Die Familie Der Herpesviridae Herpesviridae

Total Page:16

File Type:pdf, Size:1020Kb

Die Familie Der Herpesviridae Herpesviridae Die Familie der Herpesviridae Herpesviridae Unterfamile Genus Vertreter (Mensch) α-Herpesvirinae Simplexvirus Humanes Herpesvirus 1 (Herpes- simplex-Virus-1) Humanes Herpesvirus 2 (Herpes- simplex-Virus-2) Varicellovirus Humanes Herpesvirus 3 (Varicella Zoster Virus) β-Herpesvirinae Cytomegalovirus Humanes Herpesvirus 5 Muromegalovirus Kein Roseolovirus Humanes Herpesvirus 6,7 γ-Herpesvirinae Lymphocryptovirus Humanes Herpesvirus 4 (Epstein Barr Virus) Rhadinovirus Humanes Herpesvirus 8 (= Kaposi sarcoma herpes virus) Molekulare Virologie Ruth Brack-Werner; SS 2008 Herpesviridae: Gemeinsame, charakteristische MerkmaleHerpesviridae . • Partikel enthalten Faktoren, die u.a. die virale Transkription aktivieren und die in die zelluläre Genexpression eingreifen; • Zusammenbau der Viruskapside und Virus-Genomsynthese im Zellkern; • Virusvermehrung = Zerstörung der Wirtszelle; • Latenz; • Kodieren mehrere Enzyme/Proteine für die Genomreplikation (z.B. DNA Polymerase, Korrekturenzyme und Enzyme für die Bereitstellung von Nukleotid-Bausteinen ); • Genome linear, dsDNA, bis zu 230 kB lang. Molekulare Virologie Ruth Brack-Werner; SS 2008 Herpesviridae: Merkmale der einzelnen Unterfamilien Herpesviridae Zell-Spektrum Zell-Spektrum Zell-Spektrum http://www.vu-wien.ac.at/i123/SPEZVIR/HERPESGEN1.HTML Molekulare Virologie Ruth Brack-Werner; SS 2008 Struktur von Herpesviren Herpesviridae Lipidhülle; Tegument Grösse: 180-200 nM Durchmesser; Lipidmembran Schematische Darstellung (Beispiel: Elektronen Mikroskopische HCMV); Aufnahme http://www.biografix.de/ http://web.uct.ac.za/depts/mmi/stannard/emimages.html Molekulare Virologie Ruth Brack-Werner; SS 2008 Herpesvirus Genome Herpesviridae http://www-micro.msb.le.ac.uk/3035/3035pics/Herpes1.gif Molekulare Virologie Ruth Brack-Werner; SS 2008 Isomere des Cytomegalovirus Genoms Herpesviridae Molekulare Virologie Aus”Molekulare Virologie”, Modrow, Falk, Truyen, 2.Auflage, 2003, Spektrum Ruth Brack-Werner; SS 2008 Akademischer Verlag, Kap. 19l, Fig.19.24B Herpesvirus Genome liegen als Episom in infizierter Zelle vor Herpesviridae Gene für: DNA Synthese Kapsid Membranproteine LAT Replikationsursprung http://darwin.bio.uci.edu/~faculty/wagner/hsvimg04.jpg Molekulare Virologie Ruth Brack-Werner; SS 2008 Beispiele für Herpesvirus Promotoren Herpesviridae Fast jedes Gen hat seinen eigenen Promotor. Aus Fields Virology 4th edition, 2002, Chapter727, Lippincott, Williams and Wilkins, 2002 Fig. 67-6 Molekulare Virologie Ruth Brack-Werner; SS 2008 Beispiel eines viralen Transkriptionsregulators: HSV VP16 Herpesviridae Latency VP16 /bacteria/hhv1/herpes.html stdgen / gov 500 - 1000 . lanl molecules . stdgen α-genes β-genes γ-genes Immediate early early late + particle:http://www. - Virus Molekulare Virologie Ruth Brack-Werner; SS 2008 „Immediate early“ (α) virale Proteine: Beispiel HSV Herpesviridae Proteine Modifikation/Grösse (kD) Funktionen ICP4 Phosphoryliert; UDP und Aktivierung der Transkription von β und γ Genen; ADP-Reste/ Repression der Transkription von α-Genen (ICP0, 140 ICP4) ICP0 79 Transkriptionsaktivator; wirkt synergistisch mit ICP4; ICP27 Phosphoryliert/ 63 Post-transkriptioneller Regulator; Trägt zur Ausschaltung der Expression zellulärer Proteine bei indem es Splicing inhibiert* Fördert den Export ungespleißter viraler mRNAs; ICP47 Verhindert Präsentation von viralen Antigenen für CD8 Zellen; Molekulare Virologie Ruth Brack-Werner; SS 2008 Replikationsgabel in Säugetierzellen © 2002 by Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter „Early“ Proteine/Enzyme für die virale DNA Replikation (I) Funktion Grösse (kD) /Genort ) HSV CMV EBV HHV-8 Bindet an oriLyt 94/ 70 38-40/ ? UL9 /UL84 BZLF1 DNA Polymerase:Polymerase und 140/ 150/ 110/ Polymerase- Exonukleaseaktvität UL30 UL50 BALF-5 Orf 9 komplex Bindet ds DNA (processivity factor) 62/ 52/ 50 orf59 UL42 UL44 /BMRF1 Bindung von Einzelstrang DNA an 124/ 140/ 138/ 110/ Replikationsgabel UL29 UL57 BALF2 Orf6 5’,-3’Helikase, DNA-Primasekomplex 99/ 115/ -/BSLF1 orf56 UL5 UL105 Helikase- 5’,-3’Helikase, DNA-Primasekomplex 114/ 110/ - 0rf40/41 Primase- /BBLF2/3 Komplex UL52 UL70 Stimuliert Primersynthese 80/UL8 -/UL102? -/BBL4 Orf44 Replikation des Genoms zur Verpackung in Virione: „Rolling circle“ Mechanismus Herpesviridae Aus”An Introduction to Genetic Analysis” Griffiths, Miller, Suzuki, Lewontin, Gelbart, , 7th Ed, 2000, W.H. Freeman and Co, Fig. 8-19, Molekulare Virologie Ruth Brack-Werner; SS 2008 Beteiligung von Herpesvirus Proteinen bei der lytischen Genomreplikation Herpesviridae Aus”Molekulare Virologie”, Modrow, Falk, Truyen, 2.Auflage, 2003, Spektrum Akademischer Verlag, Kap. 19l, Fig.19.25 Molekulare Virologie Ruth Brack-Werner; SS 2008 „Early“ Proteine/Enzyme für die virale DNA Replikation (II) Aktivität Grösse (kD) /Genort ) HSV CMV EBV HHV-8 Thymidinkinase; Phosphoryliert Thymidine und 41/ -/- 70/ andere Nukleoside; UL23 BXLF-1 Orf 21 Ribonukleotidreduktase* Untereinheit (gross) 140/ -/ 85/ Orf61 UL39 UL45 BORF2 Ribonukleotidreduktase* Untereinheit (klein) 38/ ? 34/ Orf60 UL40 BaRF1 Uracilglycosylase: Katalysiert die Freisetzung von 39/ -/ 78-88 orf46 Uracil aus DNA: DNA Reparatur? UL2 UL114 /BKRF3 Alkalische Endo-/Exonuklease: Auflösung von 68/UL12 -/UL98 70/BGLF5 Orf37 Verzweigten Strukturen in der DNA. dUTPase: dUTP -> dUMP zur Verhinderung des 39/ -/ -/BLLF3 orf55 Einbaus von dUTP in die DNA; UL50 UL72 *Katalysiert die Umwandlung von Ribonukleotiden zu Desoxyribonukleotiden; Essentiell für die Replikation in nicht-teilenden Zellen. Exemplarische „Späte“ Proteine Herpesviridae Aktivität Grösse (kD)/Bezeichnung /Genort ) HSV CMV EBV HHV-8 Tegument Protein; aktiviert die Transkription der 54/α-TIF, 71/-/UL82 -/-/BPLF1? “immediate early” Gene ICP25, VP16, UL48 Hauptkapsidprotein 155/VP5/ 153/-/UL86 154/- 153/- UL19 /BCLF1 /orf25 Diverse Membranproteine (Glykosyliert) Molekulare Virologie Ruth Brack-Werner; SS 2008 VP16 funktioniert als Komplex mit zellularen Faktoren Herpesviridae Acidic activation domain HCF-1: human factor C1 Oct-1: Octamer 1 transcription factor Wysocka J and Herr W. 2003.TIBS 28, 294-304. POU domains Molekulare Virologie Ruth Brack-Werner; SS 2008 Replikationszyklus: Eintritt in die Zelle (HSV) Herpesviridae = Entry 3-O-S: 3-O-Sulfotransferase; HS: Heparan sulphate spezifische durch 3-O-S modifizierte HS können als Fusionsrezeptoren dienen. HVEM: Herpes virus entry mediator: Mitglied der TNF-α Rezeptor Familie Nectin 1, 2: Mitglieder der Immunoglobulin superfamilie Spear PG et al. 2004, Molekulare Virologie Ruth Brack-Werner; SS 2008 Heparin Sulphat Herpesviridae Disaccharid bestehend GAG: aus D-glucosamin und N- glycosaminoglycan Acetyl-D-Glucosamin http://www.med.unibs.it/~airc/hspgs.html Negative Ladungen Aus: Molecular Biology of the Cell. 4th ed. Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter. New York: Garland Publishing; 2002.Fig. 19-39 Molekulare Virologie Ruth Brack-Werner; SS 2008 Bindung von Herpesviren an Zelloberfläche führt zur Transduktion von Signale (Bsp. HCMV) Herpesviridae Molekulare Virologie Compton T. 2004. TCB. 14, 5-9. Ruth Brack-Werner; SS 2008 Replikationszyklus: HSV I “Immediate Early” “Späte” Ereignisse 12- Ereignisse 1-9: 24-: DNA Replikation: Anheftung des Virus an Bildung von Zelloberfläche; Fusion Konkatameren, die zur der viralen und Transkription der γ - zellulären Membrane; Gene verwendet Eintritt des Kapsids und werden; Synthese von Ausschüttung der Hüllproteinen am ER; Tegumentproteine in die Transport von viralen Zelle; Transport des NC Glykoproteinen in den zur Kernpore und Golgi; Zusammenbau Freisetzung der HSV von Nukleo-Kapsiden DNA in den Kern; (NC) im Kern; Expression der α-Gene Ausknospung von NC in und Synthese der das ER und dann ins Proteine; Zytoplasma; Fusion der zytoplasm. NC mit Golgi-Membran; Erneute Behüllung des Virus; Ausknospung des “Early” Ereignisse 10- behüllten Virus in 11: α-Proteine aktivieren Vesikel und Freisetzung die Synthese der β- der Vesikel durch Proteine; Exozytose Principles of Virology, 2004. Flint SJ, Enquist LW, Racaniello VR,Skalka AM, 2nd edition. ASM Press. Appendix, Fig. 6. Verbreitung von HSV im Wirt Herpesviridae Principles of Virology, 2004. Flint SJ, Enquist LW, Racaniello VR,Skalka AM, Molekulare Virologie Ruth Brack-Werner; SS 2008 2nd edition. ASM Press. Appendix, p.853. HSV-Seroprevalenz Herpesviridae Anteil der Bevölkerung Alter 40% 12-19 > 80% über 60 Molekulare Virologie Ruth Brack-Werner; SS 2008 Weitere HSV-1 und HSV-2 assoziierte Krankheiten Herpesviridae http://pathmicro.med.sc.edu/virol/herpes.htm Principles of Virology, 2004. Flint SJ, Enquist LW, Racaniello VR,Skalka AM, Molekulare Virologie Ruth Brack-Werner; SS 2008 2nd edition. ASM Press. Appendix, p.853. HSV Latenz und Aktivierung Herpesviridae http://pathmicro.med.sc.edu/virol/herpes.htm Molekulare Virologie Ruth Brack-Werner; SS 2008 Reaktivierung von HSV Herpesviridae • Verletzungen; • Schwere Erkrankungen mit Intubationen; • Chirurgische Eingriffe in dem Trigeminus Nerv; • Immunsuppression, z.B. nach Organtransplantationen; Molekulare Virologie Ruth Brack-Werner; SS 2008 Latente Infektion (HSV) Herpesviridae Schritte 1-6: Wie bei produktiver Infektion; Zirkularisierung des viralen Genoms; Snythese der LAT (Latency Associated Transcripts Neuron in Ganglion Principles of Virology, 2004. Flint SJ, Enquist LW, Racaniello VR,Skalka AM, Molekulare Virologie Ruth Brack-Werner; SS 2008 2nd edition. ASM Press. Appendix, Fig. 6. HSV Latenz LAT RNA Herpesviridae • Die LAT RNAs
Recommended publications
  • Viral Diversity Among Different Bat Species That Share a Common Habitatᰔ Eric F
    JOURNAL OF VIROLOGY, Dec. 2010, p. 13004–13018 Vol. 84, No. 24 0022-538X/10/$12.00 doi:10.1128/JVI.01255-10 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Metagenomic Analysis of the Viromes of Three North American Bat Species: Viral Diversity among Different Bat Species That Share a Common Habitatᰔ Eric F. Donaldson,1†* Aimee N. Haskew,2 J. Edward Gates,2† Jeremy Huynh,1 Clea J. Moore,3 and Matthew B. Frieman4† Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 275991; University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, Maryland 215322; Department of Biological Sciences, Oakwood University, Huntsville, Alabama 358963; and Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland 212014 Received 11 June 2010/Accepted 24 September 2010 Effective prediction of future viral zoonoses requires an in-depth understanding of the heterologous viral population in key animal species that will likely serve as reservoir hosts or intermediates during the next viral epidemic. The importance of bats as natural hosts for several important viral zoonoses, including Ebola, Marburg, Nipah, Hendra, and rabies viruses and severe acute respiratory syndrome-coronavirus (SARS-CoV), has been established; however, the large viral population diversity (virome) of bats has been partially deter- mined for only a few of the ϳ1,200 bat species. To assess the virome of North American bats, we collected fecal, oral, urine, and tissue samples from individual bats captured at an abandoned railroad tunnel in Maryland that is cohabitated by 7 to 10 different bat species. Here, we present preliminary characterization of the virome of three common North American bat species, including big brown bats (Eptesicus fuscus), tricolored bats (Perimyotis subflavus), and little brown myotis (Myotis lucifugus).
    [Show full text]
  • Topics in Viral Immunology Bruce Campell Supervisory Patent Examiner Art Unit 1648 IS THIS METHOD OBVIOUS?
    Topics in Viral Immunology Bruce Campell Supervisory Patent Examiner Art Unit 1648 IS THIS METHOD OBVIOUS? Claim: A method of vaccinating against CPV-1 by… Prior art: A method of vaccinating against CPV-2 by [same method as claimed]. 2 HOW ARE VIRUSES CLASSIFIED? Source: Seventh Report of the International Committee on Taxonomy of Viruses (2000) Edited By M.H.V. van Regenmortel, C.M. Fauquet, D.H.L. Bishop, E.B. Carstens, M.K. Estes, S.M. Lemon, J. Maniloff, M.A. Mayo, D. J. McGeoch, C.R. Pringle, R.B. Wickner Virology Division International Union of Microbiological Sciences 3 TAXONOMY - HOW ARE VIRUSES CLASSIFIED? Example: Potyvirus family (Potyviridae) Example: Herpesvirus family (Herpesviridae) 4 Potyviruses Plant viruses Filamentous particles, 650-900 nm + sense, linear ssRNA genome Genome expressed as polyprotein 5 Potyvirus Taxonomy - Traditional Host range Transmission (fungi, aphids, mites, etc.) Symptoms Particle morphology Serology (antibody cross reactivity) 6 Potyviridae Genera Bymovirus – bipartite genome, fungi Rymovirus – monopartite genome, mites Tritimovirus – monopartite genome, mites, wheat Potyvirus – monopartite genome, aphids Ipomovirus – monopartite genome, whiteflies Macluravirus – monopartite genome, aphids, bulbs 7 Potyvirus Taxonomy - Molecular Polyprotein cleavage sites % similarity of coat protein sequences Genomic sequences – many complete genomic sequences, >200 coat protein sequences now available for comparison 8 Coat Protein Sequence Comparison (RNA) 9 Potyviridae Species Bymovirus – 6 species Rymovirus – 4-5 species Tritimovirus – 2 species Potyvirus – 85 – 173 species Ipomovirus – 1-2 species Macluravirus – 2 species 10 Higher Order Virus Taxonomy Nature of genome: RNA or DNA; ds or ss (+/-); linear, circular (supercoiled?) or segmented (number of segments?) Genome size – 11-383 kb Presence of envelope Morphology: spherical, filamentous, isometric, rod, bacilliform, etc.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Diversification of Mammalian Deltaviruses by Host Shifting
    Diversification of mammalian deltaviruses by host shifting Laura M. Bergnera,b,1, Richard J. Ortonb, Alice Broosb, Carlos Telloc,d, Daniel J. Beckere, Jorge E. Carreraf,g, Arvind H. Patelb, Roman Bieka, and Daniel G. Streickera,b,1 aInstitute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland; bMedical Research Center–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland; cAssociation for the Conservation and Development of Natural Resources, 15037 Lima, Perú; dYunkawasi, 15049 Lima, Perú; eDepartment of Biology, University of Oklahoma, Norman, OK 73019; fDepartamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima 15081, Perú; and gPrograma de Conservación de Murciélagos de Perú, Piura 20001, Perú Edited by Paul E. Turner, Yale University, New Haven, CT, and approved November 25, 2020 (received for review September 22, 2020) Hepatitis delta virus (HDV) is an unusual RNA agent that replicates satellites either cospeciated with their hosts over ancient time- using host machinery but exploits hepatitis B virus (HBV) to scales or possess an unrecognized capacity for host shifting, mobilize its spread within and between hosts. In doing so, HDV which would imply their potential to emerge in novel species. enhances the virulence of HBV. How this seemingly improbable The latter scenario has been presumed unlikely since either both hyperparasitic lifestyle emerged is unknown, but it underpins the satellite and helper would need to be compatible with the novel likelihood that HDV and related deltaviruses may alter other host or deltaviruses would need to simultaneously switch host host–virus interactions.
    [Show full text]
  • Search for Polyoma-, Herpes-, and Bornaviruses in Squirrels of the Family Sciuridae Vanessa Schulze1, Peter W
    Schulze et al. Virology Journal (2020) 17:42 https://doi.org/10.1186/s12985-020-01310-4 RESEARCH Open Access Search for polyoma-, herpes-, and bornaviruses in squirrels of the family Sciuridae Vanessa Schulze1, Peter W. W. Lurz2, Nicola Ferrari3, Claudia Romeo3, Michael A. Steele4, Shealyn Marino4, Maria Vittoria Mazzamuto5, Sébastien Calvignac-Spencer6, Kore Schlottau7, Martin Beer7, Rainer G. Ulrich1,8* and Bernhard Ehlers9* Abstract Background: Squirrels (family Sciuridae) are globally distributed members of the order Rodentia with wildlife occurrence in indigenous and non-indigenous regions (as invasive species) and frequent presence in zoological gardens and other holdings. Multiple species introductions, strong inter-species competition as well as the recent discovery of a novel zoonotic bornavirus resulted in increased research interest on squirrel pathogens. Therefore we aimed to test a variety of squirrel species for representatives of three virus families. Methods: Several species of the squirrel subfamilies Sciurinae, Callosciurinae and Xerinae were tested for the presence of polyomaviruses (PyVs; family Polyomaviridae) and herpesviruses (HVs; family Herpesviridae), using generic nested polymerase chain reaction (PCR) with specificity for the PyV VP1 gene and the HV DNA polymerase (DPOL) gene, respectively. Selected animals were tested for the presence of bornaviruses (family Bornaviridae), using both a broad-range orthobornavirus- and a variegated squirrel bornavirus 1 (VSBV-1)-specific reverse transcription- quantitative PCR (RT-qPCR). Results: In addition to previously detected bornavirus RNA-positive squirrels no more animals tested positive in this study, but four novel PyVs, four novel betaherpesviruses (BHVs) and six novel gammaherpesviruses (GHVs) were identified. For three PyVs, complete genomes could be amplified with long-distance PCR (LD-PCR).
    [Show full text]
  • Elisa Kits Manual
    Product Specification Sheet Anti-Cytomegalovirus ((MCMV/MuHV-1) Glycoprotein B Antibody Controls AE-301000-03N Mouse Anti-Cytomegalovirus ((MCMV/MuHV-1) Glycoprotein B (gB) IgG negative serum Size: 1 ml AE-301000-04P Mouse Anti-Cytomegalovirus ((MCMV/MuHV-1) Glycoprotein B (gB) IgG positive serum Size: 1 ml Muromegalovirus is a genus Recommended Usage of viruses in the order Herpesvirales, in the family Western Blotting (1:500-1:5K using ECL technique). Herpesviridae, in the subfamily ELISA: Control antigen can be used to coat ELISA plates at 1 Betaherpesvirinae. Rodents ug/ml and detected with antibodies (0.5-1 ug/ml for affinity pure). that belong to the betaherpesvirinae subfamily General References: Rapp M, (1992) J. Virol. 66:4399-4406; of herpesviruses serve as Messerle M, (1992) Virology 191:355-367; Rawlinson W.D, (1996) natural hosts. There are J. Virol. 70:8833-8849. currently three species in this genus including the type species Murid herpesvirus 1. Diseases associated with this genus include: *This product is for In vitro research use only. infected peritoneal macrophages, dendritic cells (DC) and Related material available from ADI hepatocytes, inducing significant pathology in both the spleen and the liver. Murid viruses murid herpesvirus 1 (MuHV-1) and murid Catalog# Prod Description herpesvirus 2 (MuHV-2)--previously defined as mouse 2100 Cytomegalovirus IgG (CMV IgG) ELISA kit, Semi-Quantitative cytomegalovirus (MCMV) and rat cytomegalovirus (RCMV)-- 2200 Cytomegalovirus IgM (CMV IgM) ELISA kit, Semi-Quantitative belong to this genus. 3300-370-CMG Human Anti-Cytomegalovirus (HCMV/CMV/Human Herpes Virus-5/HHV-5) IgG ELISA kit, 96 tests, Quantitative Viruses in Muromegalovirus are enveloped, with icosahedral, 3300-375-CMM Human Anti-Cytomegalovirus (HCMV/CMV/Human Herpes spherical to pleomorphic, and round geometries, and T=16 Virus-5/HHV-5) IgM ELISA kit symmetry.
    [Show full text]
  • Antiviral Drugs and Their Toxicities Review Article
    Review Article Antiviral Drugs and Their Toxicities Muhammed Ekmekyapar1, Şükrü Gürbüz2 1Department of Emergency Medicine, Malatya Education and Research Hospital, Malatya, Turkey 2 Department of Emergency Medicine, Faculty of Medicine, Inonu University, Malatya, Turkey Abstract Developments in antiviral agents have led to significant progress in the treatment of infections caused by herpes simplex virus 1-2, varicella-zoster virus (VZV), cytomegalovirus, influenza A and B, and human immunodeficiency virus (HIV). There are several antiviral drug therapies that are widely used today. These antiviral drugs are examined under four main headings: drugs effective against influenza viruses, drugs effective against herpes viruses, anti-HIV drugs and immunomodulators in antiviral therapy. Toxicities of these drugs are also examined in four main headings: toxicity of drugs that are effective against herpes viruses, toxicity of drugs effective against influenza viruses, toxicity of antiretroviral drugs and toxicity of other antiviral agents. Under these main headings, antiviral drugs and toxicities of these drugs will be analyzed in more detail. The side effects and toxicities of these drugs should be well known and if such a situation is encountered, it would be more appropriate to choose another antiviral treatment that may have less side effects and toxicity for the patient if necessary. Key words: Antiviral drugs, side effects, toxicity Özet Antiviral ajanlardaki gelişmeler, herpes simpleks virüs 1-2, varisella-zoster virüs, sitomegalovirüs, influenza A ve B ve insan immün yetmezlik (HIV) virüsü kaynaklı enfeksiyonların tedavisinde önemli ilerleme sağlamıştır. Günümüzde yaygın olarak kullanılan çeşitli antiviral ilaç tedavileri vardır. Bu antiviral ilaçlar dört ana başlık altında incelenir: influenza virüslerine karşı etkili ilaçlar, herpes virüslerine karşı etkili ilaçlar, anti-HIV ilaçları ve antiviral tedavide kullanılan immünomodülatörler.
    [Show full text]
  • The Role of Viral Glycoproteins and Tegument Proteins in Herpes
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 The Role of Viral Glycoproteins and Tegument Proteins in Herpes Simplex Virus Type 1 Cytoplasmic Virion Envelopment Dmitry Vladimirovich Chouljenko Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Pathology and Pathobiology Commons Recommended Citation Chouljenko, Dmitry Vladimirovich, "The Role of Viral Glycoproteins and Tegument Proteins in Herpes Simplex Virus Type 1 Cytoplasmic Virion Envelopment" (2014). LSU Doctoral Dissertations. 4076. https://digitalcommons.lsu.edu/gradschool_dissertations/4076 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE ROLE OF VIRAL GLYCOPROTEINS AND TEGUMENT PROTEINS IN HERPES SIMPLEX VIRUS TYPE 1 CYTOPLASMIC VIRION ENVELOPMENT A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Veterinary Medical Sciences through the Department of Pathobiological Sciences by Dmitry V. Chouljenko B.Sc., Louisiana State University, 2006 August 2014 ACKNOWLEDGMENTS First and foremost, I would like to thank my parents for their unwavering support and for helping to cultivate in me from an early age a curiosity about the natural world that would directly lead to my interest in science. I would like to express my gratitude to all of the current and former members of the Kousoulas laboratory who provided valuable advice and insights during my tenure here, as well as the members of GeneLab for their assistance in DNA sequencing.
    [Show full text]
  • Characterisation of Immune Responses to Varicella Vaccination in Relation to Clinical Outcome
    Characterisation of Immune Responses to Varicella Vaccination in Relation to Clinical Outcome Suzanna Leonie Rose McDonald Centre for Infectious Disease, Institute of Cell and Molecular Science, Bart‟s and the London School of Medicine and Dentistry, Queen Mary University of London 2010 Submitted to the University of London for the degree of Doctor of Philosophy 1 DECLARATION: I declare that the work presented in this thesis is my own. Signed: Suzanna Leonie Rose McDonald ABSTRACT: This thesis examines both humoral and cellular adaptive immune responses to varicella vaccination (up to 18 months post immunisation), in an ethnically diverse population of healthcare workers. Using two parameters of humoral immunity at six weeks post first vaccination; (avidity readings 60%, and a TRFIA reading 400mIU/mL) a cut-off of 130mIU/mL was defined for a more sensitive in house immuno assay (TRFIA), in this vaccinated adult population. Using these cut-offs, three patterns of antibody responses were identified; primary responders who seroconverted following vaccination, secondary responders who had pre- existing immunity and subjects who responded poorly to vaccination. Demographic and immunological characteristics of each subset were examined. An association between black ethnicity and lower antibody titre to vaccination in primary responders was identified, whilst Caucasians were more likely to have a history and pre-existing immunity, in keeping with the epidemiology of chickenpox in temperate climates. The follow-up study revealed that affinity maturation to VZV can take longer than 18 months in response to vaccination. At follow-up, 25% of subjects recruited at this time point were seronegative by TRFIA. Seroconversion after two doses of vaccine and a TRFIA titre of <500mIU/ml after two doses were significantly associated with waning antibody titre over time.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID- 19 Pandemic: A
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID- 19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. March 2021 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Raphael Freitas de Souza, Faculty of Dentistry, McGill University Paul Allison, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University March 31, 2021 1 Contents Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. .................................................................................................................................. 1 Foreword to the second update ............................................................................................. 4 Introduction ............................................................................................................................. 5 Project goal............................................................................................................................. 5 Specific objectives .................................................................................................................. 6 Methods used to identify and include relevant literature ......................................................
    [Show full text]
  • Viruses Status January 2013 FOEN/FOPH 2013 1
    Classification of Organisms. Part 2: Viruses Status January 2013 FOEN/FOPH 2013 1 Authors: Prof. Dr. Riccardo Wittek, Dr. Karoline Dorsch-Häsler, Julia Link > Classification of Organisms Part 2: Viruses The classification of viruses was first published in 2005 and revised in 2010. Classification of Organisms. Part 2: Viruses Status January 2013 FOEN/FOPH 2013 2 Name Group Remarks Adenoviridae Aviadenovirus (Avian adenoviruses) Duck adenovirus 2 TEN Duck adenovirus 2 2 PM Fowl adenovirus A 2 Fowl adenovirus 1 (CELO, 112, Phelps) 2 PM Fowl adenovirus B 2 Fowl adenovirus 5 (340, TR22) 2 PM Fowl adenovirus C 2 Fowl adenovirus 10 (C-2B, M11, CFA20) 2 PM Fowl adenovirus 4 (KR-5, J-2) 2 PM Fowl adenovirus D 2 Fowl adenovirus 11 (380) 2 PM Fowl adenovirus 2 (GAL-1, 685, SR48) 2 PM Fowl adenovirus 3 (SR49, 75) 2 PM Fowl adenovirus 9 (A2, 90) 2 PM Fowl adenovirus E 2 Fowl adenovirus 6 (CR119, 168) 2 PM Fowl adenovirus 7 (YR36, X-11) 2 PM Fowl adenovirus 8a (TR59, T-8, CFA40) 2 PM Fowl adenovirus 8b (764, B3) 2 PM Goose adenovirus 2 Goose adenovirus 1-3 2 PM Pigeon adenovirus 2 PM TEN Turkey adenovirus 2 TEN Turkey adenovirus 1, 2 2 PM Mastadenovirus (Mammalian adenoviruses) Bovine adenovirus A 2 Bovine adenovirus 1 2 PM Bovine adenovirus B 2 Bovine adenovirus 3 2 PM Bovine adenovirus C 2 Bovine adenovirus 10 2 PM Canine adenovirus 2 Canine adenovirus 1,2 2 PM Caprine adenovirus 2 TEN Goat adenovirus 1, 2 2 PM Equine adenovirus A 2 Equine adenovirus 1 2 PM Equine adenovirus B 2 Equine adenovirus 2 2 PM Classification of Organisms.
    [Show full text]
  • Human Cytomegalovirus Reprograms the Expression of Host Micro-Rnas Whose Target Networks Are Required for Viral Replication: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2013-08-26 Human Cytomegalovirus Reprograms the Expression of Host Micro-RNAs whose Target Networks are Required for Viral Replication: A Dissertation Alexander N. Lagadinos University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Immunology and Infectious Disease Commons, Molecular Genetics Commons, and the Virology Commons Repository Citation Lagadinos AN. (2013). Human Cytomegalovirus Reprograms the Expression of Host Micro-RNAs whose Target Networks are Required for Viral Replication: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/M2R88R. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/683 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. HUMAN CYTOMEGALOVIRUS REPROGRAMS THE EXPRESSION OF HOST MICRO-RNAS WHOSE TARGET NETWORKS ARE REQUIRED FOR VIRAL REPLICATION A Dissertation Presented By Alexander Nicholas Lagadinos Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 26th, 2013 Program in Immunology and Virology
    [Show full text]