____________________________________________________ 24 Geologic Maps_____________________________________________________________24 Rift Evolution and Time Series Images ________________________________________26 Events prior to 10Ma _____________________________________________________________ 26 10 to 6 Ma _____________________________________________________________________ 28 6Ma to 3Ma ____________________________________________________________________ 28 3Ma to 2Ma ____________________________________________________________________ 29 2Ma to 1.5 Ma __________________________________________________________________ 30 1.5Ma to 100ka__________________________________________________________________ 31 Fault Summary __________________________________________________________________ 32 Volume estimates __________________________________________________________35 Magadi-area Sediments ___________________________________________________________ 39 Part II: A Characterization of the Lake Magadi Area ____________________________ 46 Lagoon Water analysis ______________________________________________________46 Volcanic gas estimates ______________________________________________________50 Lake Magadi Biology _______________________________________________________53 Characterization of Lake Magadi Biology _____________________________________________ 58 Conclusions ______________________________________________________________
Recommended publications
  • PROFILES of ATTRACTION SITES-ELGEYO MARAKWET. Tourist Attractions in Elgeyo Marakwet County Include Sports Tourism, Rivers, a Na
    PROFILES OF ATTRACTION SITES-ELGEYO MARAKWET. Tourist attractions in Elgeyo Marakwet County include Sports Tourism, Rivers, A national reserve, waterfalls and the hills and escarpments. Rimoi National Reserve The National Reserve is a protected area in the kerio valley along the escarpment of the Great Rift Valley. The 66 square kilometers (25sq mi) reserve was created in 1983 and is managed by the Kenya Wildlife Service. The isolated Kerio Valley lies between the Cherangani Hills and the Tugen Hills with the Elgeyo Escarpment rising more than 1,830 meters (6,000ft) above the valley in places. The valley is 4,000 feet (1,200m) deep. It has semi-tropical vegetation on the slopes, while the floor of the valley is covered by dry thorn bush. The most comfortable time of the year is in July and August when the rains have ended and the temperatures are not excessive. The reserve is on the west side of the Kerio River, while the Lake Kamnarok National Reserve is on the east side. The reserve has beautiful scenery, prolific birdlife and camping site in the bush beside Lake Kamnarok. Gazzement of the conservation area was done to protect wildlife from rampant poaching which was going on at the time. A fence was also put up to address human wildlife conflicts. It provides unique geological scenery & biodiversity and is one of the few protected areas within the spectacular Kerio Valley. The main attraction is the groups of elephants, Culture and scenery of the Kerio valley. The Reserve has earth and gravel road network which make for an adventurous outing.
    [Show full text]
  • Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein
    Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein To cite this version: David Aubin, Catherine Goldstein. Placing World War I in the History of Mathematics. 2013. hal- 00830121v1 HAL Id: hal-00830121 https://hal.sorbonne-universite.fr/hal-00830121v1 Preprint submitted on 4 Jun 2013 (v1), last revised 8 Jul 2014 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Placing World War I in the History of Mathematics David Aubin and Catherine Goldstein Abstract. In the historical literature, opposite conclusions were drawn about the impact of the First World War on mathematics. In this chapter, the case is made that the war was an important event for the history of mathematics. We show that although mathematicians' experience of the war was extremely varied, its impact was decisive on the life of a great number of them. We present an overview of some uses of mathematics in war and of the development of mathematics during the war. We conclude by arguing that the war also was a crucial factor in the institutional modernization of mathematics. Les vrais adversaires, dans la guerre d'aujourd'hui, ce sont les professeurs de math´ematiques`aleur table, les physiciens et les chimistes dans leur laboratoire.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • 1843 KMS Kenya Past and Present Issue 43
    Kenya Past and Present Issue 43 Kenya Past and Present Editor Peta Meyer Editorial Board Marla Stone Patricia Jentz Kathy Vaughan Kenya Past and Present is a publication of the Kenya Museum Society, a not-for-profit organisation founded in 1971 to support and raise funds for the National Museums of Kenya. Correspondence should be addressed to: Kenya Museum Society, PO Box 40658, Nairobi 00100, Kenya. Email: [email protected] Website: www.KenyaMuseumSociety.org Statements of fact and opinion appearing in Kenya Past and Present are made on the responsibility of the author alone and do not imply the endorsement of the editor or publishers. Reproduction of the contents is permitted with acknowledgement given to its source. We encourage the contribution of articles, which may be sent to the editor at [email protected]. No category exists for subscription to Kenya Past and Present; it is a benefit of membership in the Kenya Museum Society. Available back issues are for sale at the Society’s offices in the Nairobi National Museum. Any organisation wishing to exchange journals should write to the Resource Centre Manager, National Museums of Kenya, PO Box 40658, Nairobi 00100, Kenya, or send an email to [email protected] Designed by Tara Consultants Ltd ©Kenya Museum Society Nairobi, April 2016 Kenya Past and Present Issue 43, 2016 Contents KMS highlights 2015 ..................................................................................... 3 Patricia Jentz To conserve Kenya’s natural and cultural heritage ........................................ 9 Marla Stone Museum highlights 2015 ............................................................................. 11 Juliana Jebet and Hellen Njagi Beauty and the bead: Ostrich eggshell beads through prehistory .................................................. 17 Angela W.
    [Show full text]
  • 2009 Trip Report KENYA
    KENYA and TANZANIA TRIP REPORT Sept 25-Oct 23, 2009 PART 1 - Classic Kenya text and photos by Adrian Binns Sept 25 / Day 1: Blue Post Thika; Castle Forest We began the morning with an unexpected Little Sparrowhawk followed by a Great Sparrowhawk, both in the skies across the main road from the Blue Post Hotel in Thika. The lush grounds of the Blue Post are bordered by the twin waterfalls of the Chania and Thika, both rivers originating from the nearby Aberdare Mountain Range. It is a good place to get aquatinted with some of the more common birds, especially as most can be seen in close proximity and very well. Eastern Black-headed Oriole, Cinnamon-chested Bee- eater, Little Bee-eater, White-eyed Slaty Flycatcher, Collared Sunbird, Bronzed Mannikin, Speckled Mousebird and Yellow-rumped Tinkerbird were easily found. Looking down along the river course and around the thundering waterfall we found a pair of Giant Kingfishers as well as Great Cormorant, Grey Heron and Common Sandpiper, and two Nile Monitors slipped behind large boulders. A fruiting tree provided a feast for Yellow-rumped Seedeaters, Violet-backed Starlings, Spot-flanked Barbet (right), White-headed Barbet as a Grey-headed Kingfisher, an open woodland bird, made sorties from a nearby perch. www.wildsidenaturetours.com www.eastafricanwildlifesafaris.com © Adrian Binns Page 1 It was a gorgeous afternoon at the Castle Forest Lodge set deep in forested foothills of the southern slope of Mt. Kenya. While having lunch on the verandah, overlooking a fabulous valley below, we had circling Long-crested Eagle (above right), a distant Mountain Buzzard and African Harrier Hawk.
    [Show full text]
  • The East African Rift System in the Light of KRISP 90
    ELSEVIER Tectonophysics 236 (1994) 465-483 The East African rift system in the light of KRISP 90 G.R. Keller a, C. Prodehl b, J. Mechie b,l, K. Fuchs b, M.A. Khan ‘, P.K.H. Maguire ‘, W.D. Mooney d, U. Achauer e, P.M. Davis f, R.P. Meyer g, L.W. Braile h, 1.0. Nyambok i, G.A. Thompson J a Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968-0555, USA b Geophysikalisches Institut, Universitdt Karlwuhe, Hertzstrasse 16, D-76187Karlsruhe, Germany ’ Department of Geology, University of Leicester, University Road, Leicester LEl 7RH, UK d U.S. Geological Survey, Office of Earthquake Research, 345 Middlefield Road, Menlo Park, CA 94025, USA ’ Institut de Physique du Globe, Universite’ de Strasbourg, 5 Rue Ret& Descartes, F-67084 Strasbourg, France ‘Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90024, USA ’ Department of Geology and Geophysics, University of Wuconsin at Madison, Madison, WI 53706, USA h Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA i Department of Geology, University of Nairobi, P.O. Box 14576, Nairobi, Kenya ’ Department of Geophysics, Stanford University, Stanford, CA 94305, USA Received 21 September 1992; accepted 8 November 1993 Abstract On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/ teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of NO-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts.
    [Show full text]
  • Discrete Element Modelling of Pit Crater Formation on Mars
    geosciences Article Discrete Element Modelling of Pit Crater Formation on Mars Stuart Hardy 1,2 1 ICREA (Institució Catalana de Recerca i Estudis Avançats), Passeig Lluís Companys 23, 08010 Barcelona, Spain; [email protected]; Tel.: +34-934-02-13-76 2 Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, C/Martí i Franqués s/n, 08028 Barcelona, Spain Abstract: Pit craters are now recognised as being an important part of the surface morphology and structure of many planetary bodies, and are particularly remarkable on Mars. They are thought to arise from the drainage or collapse of a relatively weak surficial material into an open (or widening) void in a much stronger material below. These craters have a very distinctive expression, often presenting funnel-, cone-, or bowl-shaped geometries. Analogue models of pit crater formation produce pits that typically have steep, nearly conical cross sections, but only show the surface expression of their initiation and evolution. Numerical modelling studies of pit crater formation are limited and have produced some interesting, but nonetheless puzzling, results. Presented here is a high-resolution, 2D discrete element model of weak cover (regolith) collapse into either a static or a widening underlying void. Frictional and frictional-cohesive discrete elements are used to represent a range of probable cover rheologies. Under Martian gravitational conditions, frictional-cohesive and frictional materials both produce cone- and bowl-shaped pit craters. For a given cover thickness, the specific crater shape depends on the amount of underlying void space created for drainage.
    [Show full text]
  • Explanations of Variability in Middle Stone Age Stone Tool Assemblage Composition and Raw Material Use in Eastern Africa
    Archaeological and Anthropological Sciences (2021) 13:14 https://doi.org/10.1007/s12520-020-01250-8 ORIGINAL PAPER Explanations of variability in Middle Stone Age stone tool assemblage composition and raw material use in Eastern Africa J. Blinkhorn1,2 & M. Grove3 Received: 26 February 2020 /Accepted: 1 December 2020 # The Author(s) 2020 Abstract The Middle Stone Age (MSA) corresponds to a critical phase in human evolution, overlapping with the earliest emergence of Homo sapiens as well as the expansions of these populations across and beyond Africa. Within the context of growing recog- nition for a complex and structured population history across the continent, Eastern Africa remains a critical region to explore patterns of behavioural variability due to the large number of well-dated archaeological assemblages compared to other regions. Quantitative studies of the Eastern African MSA record have indicated patterns of behavioural variation across space, time and from different environmental contexts. Here, we examine the nature of these patterns through the use of matrix correlation statistics, exploring whether differences in assemblage composition and raw material use correlate to differences between one another, assemblage age, distance in space, and the geographic and environmental characteristics of the landscapes surrounding MSA sites. Assemblage composition and raw material use correlate most strongly with one another, with site type as well as geographic and environmental variables also identified as having significant correlations to the former, and distance in time and space correlating more strongly with the latter. By combining time and space into a single variable, we are able to show the strong relationship this has with differences in stone tool assemblage composition and raw material use, with significance for exploring the impacts of processes of cultural inheritance on variability in the MSA.
    [Show full text]
  • Alcolapia Grahami ERSS
    Lake Magadi Tilapia (Alcolapia grahami) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, March 2015 Revised, August 2017, October 2017 Web Version, 8/21/2018 1 Native Range and Status in the United States Native Range From Bayona and Akinyi (2006): “The natural range of this species is restricted to a single location: Lake Magadi [Kenya].” Status in the United States No records of Alcolapia grahami in the wild or in trade in the United States were found. The Florida Fish and Wildlife Conservation Commission has listed the tilapia Alcolapia grahami as a prohibited species. Prohibited nonnative species (FFWCC 2018), “are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities.” Means of Introductions in the United States No records of Alcolapia grahami in the United States were found. 1 Remarks From Bayona and Akinyi (2006): “Vulnerable D2 ver 3.1” Various sources use Alcolapia grahami (Eschmeyer et al. 2017) or Oreochromis grahami (ITIS 2017) as the accepted name for this species. Information searches were conducted under both names to ensure completeness of the data gathered. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2017), Alcolapia grahami (Boulenger 1912) is the current valid name for this species. It was originally described as Tilapia grahami; it has also been known as Oreoghromis grahami, and as a synonym, but valid subspecies, of
    [Show full text]
  • 1646 KMS Kenya Past and Present Issue 46.Pdf
    Kenya Past and Present ISSUE 46, 2019 CONTENTS KMS HIGHLIGHTS, 2018 3 Pat Jentz NMK HIGHLIGHTS, 2018 7 Juliana Jebet NEW ARCHAEOLOGICAL EXCAVATIONS 13 AT MT. ELGON CAVES, WESTERN KENYA Emmanuel K. Ndiema, Purity Kiura, Rahab Kinyanjui RAS SERANI: AN HISTORICAL COMPLEX 22 Hans-Martin Sommer COCKATOOS AND CROCODILES: 32 SEARCHING FOR WORDS OF AUSTRONESIAN ORIGIN IN SWAHILI Martin Walsh PURI, PAROTHA, PICKLES AND PAPADAM 41 Saryoo Shah ZANZIBAR PLATES: MAASTRICHT AND OTHER PLATES 45 ON THE EAST AFRICAN COAST Villoo Nowrojee and Pheroze Nowrojee EXCEPTIONAL OBJECTS FROM KENYA’S 53 ARCHAEOLOGICAL SITES Angela W. Kabiru FRONT COVER ‘They speak to us of warm welcomes and traditional hospitality, of large offerings of richly flavoured rice, of meat cooked in coconut milk, of sweets as generous in quantity as the meals they followed.’ See Villoo and Pheroze Nowrojee. ‘Zanzibar Plates’ p. 45 1 KMS COUNCIL 2018 - 2019 KENYA MUSEUM SOCIETY Officers The Kenya Museum Society (KMS) is a non-profit Chairperson Pat Jentz members’ organisation formed in 1971 to support Vice Chairperson Jill Ghai and promote the work of the National Museums of Honorary Secretary Dr Marla Stone Kenya (NMK). You are invited to join the Society and Honorary Treasurer Peter Brice receive Kenya Past and Present. Privileges to members include regular newsletters, free entrance to all Council Members national museums, prehistoric sites and monuments PR and Marketing Coordinator Kari Mutu under the jurisdiction of the National Museums of Weekend Outings Coordinator Narinder Heyer Kenya, entry to the Oloolua Nature Trail at half price Day Outings Coordinator Catalina Osorio and 5% discount on books in the KMS shop.
    [Show full text]
  • Biogeochemistry of Kenyan Rift Valley Lake Sediments
    Geophysical Research Abstracts Vol. 15, EGU2013-9512, 2013 EGU General Assembly 2013 © Author(s) 2013. CC Attribution 3.0 License. Biogeochemistry of Kenyan Rift Valley Lake Sediments Sina Grewe (1) and Jens Kallmeyer (2) (1) University of Potsdam, Institute of Earth and Environmental Sciences, Geomicrobiology Group, Potsdam, Germany ([email protected]), (2) German Research Centre for Geosciences, Section 4.5 Geomicrobiology, Potsdam, Germany ([email protected]) The numerous lakes in the Kenyan Rift Valley show strong hydrochemical differences due to their varying geologic settings. There are freshwater lakes with a low alkalinity like Lake Naivasha on the one hand and very salt-rich lakes with high pH values like Lake Logipi on the other. It is known that the underlying lake sediments are influenced by the lake chemistry and by the microorganisms in the sediment. The aim of this work is to provide a biogeochemical characterization of the lake sediments and to use these data to identify the mechanisms that control lake chemistry and to reconstruct the biogeochemical evolution of each lake. The examined rift lakes were Lakes Logipi and Eight in the Suguta Valley, Lakes Baringo and Bogoria south of the valley, as well as Lakes Naivasha, Oloiden, and Sonachi on the Kenyan Dome. The porewater was analysed for different ions and hydrogen sulphide. Additionally, alkalinity and salinity of the lake water were determined as well as the cell numbers in the sediment, using fluorescent microscopy. The results of the porewater analysis show that the overall chemistry differs considerably between the lakes. In some lakes, concentrations of fluoride, chloride, sulphate, and/or hydrogen sulphide show strong concentration gradients with depth, whereas in other lakes the concentrations show only minor variations.
    [Show full text]
  • RIFT VALLEY LAKES-LEVEL RISE and FLOOD CHALLENGES Lakes Nakuru, Bogoria, Baringo Onywere, Et Al Kenyatta University [email protected] [email protected]
    Understanding the Environment, Promoting Health in Lake Baringo and Bogoria Drainage Basin RIFT VALLEY LAKES-LEVEL RISE AND FLOOD CHALLENGES Lakes Nakuru, Bogoria, Baringo Onywere, et al Kenyatta University [email protected] [email protected] Onywere et al (2013) - KU NACOSTI - Project participants • Prof. Simon M Onywere – Kenyatta University and Team Leader (geospatial mapping and environmental health analysis) • Prof. Chris Shisanya – Kenyatta University (Biodiversity assessment, irrigation agriculture and water quality) • Prof. Joy Obando – Kenyatta University (Community livelihood systems and health) • Dr. Daniel Masiga – ICIPE (Bacteriological analysis) • Mr . Zephania Irura – Division of Diseases Surveillance and Response (DDSR), Ministry of Public Health and Sanitation – (health implications of consumption of contaminated waters) • Dr. Nicholas Mariita – Kengen (geophysical survey and mapping of shallow aquifers) • Mr. Huron Maragia - Mines and Geology (Chemical analysis, geochemistry and geohazards • Mr. Antony Oduya Ndubi - FAO Somalia, SWALIM Project (Image Data analysis) Onywere et al (2013) - KU Unprecedented lakes level rise in the Rift Valley • Are we prepared for the consequences? • Recent events in the rift valley in Kenya and at least since the long rains of 2011 have seen a consistent and increased recharge into all the Rift Valley lakes • This has lead to the lake levels rising to unprecedented levels since 1963 when the event was last observed. • Historical records also indicate a flooded lake environment in
    [Show full text]