Rinjani Volcano: Past, Present, & Future
Total Page:16
File Type:pdf, Size:1020Kb
Rinjani Volcano: Past, Present, & Future “Geoseminar” Kementerian ESDM, Badan Geologi, Pusat Survei Geologi Bandung, 3 Juni 2020 Heryadi Rachmat BIODATA • Nama : Heryadi Rachmat • Tempat/Tgl Lahir : Ketapang, 28 Oktober 1953 • Jabatan sekarang : Dosen Magister Pariwisata Berkelanjutan UNPAD • Alamat Kantor : JL. Dipati Ukur No. 35, Bandung • Pendidikan : S1 & S3 FTG UNPAD, dan S2 MM UNRAM • Nomor HP : 08175741150 • E-mail : [email protected] RIWAYAT PEKERJAAN 1982-1986 : Pegawai Direktorat Vulkanologi 1987-2010 : Pegawai Kanwil/ Dinas Pertambangan & Energi Prov. NTB (Jabatan terakhir Kepala Dinas). 2010-2018 : Pegawai Museum Geologi - Badan Geologi, KESDM (Jabatan terakhir Perekayasa Ahli Utama). RIWAYAT MENGAJAR, ORGANISASI, & PUBLIKASI 2011- Sekarang : Kuliah Tamu perguruan tinggi di Indonesia untuk mata kuliah Vulkanologi, mitigasi bencana geologi, & geowisata. 1984- Sekarang : Anggota & Pengurus Organisasi Profesi IAGI dan MAGI 2018- Sekarang : Ketua Mayarakat Geowisata Indonesia (MAGI), Staf Khusus Pengurus Pusat IAGI &, Asesor Geowisata 1998- Sekarang : Peserta Seminar (nasional & internasional), penulis buku Gunungapi, Bencana Geologi, Geowisata, Geopark, dan sebagai Tim leader kegiatan Fieldtrip geowisata. MEMPEROLEH PENGHARGAAN SEBAGAI: 2001 : Presenter Terbaik pada Pertemuan Ilmiah Tahunan (PIT) IAGI & GEOSEA 2004 : Presenter Terbaik pada PIT Ikatan Ahli Geologi Indonesia (IAGI) 2005 : Penulis Buku Gunungapi NTB dari Prof. Dr. J.A Katili 2007 : Koordinator Bidang Geowisata dari Pengurus Pusat IAGI 2008 : Ahli Kehormatan Geowisata dari Pengurus Pusat IAGI 2009 : Penulis Buku Mitigasi Bencana Geologi dari Dr. Purnomo Yusgiantoro 2009 : Aktivis Geowisata dari PP IAGI 2018 : Penerima IAGI AWARD Bidang Geowisata dari PP IAGI. 1994-2014 : PenerimaSatyalenca Karya Satya 10, 20, & 30 tahun dari Presiden Reublik Indonesia Outline : 1. Introduction 2. The History of Rinjani 3. Rinjani Volcano in the Present 4. Rinjani in the Future 5. Conclusion Rinjani VOLCANO Indonesia is formed by the interaction of three large plates producing volcanic paths, magmatic pathways and sediment deposits, as well as forming geological diversity and geological heritage that are potential to be developed into geotourism areas. Within a period of 800 years, Indonesia has produced three caldera with a diameter of ± 7 km (Rinjani, Tambora, and Krakatau). The Rinjani Caldera was formed due to a large eruption of the Old Rinjani Volcano (Samalas) in 1257, and was just discovered in the early 21st century based on the results of the C14 radiocarbon dating from charcoal contained in pyroclastic flow deposits, and the analyses of aerosol sulfates stored in ice sheets in the Arctic, North Pole and in Greenland, South Pole. The morphological evolution of the Old Rinjani Volcano Complex can be divided into three periods, namely the periods pre-, syn-, and post-caldera formation. The pre-formation of the caldera is the construction phase of the Old Rinjani Volcano complex which reaches an altitude of 4000 meters above sea level, and produces eruption products from basalt to dacite. The syn-caldera formation is marked by eruption of the Plinian type of Old Rinjani Volcano, producing ± 40 km3 pyroclastic composed of dacitic with eruption column height reaching 43 km, and forming a caldera with a diameter of 7 x 6 km and a depth of more than 600 meters. The severity of the eruption is told in the book 'Babad Lombok' written on palm leaves that read "Mount Rinjani landslides, and Mount Samalas collapsed and buried the Subdistrict of Hamlet which had just found its artifacts. The post- caldera formation is marked by the growth of Mt. Barujari and Mt. Rombongan in Rinjani Caldera, as a result of strombolian-type eruptions to volcanoes dominated by intermediate-composed (basaltic- andesitic) lava flows. Terbentuknya Pulau Lombok & Gunungapi Rinjani Pergerakan Lempeng Australia yang merupakan lempeng samudra terus berlanjut mulai pada Zaman Tersier sampai resen (sekarang), menabrak dan menyusup di bawah Lempeng Eurasia yang merupakan lempeng benua, menghasilkan deretan gunungapi Tersier sampai dengan Kuarter. Kala Miosen (11 juta tahun yg lalu), bergeraknya lempeng Australia ke arah utara yang bertumbukan dengan lempeng Eurasia, menghasilkan endapan gunung api submarine (Old Andesit Formation). Inilah awal terbentuknya pulau Lombok. Block diagram penunjaman Lempeng Eurasia dg Lempeng Hindia Australia. Referensi: Robert Hall, etc Rinjani OAF Tim Survei Kama Kusumadinata, 1969 (Menggunakan peta topografi-1951) Tim Survei Kama Kusumadinata, 1969 (Ahli Gunungapi Pembuat Peta Spidol) Hasil Tim Survei Heryadi Rachmat, dkk. (1992-2016) - Perjalanan Sembalun-Danau Segara Anak Tengengean site Track to Padabalong Padabalong site Track to the lake Perjalanan Camp Kokok Putih- G. Barujari menyusuri tebing kaldera Camp Upstream Kokok Putih Traveling – Camp Barujari Traveling – Camp Barujari Perjalanan Camp Kokok Putih- Puncak G. Barujari menggunakan perahu ban mobil Travelling Camp-Barujari Mt. Barujari Beach Mt. Barujari Peak Perjalanan Plawangan Senaru- Camp Kokok Putih- G. Barujari G. Barujari pasca letusan 1994 Lava flows 1994 Potensi mata air panas Aiq Kalaq di hulu Kokok Putih (Danau Segara Anak) Aiq Kalaq Hot Spring The lake of Segara Anak THE MAP OF TREKING RINJANI Top of Mt. Rinjani Hot Spring Volcanic Bom Foto album produk letusan dan kegiatan di Kompleks Gunungapi Rinjani dsk. Letusan G. Barujari 1994 (malam) Bom hasil letusan G. Barujari 1994 Letusan G. Barujari 1994 (siang) Anak G. Barujari hasil letusan 1994 Aliran Lava G. Barujari 1994 Foto album kegiatan di Kompleks Gunungapi Rinjani dsk. Peta penyebaran lava Pasca-Kaldera Rinjani Lava 2009 Lava Pra-1944 Lava 1994 Lava 1944 Lava 2004 Lava 1966 Lava 2015 Penampang Kaldera Rinjani (Samalas) Aliran Lava G. Barujari 2015 dan Endapan piroklastik Puncak G. Rinjani The History Of Rinjani Caldera (Samalas) Background Indonesia is formed by the interaction of three large plates producing volcanic paths, magmatic pathways and sediment deposits. Within a period of 800 years, Indonesia has producedRinjani Calderathree 1257 caldera with a diameter of ± 7 km (Rinjani, Tambora, and Krakatau). The Rinjani Caldera was formed due to a large eruption of the Old Rinjani Volcano (Samalas) in 1257, and was just discovered in the early 21st century based on the results of the C14 radiocarbon dating from charcoal contained in pyroclastic flow deposits, and the analyses of aerosol sulfates stored in ice sheets in theBarujariArctic, VolcanoNorth Pole and in Greenland, South Pole. 1994 The morphological evolution of the Old Rinjani Volcano Complex can be divided into three periods, namely the periods pre-, syn-, and post-caldera formation. The pre-formation of the caldera is the construction phase of the Old Rinjani Volcano complex which reaches an altitude of 4000 meters above sea level, and produces eruption products from basalt to dacite. The syn-caldera formation is marked by eruption of the Plinian type of Old Rinjani Volcano, producing ± 40 km3 pyroclastic composed of dacitic with eruption column height reaching 43 km, and forming a caldera with a diameter of 7 x 6 km and a depth of more than 600 meters. The severity of the eruptionBarujariis Volcanotold in the book 'Babad Lombok' written on palm leaves that read "Mount Rinjani landslides, and Mount Samalas2015 collapsed and buried the Subdistrict of Hamlet which had just found its artifacts. The post-caldera formation is marked by the growth of Mt. Barujari and Mt. Rombongan in Rinjani Caldera, as a result of strombolian-type eruptions to volcanoes dominated by intermediate-composed (basaltic-andesitic) lava flows. Lava Pra-Kaldera Lava Pasca Kaldera Piroklastik Sin-Kaldera Piroklastik Pasca Kaldera Bowen’s Reaction Series I Model terjadinay magma mixing dan Mingling Classification of Volcanic Rocks Model Vulkanisme eksplosif dan Viskositas Model Terjadinya Magmatic Differentiation • Barujari Lava Flows 2015: • 2 Large Plagioclase with Synneusis textured (top) two zonation with oscillatory rim and coarse sieve core • (bottom) similar outer layer with the top but composed of clear & coarse sieve texture • Show little broken texture Courtecy Kang Zaenudin Rombongan and Barujari Lava Flows (1944-1994). • Lava flows of Rombongan and Barujari (1944-2004) generally range between basalt andesite-basalt and pyroxene andesite. These are porphyritic and intergranular texture with plagioclase, ortho-clino pyroxene (augit and diopsid), olivine and opaque minerals phenocrysts (0.1 - 2 mm), the pyroxene and olivine minerals are frequently found amongst the irregular and elongated plagioclase minerals. Apart from phenocryst, the plagioclase is also found as ground mass in microlite forms. This plagioclase is also often associated with opaque minerals, pyroxene and glassy ground mass. The crystals are generally subhedral to euhedral shaped. Based on extinction angle of the Albite, Carlsbad-Albit twin and lots of zoning, they are mostly labradorite. Barujari Lava flows 2015: Type-1 and type 3 groundmass found in 2015 (mingling). Radiocarbon Dating Laboratory Geological Research and Development Centre; Sampling Date: 2000; Sampel No. : ARANG/CHARCOAL – KALDERA RINJANI Location : Korleko - Lombok Time (min.) Anti-Coin () Activity (com) () 100.00 324.00 18.00 3.24 0.18 100.00 318.00 17.83 3.18 0.18 THE RESULT OF RADIOCARBON 100.00 337.00 18.36 3.37 0.18 100.00 328.00 18.11 3.28 0.18 DATING MEASUREMENT 100.00 311.00 17.64 3.11 0.18 100.00 337.00 18.36 3.37 0.18 100.00 322.00 17.64 3.22