Rinjani : Past, Present, & Future “Geoseminar” Kementerian ESDM, Badan Geologi, Pusat Survei Geologi Bandung, 3 Juni 2020 Heryadi Rachmat BIODATA

• Nama : Heryadi Rachmat • Tempat/Tgl Lahir : Ketapang, 28 Oktober 1953 • Jabatan sekarang : Dosen Magister Pariwisata Berkelanjutan UNPAD • Alamat Kantor : JL. Dipati Ukur No. 35, Bandung • Pendidikan : S1 & S3 FTG UNPAD, dan S2 MM UNRAM • Nomor HP : 08175741150 • E-mail : [email protected]

RIWAYAT PEKERJAAN 1982-1986 : Pegawai Direktorat Vulkanologi 1987-2010 : Pegawai Kanwil/ Dinas Pertambangan & Energi Prov. NTB (Jabatan terakhir Kepala Dinas). 2010-2018 : Pegawai Museum Geologi - Badan Geologi, KESDM (Jabatan terakhir Perekayasa Ahli Utama).

RIWAYAT MENGAJAR, ORGANISASI, & PUBLIKASI 2011- Sekarang : Kuliah Tamu perguruan tinggi di untuk mata kuliah Vulkanologi, mitigasi bencana geologi, & geowisata. 1984- Sekarang : Anggota & Pengurus Organisasi Profesi IAGI dan MAGI 2018- Sekarang : Ketua Mayarakat Geowisata Indonesia (MAGI), Staf Khusus Pengurus Pusat IAGI &, Asesor Geowisata 1998- Sekarang : Peserta Seminar (nasional & internasional), penulis buku Gunungapi, Bencana Geologi, Geowisata, Geopark, dan sebagai Tim leader kegiatan Fieldtrip geowisata.

MEMPEROLEH PENGHARGAAN SEBAGAI: 2001 : Presenter Terbaik pada Pertemuan Ilmiah Tahunan (PIT) IAGI & GEOSEA 2004 : Presenter Terbaik pada PIT Ikatan Ahli Geologi Indonesia (IAGI) 2005 : Penulis Buku Gunungapi NTB dari Prof. Dr. J.A Katili 2007 : Koordinator Bidang Geowisata dari Pengurus Pusat IAGI 2008 : Ahli Kehormatan Geowisata dari Pengurus Pusat IAGI 2009 : Penulis Buku Mitigasi Bencana Geologi dari Dr. Purnomo Yusgiantoro 2009 : Aktivis Geowisata dari PP IAGI 2018 : Penerima IAGI AWARD Bidang Geowisata dari PP IAGI. 1994-2014 : PenerimaSatyalenca Karya Satya 10, 20, & 30 tahun dari Presiden Reublik Indonesia Outline :

1. Introduction 2. The History of Rinjani 3. Rinjani Volcano in the Present 4. Rinjani in the Future 5. Conclusion Rinjani VOLCANO

Indonesia is formed by the interaction of three large plates producing volcanic paths, magmatic pathways and sediment deposits, as well as forming geological diversity and geological heritage that are potential to be developed into geotourism areas. Within a period of 800 years, Indonesia has produced three with a diameter of ± 7 km (Rinjani, Tambora, and Krakatau). The Rinjani Caldera was formed due to a large eruption of the Old Rinjani Volcano (Samalas) in 1257, and was just discovered in the early 21st century based on the results of the C14 radiocarbon dating from charcoal contained in deposits, and the analyses of aerosol sulfates stored in ice sheets in the Arctic, North Pole and in Greenland, South Pole. The morphological evolution of the Old Rinjani Volcano Complex can be divided into three periods, namely the periods pre-, syn-, and post-caldera formation. The pre-formation of the caldera is the construction phase of the Old Rinjani Volcano complex which reaches an altitude of 4000 meters above sea level, and produces eruption products from to . The syn-caldera formation is marked by eruption of the Plinian type of Old Rinjani Volcano, producing ± 40 km3 pyroclastic composed of dacitic with eruption column height reaching 43 km, and forming a caldera with a diameter of 7 x 6 km and a depth of more than 600 meters. The severity of the eruption is told in the book 'Babad ' written on palm leaves that read "Mount Rinjani landslides, and Mount Samalas collapsed and buried the Subdistrict of Hamlet which had just found its artifacts. The post- caldera formation is marked by the growth of Mt. Barujari and Mt. Rombongan in Rinjani Caldera, as a result of strombolian-type eruptions to volcanoes dominated by intermediate-composed (basaltic- andesitic) flows. Terbentuknya Pulau Lombok & Gunungapi Rinjani

Pergerakan Lempeng yang merupakan lempeng samudra terus berlanjut mulai pada Zaman Tersier sampai resen (sekarang), menabrak dan menyusup di bawah Lempeng Eurasia yang merupakan lempeng benua, menghasilkan deretan gunungapi Tersier sampai dengan Kuarter.

Kala Miosen (11 juta tahun yg lalu), bergeraknya lempeng Australia ke arah utara yang bertumbukan dengan lempeng Eurasia, menghasilkan endapan gunung api submarine (Old Andesit Formation). Inilah awal terbentuknya pulau Lombok. Block diagram penunjaman Lempeng Eurasia dg Lempeng Hindia Australia. Referensi: Robert Hall, etc

Rinjani

OAF

Tim Survei Kama Kusumadinata, 1969 (Menggunakan peta topografi-1951) Tim Survei Kama Kusumadinata, 1969 (Ahli Gunungapi Pembuat Peta Spidol) Hasil Tim Survei Heryadi Rachmat, dkk. (1992-2016) - Perjalanan Sembalun-Danau Segara Anak Tengengean site

Track to Padabalong

Padabalong site

Track to the lake Perjalanan Camp Kokok Putih- G. Barujari menyusuri tebing kaldera

Camp Upstream Kokok Putih

Traveling – Camp Barujari

Traveling – Camp Barujari Perjalanan Camp Kokok Putih- G. Barujari menggunakan perahu ban mobil

Travelling Camp-Barujari

Mt. Barujari Beach

Mt. Barujari Peak Perjalanan Plawangan Senaru- Camp Kokok Putih- G. Barujari

G. Barujari pasca letusan 1994 Lava flows 1994 Potensi mata air panas Aiq Kalaq di hulu Kokok Putih (Danau Segara Anak)

Aiq Kalaq The lake of Segara Anak

THE MAP OF TREKING RINJANI Top of Mt. Rinjani

Hot Spring Volcanic Bom Foto album produk letusan dan kegiatan di Kompleks Gunungapi Rinjani dsk.

Letusan G. Barujari 1994 (malam)

Bom hasil letusan G. Barujari 1994

Letusan G. Barujari 1994 (siang)

Anak G. Barujari hasil letusan 1994

Aliran Lava G. Barujari 1994 Foto album kegiatan di Kompleks Gunungapi Rinjani dsk. Peta penyebaran lava Pasca-Kaldera Rinjani

Lava 2009 Lava Pra-1944 Lava 1994

Lava 1944 Lava 2004

Lava 1966 Lava 2015 Penampang Kaldera Rinjani (Samalas) Aliran Lava G. Barujari 2015 dan Endapan piroklastik Puncak G. Rinjani The History Of Rinjani Caldera (Samalas)

Background Indonesia is formed by the interaction of three large plates producing volcanic paths, magmatic pathways and sediment deposits. Within a period of 800 years, Indonesia has producedRinjani Calderathree 1257 caldera with a diameter of ± 7 km (Rinjani, Tambora, and Krakatau). The Rinjani Caldera was formed due to a large eruption of the Old Rinjani Volcano (Samalas) in 1257, and was just discovered in the early 21st century based on the results of the C14 radiocarbon dating from charcoal contained in pyroclastic flow deposits, and the analyses of aerosol sulfates stored in ice sheets in theBarujariArctic, VolcanoNorth Pole and in Greenland, South Pole. 1994 The morphological evolution of the Old Rinjani Volcano Complex can be divided into three periods, namely the periods pre-, syn-, and post-caldera formation. The pre-formation of the caldera is the construction phase of the Old Rinjani Volcano complex which reaches an altitude of 4000 meters above sea level, and produces eruption products from basalt to dacite. The syn-caldera formation is marked by eruption of the Plinian type of Old Rinjani Volcano, producing ± 40 km3 pyroclastic composed of dacitic with eruption column height reaching 43 km, and forming a caldera with a diameter of 7 x 6 km and a depth of more than 600 meters. The severity of the eruptionBarujariis Volcanotold in the book 'Babad Lombok' written on palm leaves that read "Mount Rinjani landslides, and Mount Samalas2015 collapsed and buried the Subdistrict of Hamlet which had just found its artifacts. The post-caldera formation is marked by the growth of Mt. Barujari and Mt. Rombongan in Rinjani Caldera, as a result of strombolian-type eruptions to volcanoes dominated by intermediate-composed (basaltic-andesitic) lava flows. Lava Pra-Kaldera Lava Pasca Kaldera

Piroklastik Sin-Kaldera Piroklastik Pasca Kaldera Bowen’s Reaction Series I Model terjadinay mixing dan Mingling

Classification of Volcanic Rocks Model Vulkanisme eksplosif dan Viskositas Model Terjadinya Magmatic Differentiation • Barujari Lava Flows 2015: • 2 Large Plagioclase with Synneusis textured (top) two zonation with oscillatory rim and coarse sieve core • (bottom) similar outer layer with the top but composed of clear & coarse sieve texture • Show little broken texture Courtecy Kang Zaenudin

Rombongan and Barujari Lava Flows (1944-1994). • Lava flows of Rombongan and Barujari (1944-2004) generally range between basalt -basalt and pyroxene andesite. These are porphyritic and intergranular texture with plagioclase, ortho-clino pyroxene (augit and diopsid), olivine and opaque minerals phenocrysts (0.1 - 2 mm), the pyroxene and olivine minerals are frequently found amongst the irregular and elongated plagioclase minerals. Apart from phenocryst, the plagioclase is also found as ground mass in microlite forms. This plagioclase is also often associated with opaque minerals, pyroxene and glassy ground mass. The crystals are generally subhedral to euhedral shaped. Based on extinction angle of the Albite, Carlsbad-Albit twin and lots of zoning, they are mostly labradorite. Barujari Lava flows 2015: Type-1 and type 3 groundmass found in 2015 (mingling). Radiocarbon Dating Laboratory Geological Research and Development Centre; Sampling Date: 2000; Sampel No. : ARANG/CHARCOAL – KALDERA RINJANI Location : Korleko - Lombok Time (min.) Anti-Coin () Activity (com) () 100.00 324.00 18.00 3.24 0.18 100.00 318.00 17.83 3.18 0.18 THE RESULT OF RADIOCARBON 100.00 337.00 18.36 3.37 0.18 100.00 328.00 18.11 3.28 0.18 DATING MEASUREMENT 100.00 311.00 17.64 3.11 0.18 100.00 337.00 18.36 3.37 0.18 100.00 322.00 17.64 3.22 0.18 100.00 310.00 17.61 3.10 0.18 100.00 330.00 18.17 3.30 0.18 100.00 328.00 18.11 3.28 0.18 Total 1000.00 3245.00 56.96 3.24 0.06 Background counting (marble) = .99  .02 (cpm) Sample counting (Ct) = 3.26  .06 (cpm) = {( 3.24  .06) – ( .99  .02)} x f (f=1) = 2.25  .063 (cpm) Modern Carbon = 14.4  .05 (cpm) (Oxalia acid, 95% Activity) Age = 18496 x log (14.4  2.25) = 14911 Years dt = 8032.93 x {( .05 / 14.4 )2 + ( .063 / 2.25)2)^(1/2) = 227 Years AGE = 14860  230 B.P. (1950) AGE = 14860  230 B.P. (1950)AGE = B.C. MEASURING DATE : 24-11-2000; DARWIN A SIREGAR Courtesy P3G Diagram Peccerillo & Taylor (1976) Berdasarkan Kandungan K2O dan SiO2 dari Lava Pra (L-PSM & L-PSN) dan Lava Pasca Kaldera Rinjani

Lava Pra-Kaldera

Lava Pasca Kaldera Hasil analisis Diagram Peccerillo & Taylor (1976) Berdasarkan Kandungan K2O dan SiO2 dari Piroklastik Sin, Pra, & Pasca Kaldera Rinjani

Piroklastik Pra Kaldera Piroklastik Sin Kaldera

Piroklastik Pasca Kaldera Hasil analisis SEM sampel piroklastik Samalas SIN 1c (yang ditemukan juga sama dengan yang ada di kedua kutub)

a. Zoom 50x c. Zoom 500x

b. Zoom 200x d. Zoom 5000x Hasil analisis SEM sampel piroklastik Samalas SIN 3b (yang ditemukan juga sama dengan yang ada di kedua kutub)

a. Zoom 50x c. Zoom 500x

b. Zoom 200x d. Zoom 5000x MODEL MAGMATISMA & VOLKANISMA GUNUNGAPI RINJANI PRA KALDERA

Background by Andi volcano MODEL MAGMATISMA & VOLKANISMA GUNUNGAPI RINJANI PASCA KALDERA

Background by Andi volcano

Hasil Tim Survei Akira Takada, 2002-2003

Peta geologi Kompleks Gunungapi Rinjani

Peta Lokasi Sampling dan Hasil dating Charcoal Pada Pembentukan Kaldera Rinjani (Samalas)

Hasil Tim Survei Frank Lavigne, 2012-2013

Hasil Radiocarbon dating dari 22 contoh arang kayu di dalam endapan piroklastik

1167 1284 Hasil analisis sulfat aerosol & Glas shard pada lapisan es di kedua Kutub

1257

Clip Oppenheimer Peneliti endapan hasil letusan Samalas 1257 di Kutub Utara & Kutub Selatan 2013

Background by Andi volcano

RINJANI VOLCANO IS SUITABLE TO BE PROPOSED AS GEOPARK

1. Important Geology Value 2. Nice View and Landscape 3. Enviromental Orientation 4. Science and Education Oriented 5. Local Community Involvement 6. Establisment of RTMB Organization Committee 7. Joint with universities, Research Body, Enviromental Organization, Government and Local Communities 8. Received “World Legacy Award” 2004, and “Tourism for Tomorrow Awards” 2005 & 2008. 9. Rinjani area was proposed in 2009 to GGN, but it was not established because some problems to decide the deliniation area due to The National Strategic area Sumber : Tim Geopark Rinjani Sumber : Tim Geopark Rinjani LUAS KAWASAN: 3.065 km2 KOORDINAT: 1160 00’ 32” – 1160 45” 59’ BT & 80 12” 10” – 80 41” 48’ LS. TEMA GEOPARK RINJANI: ‘KALDERA DENGAN GUNUNG API AKTIF TERTINGGI DI INDONESIA’ BUPATI LOMBOK TIMUR SAAT PERESMIAN MAKET GUNUNG RINJANI DI SEMBALUN Rapat persiapan workshop internasional Geopark Di & Kunjungan para Asesor ke Lombok Penjelasan tentang isi dari tulisan pada daun lontar Publikasi tentang G Rinjani berupa Guide Book of Rinjani Caldera (CoV-8 field trip) dan Buku berjudul Rinjani From Eevolution to geopark KONTAK ENDAPAN PIROKLASTIK HASIL LETUSAN G. SAMALAS 1257 DENGAN LAPISAN TANAH (Atas) KAWASAN PERKAMPUNGAN (DIDUGA SEBAGAI DUSUN PAMATAN) DI TANAH BEAQ YANG TERTIMBUN (Bawah) Singkapan batuan dan model 'Signboard' di Kawasan G. Rinjani Rombongan Tim Gabungan dari Kemenpar, Kemenhut, Taman Nasional G. Rinjani, & IAGI ke lokasi Tanaq Beak, Lombok Tengah Rinjani Volcano in The Present

• Sebagai bagian utama dari UGG Rinjani Lombok • Memiliki Badan Pengelola Geopark yang berpengalaman • Memiliki Pusat Informasi Geologi (PIG) foto2 PIG • Memiliki pemandu Geowisata yang bersertifikat BNSP • Memiliki kelompok binaan geowisata yang sudah terlatih • Sudah mempunyai agenda untuk mengadakan kegiatan pembinaan melalui Geopark to School atau School to Geopark contoh PENETAPAN RINJANI SEBAGAI UGG & SEKALIGUS MENJADI TUAN RUMAH PERTEMUAN APGN TAHUN 2019 DI LOMBOK School to Geopark Pembinaan kegiatan River Tubbing, Camping, Soft Trekking Kerajinan Ketak Rinjani in The Future:

• Melalukan Penelitian Arkeologi pada lokasi artefak yang ditemukan tertimbun saat pembentukan kaldera Rinjani • Pembuatan Site Museum pada lokasi ditemukannya artefak yang dilengkapai dengan berbagai sarana edukasi • Meningkatkan pengetahuan dan keterampilan Pemandu, melalui pemantapan atau diklat bersertifikat BNSP • Melengkapi signbord di setiap destinasi (geosite), sesuai pedoman • Meningkatkan kualitas sarana dan prasarana destinasi sesuai standar Internasional Geoparks and education for disaster prevention Geotourism for general public

• Self-guided tour • Guided tour • Mass tour

Development of multi-purposed educational program Educational signboards for self-guided tours

• Multilingual description (Korean, Chinese, English and Japanese) • Simple and easy to understand • Detailed information should be provided by written publications. • Individual guides using audio/video aids Signboards • Airmed for elementary students and children • Should be variably designed depending upon the characteristics of the tour areas Mt. Unzen Disaster Memorial Hall

When you come to our geopark, you should come here first The Heisei-eruption Theater in Unzen Disaster Memorial Hall

A scene of burnt-out land

The road of pyroclastic flow Houses buried by debris flow

Elementary school burnt by pyroclastic flow In order to share…

And, enjoyed the foot spa!

They are enduring the very hot! heat of hot spring.

lesson of the disaster in hometown by disaster narrative volunteers

“Treasure stone hunting tour” in Unzen volcanic area geopark

Children and participants are looking for their favorite stone together to make original rock specimen! MAKET MUSEUM GEOLOGI NTB, YANG DILENGKAPI ROOFTOP DENGAN TEROPONG KE ARAH G. RINJANI....SEMOGA TERWUJUD

SEMINAR NASIONAL GEOPARK G. RINJANI PERTAMA DIADAKAN DI LOMBOK, DIHADIRI OLEH PEMDA, PERWAKILAN PERGURUAN TINGGI GEOLOGI, KEMENPAR, KEMENHUT, IAGI, & MASYARAKAT