FROM STEREOGRAM to SURFACE: How the Brain Sees the World In
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Binocular Disparity - Difference Between Two Retinal Images
Depth II + Motion I Lecture 13 (Chapters 6+8) Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2015 1 depth from focus: tilt shift photography Keith Loutit : tilt shift + time-lapse photography http://vimeo.com/keithloutit/videos 2 Monocular depth cues: Pictorial Non-Pictorial • occlusion • motion parallax relative size • accommodation shadow • • (“depth from focus”) • texture gradient • height in plane • linear perspective 3 • Binocular depth cue: A depth cue that relies on information from both eyes 4 Two Retinas Capture Different images 5 Finger-Sausage Illusion: 6 Pen Test: Hold a pen out at half arm’s length With the other hand, see how rapidly you can place the cap on the pen. First using two eyes, then with one eye closed 7 Binocular depth cues: 1. Vergence angle - angle between the eyes convergence divergence If you know the angles, you can deduce the distance 8 Binocular depth cues: 2. Binocular Disparity - difference between two retinal images Stereopsis - depth perception that results from binocular disparity information (This is what they’re offering in “3D movies”...) 9 10 Retinal images in left & right eyes Figuring out the depth from these two images is a challenging computational problem. (Can you reason it out?) 11 12 Horopter: circle of points that fall at zero disparity (i.e., they land on corresponding parts of the two retinas) A bit of geometric reasoning will convince you that this surface is a circle containing the fixation point and the two eyes 13 14 point with uncrossed disparity point with crossed -
Relationship Between Binocular Disparity and Motion Parallax in Surface Detection
Perception & Psychophysics 1997,59 (3),370-380 Relationship between binocular disparity and motion parallax in surface detection JESSICATURNERand MYRON L, BRAUNSTEIN University ofCalifornia, Irvine, California and GEORGEJ. ANDERSEN University ofColifornia, Riverside, California The ability to detect surfaces was studied in a multiple-cue condition in which binocular disparity and motion parallax could specify independent depth configurations, On trials on which binocular disparity and motion parallax were presented together, either binocular disparity or motion parallax could indicate a surface in one of two intervals; in the other interval, both sources indicated a vol ume of random points. Surface detection when the two sources of information were present and compatible was not betterthan detection in baseline conditions, in which only one source of informa tion was present. When binocular disparity and motion specified incompatible depths, observers' ability to detect a surface was severely impaired ifmotion indicated a surface but binocular disparity did not. Performance was not as severely degraded when binocular disparity indicated a surface and motion did not. This dominance of binocular disparity persisted in the presence of foreknowledge about which source of information would be relevant. The ability to detect three-dimensional (3-D) surfaces action ofdepth cues in determining the perceived shape has been studied previously using static stereo displays of objects has been a subject of considerable attention. (e.g., Uttal, 1985), motion parallax displays (Andersen, Biilthoffand Mallot (1988) discussed four ways in which 1996; Andersen & Wuestefeld, 1993), and structure depth information from different cues may be combined: from-motion (SFM) displays (Turner, Braunstein, & An accumulation, veto, disambiguation, and cooperation. -
3D Computational Modeling and Perceptual Analysis of Kinetic Depth Effects
Computational Visual Media DOI 10.1007/s41095-xxx-xxxx-x Vol. x, No. x, month year, xx–xx Research Article 3D Computational Modeling and Perceptual Analysis of Kinetic Depth Effects Meng-Yao Cui1, Shao-Ping Lu1( ), Miao Wang2, Yong-Liang Yang3, Yu-Kun Lai4, and Paul L. Rosin4 c The Author(s) 2020. This article is published with open access at Springerlink.com Abstract Humans have the ability to perceive 3D shapes from 2D projections of rotating 3D objects, which is called Kinetic Depth Effects. This process is based on a variety of visual cues such as lighting and shading effects. However, when such cues are weakened or missing, perception can become faulty, as demonstrated by the famous silhouette illusion example – the Spinning Dancer. Inspired by this, we establish objective and subjective evaluation models of rotated 3D objects by taking their projected 2D images as input. We investigate five different cues: ambient Fig. 1 The Spinning Dancer. Due to the lack of visual cues, it confuses humans luminance, shading, rotation speed, perspective, and color as to whether rotation is clockwise or counterclockwise. Here we show 3 of 34 difference between the objects and background. In the frames from the original animation [21]. Image courtesy of Nobuyuki Kayahara. objective evaluation model, we first apply 3D reconstruction algorithms to obtain an objective reconstruction quality 1 Introduction metric, and then use a quadratic stepwise regression analysis method to determine the weights among depth cues to The human perception mechanism of the 3D world has represent the reconstruction quality. In the subjective long been studied. -
CS 534: Computer Vision Stereo Imaging Outlines
CS 534 A. Elgammal Rutgers University CS 534: Computer Vision Stereo Imaging Ahmed Elgammal Dept of Computer Science Rutgers University CS 534 – Stereo Imaging - 1 Outlines • Depth Cues • Simple Stereo Geometry • Epipolar Geometry • Stereo correspondence problem • Algorithms CS 534 – Stereo Imaging - 2 1 CS 534 A. Elgammal Rutgers University Recovering the World From Images We know: • 2D Images are projections of 3D world. • A given image point is the projection of any world point on the line of sight • So how can we recover depth information CS 534 – Stereo Imaging - 3 Why to recover depth ? • Recover 3D structure, reconstruct 3D scene model, many computer graphics applications • Visual Robot Navigation • Aerial reconnaissance • Medical applications The Stanford Cart, H. Moravec, 1979. The INRIA Mobile Robot, 1990. CS 534 – Stereo Imaging - 4 2 CS 534 A. Elgammal Rutgers University CS 534 – Stereo Imaging - 5 CS 534 – Stereo Imaging - 6 3 CS 534 A. Elgammal Rutgers University Motion parallax CS 534 – Stereo Imaging - 7 Depth Cues • Monocular Cues – Occlusion – Interposition – Relative height: the object closer to the horizon is perceived as farther away, and the object further from the horizon is perceived as closer. – Familiar size: when an object is familiar to us, our brain compares the perceived size of the object to this expected size and thus acquires information about the distance of the object. – Texture Gradient: all surfaces have a texture, and as the surface goes into the distance, it becomes smoother and finer. – Shadows – Perspective – Focus • Motion Parallax (also Monocular) • Binocular Cues • In computer vision: large research on shape-from-X (should be called depth from X) CS 534 – Stereo Imaging - 8 4 CS 534 A. -
Interacting with Autostereograms
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336204498 Interacting with Autostereograms Conference Paper · October 2019 DOI: 10.1145/3338286.3340141 CITATIONS READS 0 39 5 authors, including: William Delamare Pourang Irani Kochi University of Technology University of Manitoba 14 PUBLICATIONS 55 CITATIONS 184 PUBLICATIONS 2,641 CITATIONS SEE PROFILE SEE PROFILE Xiangshi Ren Kochi University of Technology 182 PUBLICATIONS 1,280 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Color Perception in Augmented Reality HMDs View project Collaboration Meets Interactive Spaces: A Springer Book View project All content following this page was uploaded by William Delamare on 21 October 2019. The user has requested enhancement of the downloaded file. Interacting with Autostereograms William Delamare∗ Junhyeok Kim Kochi University of Technology University of Waterloo Kochi, Japan Ontario, Canada University of Manitoba University of Manitoba Winnipeg, Canada Winnipeg, Canada [email protected] [email protected] Daichi Harada Pourang Irani Xiangshi Ren Kochi University of Technology University of Manitoba Kochi University of Technology Kochi, Japan Winnipeg, Canada Kochi, Japan [email protected] [email protected] [email protected] Figure 1: Illustrative examples using autostereograms. a) Password input. b) Wearable e-mail notification. c) Private space in collaborative conditions. d) 3D video game. e) Bar gamified special menu. Black elements represent the hidden 3D scene content. ABSTRACT practice. This learning effect transfers across display devices Autostereograms are 2D images that can reveal 3D content (smartphone to desktop screen). when viewed with a specific eye convergence, without using CCS CONCEPTS extra-apparatus. -
Recovery of 3-D Shape from Binocular Disparity and Structure from Motion
Perception & Psychophysics /993. 54 (2). /57-J(B Recovery of 3-D shape from binocular disparity and structure from motion JAMES S. TI'ITLE The Ohio State University, Columbus, Ohio and MYRON L. BRAUNSTEIN University of California, Irvine, California Four experiments were conducted to examine the integration of depth information from binocular stereopsis and structure from motion (SFM), using stereograms simulating transparent cylindri cal objects. We found that the judged depth increased when either rotational or translational motion was added to a display, but the increase was greater for rotating (SFM) displays. Judged depth decreased as texture element density increased for static and translating stereo displays, but it stayed relatively constant for rotating displays. This result indicates that SFM may facili tate stereo processing by helping to resolve the stereo correspondence problem. Overall, the re sults from these experiments provide evidence for a cooperative relationship betweel\..SFM and binocular disparity in the recovery of 3-D relationships from 2-D images. These findings indicate that the processing of depth information from SFM and binocular disparity is not strictly modu lar, and thus theories of combining visual information that assume strong modularity or indepen dence cannot accurately characterize all instances of depth perception from multiple sources. Human observers can perceive the 3-D shape and orien tion, both sources of information (along with many others) tation in depth of objects in a natural environment with im occur together in the natural environment. Thus, it is im pressive accuracy. Prior work demonstrates that informa portant to understand what interaction (if any) exists in the tion about shape and orientation can be recovered from visual processing of binocular disparity and SFM. -
Stereopsis and Stereoblindness
Exp. Brain Res. 10, 380-388 (1970) Stereopsis and Stereoblindness WHITMAN RICHARDS Department of Psychology, Massachusetts Institute of Technology, Cambridge (USA) Received December 20, 1969 Summary. Psychophysical tests reveal three classes of wide-field disparity detectors in man, responding respectively to crossed (near), uncrossed (far), and zero disparities. The probability of lacking one of these classes of detectors is about 30% which means that 2.7% of the population possess no wide-field stereopsis in one hemisphere. This small percentage corresponds to the probability of squint among adults, suggesting that fusional mechanisms might be disrupted when stereopsis is absent in one hemisphere. Key Words: Stereopsis -- Squint -- Depth perception -- Visual perception Stereopsis was discovered in 1838, when Wheatstone invented the stereoscope. By presenting separate images to each eye, a three dimensional impression could be obtained from two pictures that differed only in the relative horizontal disparities of the components of the picture. Because the impression of depth from the two combined disparate images is unique and clearly not present when viewing each picture alone, the disparity cue to distance is presumably processed and interpreted by the visual system (Ogle, 1962). This conjecture by the psychophysicists has received recent support from microelectrode recordings, which show that a sizeable portion of the binocular units in the visual cortex of the cat are sensitive to horizontal disparities (Barlow et al., 1967; Pettigrew et al., 1968a). Thus, as expected, there in fact appears to be a physiological basis for stereopsis that involves the analysis of spatially disparate retinal signals from each eye. Without such an analysing mechanism, man would be unable to detect horizontal binocular disparities and would be "stereoblind". -
Algorithms for Single Image Random Dot Stereograms
Displaying 3D Images: Algorithms for Single Image Random Dot Stereograms Harold W. Thimbleby,† Stuart Inglis,‡ and Ian H. Witten§* Abstract This paper describes how to generate a single image which, when viewed in the appropriate way, appears to the brain as a 3D scene. The image is a stereogram composed of seemingly random dots. A new, simple and symmetric algorithm for generating such images from a solid model is given, along with the design parameters and their influence on the display. The algorithm improves on previously-described ones in several ways: it is symmetric and hence free from directional (right-to-left or left-to-right) bias, it corrects a slight distortion in the rendering of depth, it removes hidden parts of surfaces, and it also eliminates a type of artifact that we call an “echo”. Random dot stereograms have one remaining problem: difficulty of initial viewing. If a computer screen rather than paper is used for output, the problem can be ameliorated by shimmering, or time-multiplexing of pixel values. We also describe a simple computational technique for determining what is present in a stereogram so that, if viewing is difficult, one can ascertain what to look for. Keywords: Single image random dot stereograms, SIRDS, autostereograms, stereoscopic pictures, optical illusions † Department of Psychology, University of Stirling, Stirling, Scotland. Phone (+44) 786–467679; fax 786–467641; email [email protected] ‡ Department of Computer Science, University of Waikato, Hamilton, New Zealand. Phone (+64 7) 856–2889; fax 838–4155; email [email protected]. § Department of Computer Science, University of Waikato, Hamilton, New Zealand. -
Relative Importance of Binocular Disparity and Motion Parallax for Depth Estimation: a Computer Vision Approach
remote sensing Article Relative Importance of Binocular Disparity and Motion Parallax for Depth Estimation: A Computer Vision Approach Mostafa Mansour 1,2 , Pavel Davidson 1,* , Oleg Stepanov 2 and Robert Piché 1 1 Faculty of Information Technology and Communication Sciences, Tampere University, 33720 Tampere, Finland 2 Department of Information and Navigation Systems, ITMO University, 197101 St. Petersburg, Russia * Correspondence: pavel.davidson@tuni.fi Received: 4 July 2019; Accepted: 20 August 2019; Published: 23 August 2019 Abstract: Binocular disparity and motion parallax are the most important cues for depth estimation in human and computer vision. Here, we present an experimental study to evaluate the accuracy of these two cues in depth estimation to stationary objects in a static environment. Depth estimation via binocular disparity is most commonly implemented using stereo vision, which uses images from two or more cameras to triangulate and estimate distances. We use a commercial stereo camera mounted on a wheeled robot to create a depth map of the environment. The sequence of images obtained by one of these two cameras as well as the camera motion parameters serve as the input to our motion parallax-based depth estimation algorithm. The measured camera motion parameters include translational and angular velocities. Reference distance to the tracked features is provided by a LiDAR. Overall, our results show that at short distances stereo vision is more accurate, but at large distances the combination of parallax and camera motion provide better depth estimation. Therefore, by combining the two cues, one obtains depth estimation with greater range than is possible using either cue individually. -
Chromostereo.Pdf
ChromoStereoscopic Rendering for Trichromatic Displays Le¨ıla Schemali1;2 Elmar Eisemann3 1Telecom ParisTech CNRS LTCI 2XtremViz 3Delft University of Technology Figure 1: ChromaDepth R glasses act like a prism that disperses incoming light and induces a differing depth perception for different light wavelengths. As most displays are limited to mixing three primaries (RGB), the depth effect can be significantly reduced, when using the usual mapping of depth to hue. Our red to white to blue mapping and shading cues achieve a significant improvement. Abstract The chromostereopsis phenomenom leads to a differing depth per- ception of different color hues, e.g., red is perceived slightly in front of blue. In chromostereoscopic rendering 2D images are produced that encode depth in color. While the natural chromostereopsis of our human visual system is rather low, it can be enhanced via ChromaDepth R glasses, which induce chromatic aberrations in one Figure 2: Chromostereopsis can be due to: (a) longitunal chro- eye by refracting light of different wavelengths differently, hereby matic aberration, focus of blue shifts forward with respect to red, offsetting the projected position slightly in one eye. Although, it or (b) transverse chromatic aberration, blue shifts further toward might seem natural to map depth linearly to hue, which was also the the nasal part of the retina than red. (c) Shift in position leads to a basis of previous solutions, we demonstrate that such a mapping re- depth impression. duces the stereoscopic effect when using standard trichromatic dis- plays or printing systems. We propose an algorithm, which enables an improved stereoscopic experience with reduced artifacts. -
Two Eyes See More Than One Human Beings Have Two Eyes Located About 6 Cm (About 2.4 In.) Apart
ivi act ty 2 TTwowo EyesEyes SeeSee MoreMore ThanThan OneOne OBJECTIVES 1 straw 1 card, index (cut in half widthwise) Students discover how having two eyes helps us see in three dimensions and 3 pennies* increases our field of vision. 1 ruler, metric* The students For the class discover that each eye sees objects from a 1 roll string slightly different viewpoint to give us depth 1 roll tape, masking perception 1 pair scissors* observe that depth perception decreases *provided by the teacher with the use of just one eye measure their field of vision observe that their field of vision decreases PREPARATION with the use of just one eye Session I 1 Make a copy of Activity Sheet 2, Part A, for each student. SCHEDULE 2 Each team of two will need a metric ruler, Session I About 30 minutes three paper cups, and three pennies. Session II About 40 minutes Students will either close or cover their eyes, or you may use blindfolds. (Students should use their own blindfold—a bandanna or long strip VOCABULARY of cloth brought from home and stored in their science journals for use—in this depth perception and other activities.) field of vision peripheral vision Session II 1 Make a copy of Activity Sheet 2, Part B, for each student. MATERIALS 2 For each team, cut a length of string 50 cm (about 20 in.) long. Cut enough index For each student cards in half (widthwise) to give each team 1 Activity Sheet 2, Parts A and B half a card. Snip the corners of the cards to eliminate sharp edges. -
Binocular Vision
BINOCULAR VISION Rahul Bhola, MD Pediatric Ophthalmology Fellow The University of Iowa Department of Ophthalmology & Visual Sciences posted Jan. 18, 2006, updated Jan. 23, 2006 Binocular vision is one of the hallmarks of the human race that has bestowed on it the supremacy in the hierarchy of the animal kingdom. It is an asset with normal alignment of the two eyes, but becomes a liability when the alignment is lost. Binocular Single Vision may be defined as the state of simultaneous vision, which is achieved by the coordinated use of both eyes, so that separate and slightly dissimilar images arising in each eye are appreciated as a single image by the process of fusion. Thus binocular vision implies fusion, the blending of sight from the two eyes to form a single percept. Binocular Single Vision can be: 1. Normal – Binocular Single vision can be classified as normal when it is bifoveal and there is no manifest deviation. 2. Anomalous - Binocular Single vision is anomalous when the images of the fixated object are projected from the fovea of one eye and an extrafoveal area of the other eye i.e. when the visual direction of the retinal elements has changed. A small manifest strabismus is therefore always present in anomalous Binocular Single vision. Normal Binocular Single vision requires: 1. Clear Visual Axis leading to a reasonably clear vision in both eyes 2. The ability of the retino-cortical elements to function in association with each other to promote the fusion of two slightly dissimilar images i.e. Sensory fusion. 3. The precise co-ordination of the two eyes for all direction of gazes, so that corresponding retino-cortical element are placed in a position to deal with two images i.e.