Geology Area South of Magadi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Silica-Rich Deposits and Hydrated Minerals at Gusev Crater, Mars: Vis-NIR Spectral Characterization and Regional Mapping
Icarus 205 (2010) 375–395 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping M.S. Rice a,*, J.F. Bell III a, E.A. Cloutis b, A. Wang c, S.W. Ruff d, M.A. Craig e, D.T. Bailey b, J.R. Johnson f, P.A. de Souza Jr. g, W.H. Farrand h a Department of Astronomy, Cornell University, Ithaca, NY 14853, USA b Department of Geography, University of Winnipeg, 515 Portage Ave., Winnipeg, Man., Canada R3B 2E9 c Department of Earth and Planetary Science and McDonnell Center for Space Science, Washington University, St. Louis, MO 63130, USA d School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA e Department of Earth Sciences, University of Western Ontario, 1151 Richmond St. Louis, Ont., Canada N6A 5B7 f Astrogeology Team, United States Geological Survey, Flagstaff, AZ 86001, USA g Tasmanian ICT Center, CSIRO, Hobart, Tasmania 7000, Australia h Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA article info abstract Article history: The Mars Exploration Rover (MER) Spirit has discovered surprisingly high concentrations of amorphous Received 7 January 2009 silica in soil and nodular outcrops in the Inner Basin of the Columbia Hills. In Pancam multispectral obser- Revised 24 March 2009 vations, we find that an absorption feature at the longest Pancam wavelength (1009 nm) appears to be Accepted 31 March 2009 characteristic of these silica-rich materials; however, spectral analyses of amorphous silica suggest that Available online 8 May 2009 the 1009 nm spectral feature is not a direct reflection of their silica-rich nature. -
Historical Volcanism and the State of Stress in the East African Rift System
Historical volcanism and the state of stress in the East African Rift System Article Accepted Version Open Access Wadge, G., Biggs, J., Lloyd, R. and Kendall, J.-M. (2016) Historical volcanism and the state of stress in the East African Rift System. Frontiers in Earth Science, 4. 86. ISSN 2296- 6463 doi: https://doi.org/10.3389/feart.2016.00086 Available at http://centaur.reading.ac.uk/66786/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.3389/feart.2016.00086 Publisher: Frontiers media All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online 1 Historical volcanism and the state of stress in the East African 2 Rift System 3 4 5 G. Wadge1*, J. Biggs2, R. Lloyd2, J-M. Kendall2 6 7 8 1.COMET, Department of Meteorology, University of Reading, Reading, UK 9 2.COMET, School of Earth Sciences, University of Bristol, Bristol, UK 10 11 * [email protected] 12 13 14 Keywords: crustal stress, historical eruptions, East African Rift, oblique motion, 15 eruption dynamics 16 17 18 19 20 21 Abstract 22 23 Crustal extension at the East African Rift System (EARS) should, as a tectonic ideal, 24 involve a stress field in which the direction of minimum horizontal stress is 25 perpendicular to the rift. -
Proceedings of the 16Th International Conference of Ethiopian Studies
www.svt.ntnu.no/ices16/ Proceedings of the 16th International Conference of Ethiopian Studies Conference of the 16th International Proceedings Proceedings of the 16th International Conference of Ethiopian Studies Volume 1 Volume 1 Volume Edited by Svein Ege, Harald Aspen, Birhanu Teferra and Shiferaw Bekele ISBN 978-82-90817-27-0 (printed) Det skapende universitet Proceedings of the 16th International Conference of Ethiopian Studies Volume 1 Edited by Svein Ege, Harald Aspen, Birhanu Teferra and Shiferaw Bekele Department of Social Anthropology, Norwegian University of Science and Technology, Trondheim, 2009 Proceedings of the 16th International Conference of Ethiopian Studies, ed. by Svein Ege, Harald Aspen, Birhanu Teferra and Shiferaw Bekele ISBN 978-82-90817-27-0 (printed) Vol. 1-4 http://www.svt.ntnu.no/ices16/ Printed in Norway by NTNU-trykk, Trondheim 2009 © The authors Table of contents Author index xv Preface xix Archaeology The Temple of Yeha: Geo-Environmental Implications on its Site Selection 1 and Preservation Asfawossen Asrat The Archaeology of Islam in North East Shoa 11 Kassaye Begashaw History A Miracle of the Archangel Uriel Worked for Abba Giyorgis of Gasəcca 23 Getatchew Haile Ras Wäsän Säggäd, a Pre-Eminent Lord of Early 16th-Century Ethiopia 37 Michael Kleiner T.aytu’s Foremothers. Queen Əleni, Queen Säblä Wängel and Bati Dəl 51 Wämbära Rita Pankhurst Ase Iyasu I (1682-1706) and the synod of Yébaba 65 Verena Böll Performance and Ritual in Nineteenth-Century Ethiopian Political Culture 75 Izabela Orlowska Shäwa, Ethiopia's Prussia. Its Expansion, Disappearance and Partition 85 Alain Gascon Imprints of the Time : a Study of the hundred Ethiopian Seals of the Boucoiran 99 collection Serge Tornay and Estelle Sohier The Hall Family and Ethiopia. -
DIRLIST6 01050000 01300000.Pdf
Signatory ID Name CIN Company Name 01050011 KALRA SUNITA U74899DL1967PTC004762 R K INTERNATIOONAL PRIVATE 01050016 GUPTA VIVEK U51109OR2006PTC009068 MAHAKASH RENEWABLES (INDIA) 01050022 BHANDARI PARAMBIR SINGH U51909DL1999PTC100363 AKILA OVERSEAS PRIVATE LIMITED 01050036 BHUPENDRA GUPTA U70100MH1995PTC086049 SUNDER BUILDERS AND 01050064 KIRITKUMAR MERCHANT SHISHIR U51900MH2000PTC127408 HANS D TO R SOLUTIONS PRIVATE 01050071 AGARWAL BINDU U45201WB1997PTC084989 PRINCE SAGAR KUTIR PRIVATE 01050072 BIJOY HARIPRIYA JAIN U70109MH2008PTC180213 SAAT RASTA PROPERTIES PRIVATE 01050072 BIJOY HARIPRIYA JAIN U01403MH2008PTC182992 GREEN VALLEY AGRICULTURE 01050082 JAI KARUNADEVI PRITHVIRAJ U36993KA1999PTC025485 RODEO DRIVE LUXURY PRODUCTS 01050126 DEEPCHAND JAIN PRITHVIRAJ U36993KA1999PTC025485 RODEO DRIVE LUXURY PRODUCTS 01050174 JOGINDER SANDHU SINGH U67120CH2004PTC027291 JAGUAR CONSULTANTS PRIVATE 01050220 NARAYANAMURTHY U15421TN2006PLC060417 BHIMAAS SUGARS AND CHEMICALS 01050224 JITENDRA MEHTA U51109TN2007PTC062423 MOOLRAJ VYAPAR PRIVATE 01050251 PRAKASH SRIVASTAVA U72300DL2007PTC160451 PRODIGII ECALL PRIVATE LIMITED 01050251 PRAKASH SRIVASTAVA U63040DL2008PTC180031 REACHING WILD LIFE TOURISM 01050257 LALITKUMAR MERCHANT URMIL U51900MH2000PTC127408 HANS D TO R SOLUTIONS PRIVATE 01050273 KUSUM MISHRA U29248UP1999PTC024344 MAXWELL GEARS PRIVATE LIMITED 01050286 DUGGAL PRINCE U70109DL2006PTC153384 M R BUILDWELL PRIVATE LIMITED 01050290 JAI MISHRA SHANKAR U29248UP1999PTC024344 MAXWELL GEARS PRIVATE LIMITED 01050309 JAIN MUKESH U00000DL1992PTC050812 -
Alcolapia Grahami ERSS
Lake Magadi Tilapia (Alcolapia grahami) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, March 2015 Revised, August 2017, October 2017 Web Version, 8/21/2018 1 Native Range and Status in the United States Native Range From Bayona and Akinyi (2006): “The natural range of this species is restricted to a single location: Lake Magadi [Kenya].” Status in the United States No records of Alcolapia grahami in the wild or in trade in the United States were found. The Florida Fish and Wildlife Conservation Commission has listed the tilapia Alcolapia grahami as a prohibited species. Prohibited nonnative species (FFWCC 2018), “are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities.” Means of Introductions in the United States No records of Alcolapia grahami in the United States were found. 1 Remarks From Bayona and Akinyi (2006): “Vulnerable D2 ver 3.1” Various sources use Alcolapia grahami (Eschmeyer et al. 2017) or Oreochromis grahami (ITIS 2017) as the accepted name for this species. Information searches were conducted under both names to ensure completeness of the data gathered. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2017), Alcolapia grahami (Boulenger 1912) is the current valid name for this species. It was originally described as Tilapia grahami; it has also been known as Oreoghromis grahami, and as a synonym, but valid subspecies, of -
1646 KMS Kenya Past and Present Issue 46.Pdf
Kenya Past and Present ISSUE 46, 2019 CONTENTS KMS HIGHLIGHTS, 2018 3 Pat Jentz NMK HIGHLIGHTS, 2018 7 Juliana Jebet NEW ARCHAEOLOGICAL EXCAVATIONS 13 AT MT. ELGON CAVES, WESTERN KENYA Emmanuel K. Ndiema, Purity Kiura, Rahab Kinyanjui RAS SERANI: AN HISTORICAL COMPLEX 22 Hans-Martin Sommer COCKATOOS AND CROCODILES: 32 SEARCHING FOR WORDS OF AUSTRONESIAN ORIGIN IN SWAHILI Martin Walsh PURI, PAROTHA, PICKLES AND PAPADAM 41 Saryoo Shah ZANZIBAR PLATES: MAASTRICHT AND OTHER PLATES 45 ON THE EAST AFRICAN COAST Villoo Nowrojee and Pheroze Nowrojee EXCEPTIONAL OBJECTS FROM KENYA’S 53 ARCHAEOLOGICAL SITES Angela W. Kabiru FRONT COVER ‘They speak to us of warm welcomes and traditional hospitality, of large offerings of richly flavoured rice, of meat cooked in coconut milk, of sweets as generous in quantity as the meals they followed.’ See Villoo and Pheroze Nowrojee. ‘Zanzibar Plates’ p. 45 1 KMS COUNCIL 2018 - 2019 KENYA MUSEUM SOCIETY Officers The Kenya Museum Society (KMS) is a non-profit Chairperson Pat Jentz members’ organisation formed in 1971 to support Vice Chairperson Jill Ghai and promote the work of the National Museums of Honorary Secretary Dr Marla Stone Kenya (NMK). You are invited to join the Society and Honorary Treasurer Peter Brice receive Kenya Past and Present. Privileges to members include regular newsletters, free entrance to all Council Members national museums, prehistoric sites and monuments PR and Marketing Coordinator Kari Mutu under the jurisdiction of the National Museums of Weekend Outings Coordinator Narinder Heyer Kenya, entry to the Oloolua Nature Trail at half price Day Outings Coordinator Catalina Osorio and 5% discount on books in the KMS shop. -
Direct Utilization of Geothermal Resources in Kenya
Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Direct Utilization of Geothermal Resources in Kenya John Lagat Kenya Electricity Generating Company Ltd, P. O. Box 785 Naivasha 20117 E-mail: [email protected] Keywords: Geothermal, direct use, balneology, space 38oE heating, greenhouses, agriculture, aquaculture, industrial North Island processes 4oN L. Turkana ETHIOPIA ABSTRACT Central Island Geothermal resources in Kenya are mainly located along the Kenyan Rift, which is part of the eastern arm of the South Island African Rift. The primary forms of utilization of Cenozoic Barrier Volcano geothermal energy in Kenya currently are mainly electric volcanics power generation (168 MWe) and direct uses (~18 MWt) to UGANDA Namarunu a small extent. Though about 99% of geothermal utilization in the country is generation of electricity, direct uses are Emuruangogolak gaining momentum in various parts of the country. Farmers Mt. Elgon Silali have for decades, used geothermal heat to dry pyrethrum Paka KENYA Korosi flowers and condense steam for drinking at Eburru while L. Baringo Nyambeni the Oserian Development Company in Naivasha is using Arus-Bogoria geothermal energy to heat 50 hectares of greenhouses of cut Kisumu Oo roses for export. A tourist hotel at Lake Bogoria is utilizing Menengai Mt. Kenya spring water at 38°C to heat a spa pool. Despite the Eburru availability and enormous potential in direct use L. Naivasha applications, little use has been made of low enthalpy fluids Olkaria Longonot in Kenya. This paper therefore discusses direct use Suswa applications and available opportunities in swimming, Ol'Esakut Nairobi bathing, balneology, agricultural, aquiculture and in Olorgesaille o residential and industrial sectors L. -
In Water Composition Due to Abstraction of Soda Ash. Impact
Chapter 6 - Lake Natron Soda Ash ESIA 6 - 8 in water composition due to abstraction of soda ash. Impact: Introduction of animal pests and pathogens to the Lake system Impact No. B/E 3 Changes in disease vector populations Ranking: Negative slight Characteristics: Domestic waste attracting pests. Abandoned borrow pits providing mosquito breeding sites. Increase in introduction of vectors through increased human and vehicle movement. Impact: Loss of fresh water habitats in the Lake due to dry season abstraction Impact No. B/E 4 Changes in aquatic biota Ranking: Negative slight Characteristics: Abstraction of surface water from the Wosi Wosi River Impact: The Cyperus laevigatus sedgelands surrounding the semi sodic springs in the southern and eastern sides of the Lake form critical late dry season grazing for domestic stock and wildlife. Increased pressure or disturbance could deplete the remaining wildlife populations Impact No. B/E 5 Changes in terrestrial plant populations Ranking: Negative moderate Characteristics: Access road along east side of the Lake would threaten the use of 400 ha of dry season grazing. This area has a stocking rate of at least 2.5 LSU/ha during he dry season Impact: Introduction of alien invasive plant and animal species Impact No. B/E 5 Changes in terrestrial plant (and animal) populations Ranking: Negative slight Characteristics: Concerns relating to construction activities, the development of domestic gardens, the introduction of brine shrimp into the process Impact: Illegal hunting activities will increase with human immigration into the area Impact No. B/E 6 Changes in terrestrial wildlife populations Ranking: Negative slight Characteristics: There is a present decline in rare wildlife species such as gerenuk and Coir bustard and local extinction of rhino and Oryx due to increased pressure on grazing resources and increased poaching. -
Rift-Valley-1.Pdf
R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Rift Valley A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. G R A D E S 6 - 12+ S U B J E C T S Earth Science, Geology, Geography, Physical Geography C O N T E N T S 9 Images For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/rift-valley/ A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. Rift valleys are found both on land and at the bottom of the ocean, where they are created by the process of seafloor spreading. Rift valleys differ from river valleys and glacial valleys in that they are created by tectonic activity and not the process of erosion. Tectonic plates are huge, rocky slabs of Earth's lithosphere—its crust and upper mantle. Tectonic plates are constantly in motion—shifting against each other in fault zones, falling beneath one another in a process called subduction, crashing against one another at convergent plate boundaries, and tearing apart from each other at divergent plate boundaries. Many rift valleys are part of “triple junctions,” a type of divergent boundary where three tectonic plates meet at about 120° angles. Two arms of the triple junction can split to form an entire ocean. The third, “failed rift” or aulacogen, may become a rift valley. -
An Astrobiological Study of an Alkaline-Saline Hydrothermal Environment, Relevant to Understanding the Habitability of Mars
An astrobiological study of an alkaline-saline hydrothermal environment, relevant to understanding the habitability of Mars A thesis submitted for the Degree of Doctor of Philosophy By Lottie Elizabeth Davis Department of Earth Sciences University College London March 2012 1 I, Lottie Elizabeth Davis confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Declaration Abstract The on going exploration of planets such as Mars is producing a wealth of data which is being used to shape a better understanding of potentially habitable environments beyond the Earth. On Mars, the relatively recent identification of minerals which indicate the presence of neutral/alkaline aqueous activity has increased the number of potentially habitable environments which require characterisation and exploration. The study of terrestrial analogue environments enables us to develop a better understanding of where life can exist, what types of organisms can exist and what evidence of that life may be preserved. The study of analogue environments is necessary not only in relation to the possibility of identifying extinct/extant indigenous life on Mars, but also for understanding the potential for contamination. As well as gaining an insight into the habitability of an environment, it is also essential to understand how to identify such environments using the instruments available to missions to Mars. It is important to be aware of instrument limitations to ensure that evidence of a particular environment is not overlooked. This work focuses upon studying the bacterial and archaeal diversity of Lake Magadi, a hypersaline and alkaline soda lake, and its associated hydrothermal springs. -
Geothermal Potential of the Kenya Rift
Presented at Short Course III on Exploration for Geothermal Resources, organized by UNU-GTP and KenGen, at Lake Naivasha, Kenya, October 24 - November 17, 2008. GEOTHERMAL TRAINING PROGRAMME Kenya Electricity Generating Co., Ltd. STATUS OF GEOTHERMAL EXPLORATION IN KENYA AND FUTURE PLANS FOR ITS DEVELOPMENT Peter A. Omenda Kenya Electricity Generating Company Ltd. (KenGen) P.O. Box 785, Naivasha KENYA [email protected] ABSTRACT The high temperature geothermal prospects in Kenya are located within and are associated with the development of the Kenya Rift. Kenya Rift is a continental scale volcano-tectonic feature that stretches from northern to southern Africa. Development of the Rift started during the Oligocene (30million years ago) and activity has continued to recent times. The last 2 million years saw the development of large shield volcanoes within the axis of the rift. These centres are the most important geothermal prospects within the rift. Association between rifting and most of the occurrences of geothermal energy is mainly due to shallow magma chambers underneath the young volcanoes within the rift axis. KenGen in collaboration with the Ministry of Energy of the Government of Kenya has undertaken detailed surface studies of most of the prospects in the central sector of the rift which comprises Suswa, Longonot, Olkaria, Eburru, Menengai, Lakes Bogoria and Baringo, Korosi and Paka volcanic fields. Electric power is currently being generated at Olkaria with 130MWe installed while exploration drilling has been undertaken at Eburru and a 2.5MWe pilot plant is planned for development by KenGen and commissioning by 2009. Common methods that have been used by KenGen during exploration expeditions include geology (lithology, geochronology, structures); geophysics (seismic, gravity, magnetic, and resistivity); geochemistry (fluid and thermometry), heat flow and environmental baseline assessments. -
Geothermal Mapping Using Temperature Measurements
Presented at Short Course VII on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Oct. 27 – Nov. 18, 2012. GEOTHERMAL TRAINING PROGRAMME Kenya Electricity Generating Co., Ltd. GEOTHERMAL MAPPING USING TEMPERATURE MEASUREMENTS Godwin M. Mwawongo Geothermal Development Company P. O. Box 100746, Nairobi 00101 KENYA [email protected] ABSTRACT Shallow temperature gradient holes are reliable in mapping geothermal prospects with heat loss features as surface manifestation. The sun least affects ground temperatures at 1 m depth and temperatures in the North rift are least affected by seasonal changes. Over 10,736 MWt is lost naturally from Menengai to Paka along the Kenyan rift. Most of the geothermal surface manifestations associated with the heat loss are oriented in the NW-SE with a few located in the NE-SW direction. Estimated down-hole temperature at I km depth is over 200oC. Fluid flow in the prospects from Lake Baringo to Paka is from East to West with an outflow to the north. 1. INTRODUCTION Kenya is located in East Africa where the Great African Rift virtually splits the landmass into two. 14 geothermal prospects have been identified within the Kenyan Rift Valley starting from Barrier in the north to Lake Magadi in the south with a potential of over 3,000 MWe (Figure 1). The rift is a graben and during the formation of the prospects, hot rocks were brought closer to the surface and with intensive faulting and presence of water, the geothermal systems were formed as shown in the model in Figure 2.