Crimean – Congo Haemorrhagic Fever Virus – an Arbovirus of International Concern?

Total Page:16

File Type:pdf, Size:1020Kb

Crimean – Congo Haemorrhagic Fever Virus – an Arbovirus of International Concern? World Health Organization Collaborating Centre for Virus Research & Reference (Arboviruses & VHFs) Porton Down 1978 Crimean – Congo Haemorrhagic fever virus – an arbovirus of international concern? Prof. Roger Hewson Virology & Pathogenesis Group Lead Head: WHO Collaborating Centre for Virus Reference and Research (Arboviruses & VHFs) Dangerous Infections: New Public Health England - Microbiology Services Solution – A Look into the Future Porton Down, Oct 2-3 2019 Salisbury, UK Summary o Background • Taxonomy • Bunyavirales / Nairovirus / Orthonairovirus • CCHF disease / Transmission / Outbreaks • Historical perspective o Laboratory containment o Virus biology / Evolutionary potential o Human activity (increased zoonotic events) o Diagnostics o Vaccines o Conclusions Order Bunyavirales • Single stranded –ve sense RNA • Lipid enveloped • Segmented genome [Small, (Medium) Large] • Arthropod borne (x Hanta x Arena) • Human disease (some) • 10 Families Arenaviridae (3), Cruliviridae (1), Fimoviridae (1) Hantaviridae (3) Mypoviridae (1) Nairoviridae (3) Peribunaviridae (4) Phasmaviridae (5) Phenuiviridae (12), Wupedeviridae (1) Genus Mammarenavirus Orthohantavirus Orthobunyavirus Orthonairovirus Phlebovirus Banyangvirus Species 34 35 49 14 9 1 Host / Res Rodents Rodents Rodents Rodent / rum / tick Ruminant Rum / tick Vector Rodents Rodents Mosquito Ticks Mosquito Ticks Disease e.g. Lassa / Junin HFRS / HPS Oropuche fever CCHF RVFV SFTS 3 Bunyavirales – medically (& veterinary, agriculturally) important order Family Nairovirus Genus Orthonairovirus Dugbe virus orthonairovirus Qalyub orthonairovirus Kupe virus •Bandia virus •Qalyub virus Nairobi sheep disease orthonairovirus •Nairobi sheep disease virus Dera Ghazi Khan orthonairovirus •Ganjam virus •Dera Ghazi Khan •Abu Hammad virus Sakhalin orthonairovius •Clo Mor virus Hughs orthonairovirus •Sakhalin virus •Hughes virus Thiafora orthonairovirus •Puffin Island virus •Erve virus Hard ticks •Solado •Thiafora virus •Keterah orthonairovirus •Burana orthonairovirus •Issyk-Kul virus •Kasokero orthonairovirus •Burana virus •Tamdy virus Hazara orthonairovirus Soft ticks Crimean-Congo haemorrhagic fever orthonairovirus 4 Orthonairovirus: Tick borne members some of which are medically / veterinary important Crimean - Congo Haemorrhagic Fever • Severe human infection. • Fatality rate 30% (>80% nosocomial infections). • No FDA or European approved vaccine or treatment. • ACDP - Hazard Group 4 pathogen. • Reservoired in ticks & wild life mammals, amplified in cattle sheep, goat, camel [No disease in animals] • Transmission by tick bite or direct / indirect contact with infected blood/body fluids. 5 CCHF Preclinical – A Tick development borne VHF [ofPics the - PHESalih CCHFAhmeti vaccine Kosovo & Farida PHE Tishkova, pipeline Tajikistan] fund PLF 1516/108/MR CCHF - Clinical Disease • Incubation period 2-9 days • Haemorrhagic state develops 3 - 5 days • Petechial rash / ecchymoses in the skin • Bleeding from the mucous membranes Epitaxsis, Haematuria, Haemoptysis • Loss of blood pressure - shock • Death 7-9 days [massive bleeding / cardiac arrest] 6 [Pics - Salih Ahmeti Kosovo & Farida Tishkova, Tajikistan CCHF - Clinical Disease 7 [Pics - Salih Ahmeti Kosovo & Farida Tishkova, Tajikistan ….also subclinical infections Bordur et al 2012 >80% Tky] Transmission cycle & annual distribution of cases Drop off & Molt Nymph Ungulates / livestock Adults Small mammals Larva (& birds) Ovipositation & Hatching Tick activity Humans Nosocomial transmission Inc. H2H 8 Transmission cycle modified from Bente et al., 2013 Annual cases – permission from Turkish MoH Human – Human transmission of CCHFV 9 Chronology of events during a CCHFV outbreak 10 CCHF – Historical Perspective (i) 1st Descriptions of Central Asian Haemorrhagic fever • 1136 Tajikistan / (Zayn al-Din Sayyed) • 11th century A.D. Abu Ali Al-Husayn ibn Abd Allah ibn Sina 11 Historical perspective 1 CCHF – Historical Perspective (ii) 1st Descriptions of Crimean Haemorrhagic fever • 1941 Crimea modern medical description • 1944 Viral origin - passage through human volunteers M.P Chumakov et al., Isolation / registration - Yale 1968 (Crimean HF) 12 Historical perspective 2 CCHF – Historical Perspective (iii) 1st Descriptions of Congo fever Kisangani Entebbe Kinshasa • Stanleyville March 1956: 13 year old presented with fever / bruising • Isolated / adapted to mice / maintained by passage - Unidentified • Sent to EAVRI / Entebbe 1957 13 Historical perspective 3 East Africa Virus Research Institute (EAVRI) Dir: Sandy Haddow: John Woodall, David Simpson: New virus (1956) Woodall et al., 1962 Simpson et al., 1967 Registered - Arbovirus catalogue Yale 1961 - Congo Virus MP Chumakov: 1968 Isolation of Crimean HF virus Registration at Yale 1969 - Identical to Congo 1973 – CCHF virus 14 CCHF – a political name coined in the cold war David Simpson: Director Virology Porton Down // 1960 - 82 • Name synonymous with CCHF virus • WHO & future VHF outbreaks (inc. EVD) Global distribution of CCHF • Amassed wide range of different strains • Part of Special Pathogens Reference collection - WHO CC 15 DI Simposin @ Porton Down VHFs - High consequence pathogens Hazard Group 4 viruses • Virus Country Date Natural Mortality Highly infectious first host rate recognised (humans) • H2H transmission Arenaviridae Lassa Nigeria 1969 Rodent 15% Old & New world Lujo Zambia 2008 Rodent 80% • Hazard to employees arenaviruses Guanarito Venezuela 1989 Rodent 30% Junin Argentina 1957 Rodent 25% • Spread within community Machupo Bolivia 1962 Rodent 30% Sabia Brazil 1990 Rodent 40% • No effective intervention Chapare Bolivia 2003 Rodent 30% Nairoviridae Crimean – Congo Congo 1968 Ticks 30-80% European directive 2000/54/EC http_eur-lex.europa.pdf Haemorrhagic fever Hazard / Risk Group 4 Filoviridae Eboa Zaire Congo 1976 Bats 90% Ebola Ebola Sudan Sudan 1976 Bats 50% • Endemic in many regions of the world Taï Forest Ivory coast 1994 Bats 40% Ebola Reston USA 1989 Bats Sub-clinical Bundibugyo Uganda 2007 Bats 35% • Risk of acquisition to EU: Marburg Marburg Germany 1967 Bats 50% Imported in patients (Travel related) Herpesviridae Herpes B virus Worldwide 1932 Macaques 80% Imported animal products Paramyxoviridae Nipah Malaysia 1999 Bats 40% Laboratory infections Hendra Australia 1994 Bats 60% Falviviridae Russian Spring Russia 1937 Ticks 30% Climate change (vector / reservoir distributions) Summer Encephalitis Other anthropogenic factors Kyasanur Forest India 1957 Ticks 10% Omsk Russia 1990 Rats 20% Viral emergence Orthopoxviradae Variola Eradicated Humans 30% 16 Biosafety classification / sources of introduction into the EU High Containment CL3 & CL4 labs CL4 (in-vitro) CL3 (in-vitro) CL4 (in-vivo) CL4 (in-vivo) 17 High containment facilities at PHE CCHF - Geographic Distribution 50° North limit for the geographic distribution of genus Hyalomma ticks • Spain [2016] • Mongolia [2012] Country with low risk (presence of vector) • India [2011] Country at risk (serological evidence + vector) • Greece [2008] 5 to 15 cases per year • Turkey [2002] 20 to 49 cases per year 50 to 200 cases per year 18 Global distribution of CCHF Crimean - Congo Haemorrhagic Fever virus X20,000 19 CCHFV Morphogenesis Maturation and budding into the Golgi HPA Golgi membranes fuse with plasma membrane releasing HPA particles 20 Budding into the Golig and release from the plasma membrane S Segments ML SegmentsSegments Hazara Hazara Hazara AP92 Greece Europe 2 VLG- TI29414 Europe 1 30908 S Russia Asia 2 DAK 8194 Senegal Kosovo/9553/2001 M4 Africa 1 Europe 1 Semunya Uganda SR3 Africa 2 K229Europe-243 S. Russia 2 Drosdov Russia SPU41-84 Europe 1 HU29223 Russia IbAr10200 Baghdad Iraq 66019 China XinJiang AfricaSPU128 1 -84 Asia 1 88166 China XinJiang U2-2-002--U-6415 Matin Pakistan 8402 China XinJiang Asia 1 Baghdad M2 HY13 China XinJiang 75024 Semunya Uganda Africa 2 75024 China XinJiang 7803 7803 China XinJiang Asia 2 Hodzha Africa 2 C68031 China Hodzha Uzbekistan Tadj-HU8966 TADJ/HU8966 Asia 2 66019 Tajiki 2010 TADJ/HU8966Africa 3 Hodzha Uzbekistan Matin Evidence of 79121 China XinJiang IbAr10200 NigeriaHY13 segment 7001 China XinJiang M1 8402 7 CCHF S genotypes Baghdad-12 Iraq reassortment Tajiki 2010 SPU128/81/7 S. Africa Matin Pakistan Asia 1 SEMUNYA Africa 3 JD206 Pakistan IbAn10248 CONGONigeria SR3 Pakistan M5 UG3010 SPU4/81 S. Africa Africa 3 SPU4/8179121 S. Africa IbAr10200 Nigeria 0.1 0.10.1 7001 M3 21 Phylogeny of CCHF viruses CCHF Segment reassortment between strains L L L S S S L S L L M S S + M M • Co-replication of two strains in the same cell / organism L • Ticks are suitable hosts to support reassortment S L M S Global & dynamic reservoir of CCHF virus 22 Reassortment in CCHF viruses could lead to new viruses and new disease… Budding reassortant L Exchange of M segments S viruses S L M influence host range L S S L M Envelope glycoproteins L S M influence M cellular tropism L S N altered pathogenicity 23 Diagnostics should be based on strains isolated globally Alternative pathology observed in some forms of CCHF…. e.g.Tajikistan “..alternative clinical presentation” visceral tropic form of CCHF Prof F Tishkova Tajik Ministry of Health Institute of Preventive Medicine Dushanbe 24 Autochthonous CCHF in Spain Positive Hyalomma ticks identified in: 2011, 2013, 2014, 2015 Ávila 2016 Livestock districts Positive municipality Negative +ve in previous years • 1st case • Tick bite / hiking in Ávila • 2nd case • Hospital transmission / Madrid • Genotype Africa 3 25 Two human cases (2016) - Ávila 2ndry hospital
Recommended publications
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Crimean-Congo Hemorrhagic Fever
    Crimean-Congo Importance Crimean-Congo hemorrhagic fever (CCHF) is caused by a zoonotic virus that Hemorrhagic seems to be carried asymptomatically in animals but can be a serious threat to humans. This disease typically begins as a nonspecific flu-like illness, but some cases Fever progress to a severe, life-threatening hemorrhagic syndrome. Intensive supportive care is required in serious cases, and the value of antiviral agents such as ribavirin is Congo Fever, still unclear. Crimean-Congo hemorrhagic fever virus (CCHFV) is widely distributed Central Asian Hemorrhagic Fever, in the Eastern Hemisphere. However, it can circulate for years without being Uzbekistan hemorrhagic fever recognized, as subclinical infections and mild cases seem to be relatively common, and sporadic severe cases can be misdiagnosed as hemorrhagic illnesses caused by Hungribta (blood taking), other organisms. In recent years, the presence of CCHFV has been recognized in a Khunymuny (nose bleeding), number of countries for the first time. Karakhalak (black death) Etiology Crimean-Congo hemorrhagic fever is caused by Crimean-Congo hemorrhagic Last Updated: March 2019 fever virus (CCHFV), a member of the genus Orthonairovirus in the family Nairoviridae and order Bunyavirales. CCHFV belongs to the CCHF serogroup, which also includes viruses such as Tofla virus and Hazara virus. Six or seven major genetic clades of CCHFV have been recognized. Some strains, such as the AP92 strain in Greece and related viruses in Turkey, might be less virulent than others. Species Affected CCHFV has been isolated from domesticated and wild mammals including cattle, sheep, goats, water buffalo, hares (e.g., the European hare, Lepus europaeus), African hedgehogs (Erinaceus albiventris) and multimammate mice (Mastomys spp.).
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Update 2019
    Archives of Virology (2019) 164:1949–1965 https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E.
    [Show full text]
  • Diagnostic Tests for Crimean-Congo Haemorrhagic Fever: a Widespread Tickborne Disease
    Analysis BMJ Glob Health: first published as 10.1136/bmjgh-2018-001114 on 20 February 2019. Downloaded from Diagnostic tests for Crimean-Congo haemorrhagic fever: a widespread tickborne disease Laura T Mazzola, Cassandra Kelly-Cirino To cite: Mazzola LT, ABSTRACT Summary box Kelly-Cirino C. Diagnostic Crimean-Congo haemorrhagic fever (CCHF) is a tests for Crimean-Congo widespread tickborne disease that circulates in wild and ► Diagnostic tests for Crimean-Congo haemorrhagic haemorrhagic fever: a domestic animal hosts, and causes severe and often fatal widespread tickborne fever virus (CCHFV), a WHO R&D Blueprint priority haemorrhagic fever in infected humans. Due to the lack disease. BMJ Glob Health pathogen, include commercial reverse transcriptase 2019;4:e001114. doi:10.1136/ of treatment options or vaccines, and a high fatality rate, PCR and serological diagnostic assays and multiplex bmjgh-2018-001114 CCHF virus (CCHFV) is considered a high-priority pathogen panels to distinguish from other viral haemorrhagic according to the WHO R&D Blueprint. Several commercial fever agents. reverse transcriptase PCR (RT-PCR) and serological Handling editor Seye Abimbola ► Despite the extensive range of tests available, diag- diagnostic assays for CCHFV are already available, nostic gaps remain, including a need for improved ► Additional material is including febrile agent panels to distinguish CCHFV from surveillance for early detection, a lack of point-of- published online only. To view other viral haemorrhagic fever agents; however, the please visit the journal online care testing options and issues with limited avail- majority of international laboratories use inhouse assays. (http:// dx. doi. org/ 10. 1136/ ability of clinical specimens for test validation.
    [Show full text]
  • A Look Into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins
    viruses Review A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins Shanna S. Leventhal, Drew Wilson, Heinz Feldmann and David W. Hawman * Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] (S.S.L.); [email protected] (D.W.); [email protected] (H.F.) * Correspondence: [email protected]; Tel.: +1-406-802-6120 Abstract: In 2016, the Bunyavirales order was established by the International Committee on Taxon- omy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcrip- tional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these Citation: Leventhal, S.S.; Wilson, D.; human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral Feldmann, H.; Hawman, D.W.
    [Show full text]
  • Table of Contents
    Table of Contents Table of Contents Welcome Note of the German Research Platform for Zoonoses ........................................................ 2 Welcome Note of the Federal Government ...................................................................................... 3 Program Zoonoses 2019 - International Symposium on Zoonoses Research ...................................... 5 General information ...................................................................................................................... 14 Floor Plan .................................................................................................................................... 18 About the German Research Platform for Zoonoses ........................................................................ 19 Oral Presentations ........................................................................................................................ 20 Plenary Session I: Keynotes .......................................................................................................... 21 Session 1: Innate and Adaptive Immune Response......................................................................... 24 Session 2: Public Health ................................................................................................................ 31 Session 3: New and Re-Emerging Zoonotic Diseases ...................................................................... 38 Session 4: Diagnostics and NGS ...................................................................................................
    [Show full text]
  • And Evidence That Estero Real Virus Is a Member of the Genus Orthonairovirus
    Am. J. Trop. Med. Hyg., 99(2), 2018, pp. 451–457 doi:10.4269/ajtmh.18-0201 Copyright © 2018 by The American Society of Tropical Medicine and Hygiene Genetic Characterization of the Patois Serogroup (Genus Orthobunyavirus; Family Peribunyaviridae) and Evidence That Estero Real Virus is a Member of the Genus Orthonairovirus Patricia V. Aguilar,1,2,3* William Marciel de Souza,4 Jesus A. Silvas,1,2,3 Thomas Wood,5 Steven Widen,5 Marc´ılio Jorge Fumagalli,4 and Marcio ´ Roberto Teixeira Nunes6* 1Department of Pathology, University of Texas Medical Branch, Galveston, Texas; 2Institute for Human Infection and Immunity, Galveston, Texas; 3Center for Tropical Diseases, Galveston, Texas; 4Virology Research Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil; 5Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; 6Center for Technological Innovation, Instituto Evandro Chagas, Ananindeua, Para, ´ Brazil Abstract. Estero Real virus (ERV) was isolated in 1980 from Ornithodoros tadaridae ticks collected in El Estero Real, Sancti Spiritus, Cuba. Antigenic characterization of the isolate based on serological methods found a relationship with Abras and Zegla viruses and, consequently, the virus was classified taxonomically within the Patois serogroup. Given the fact that genetic characterization of Patois serogroup viruses has not yet been reported and that ERV is the only virus within the Patois serogroup isolated from ticks, we recently conducted nearly complete genome sequencing in an attempt to gain further insight into the genetic relationship of ERV with other Patois serogroup viruses and members of Peri- bunyaviridae family (Bunyavirales order).
    [Show full text]
  • Development of an Infectious Clone System to Study the Life Cycle of Hazara Virus
    Development of an Infectious Clone System to Study the Life Cycle of Hazara Virus Jack Fuller Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Faculty of Biological Sciences July 2020 i The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2020 The University of Leeds and Jack Fuller ii Acknowledgements I would like to thank my supervisors, John, Jamel and Roger for their endless support and fresh ideas throughout my PhD. A special thanks go to John for always providing enthusiasm and encouragement, especially during the tougher times of the project! I would also like to thank everyone in 8.61, not only for making my time at Leeds enjoyable, but for helping me develop as a scientist through useful critique and discussion. A special thanks goes to Francis Hopkins, for welcoming me into the Barr group and providing a constant supply of humour and to Ellie Todd, for listening to my endless whines and gripes, and for providing welcome distractions in the form of her PowerPoint artwork. Outside of the lab, my mum deserves a special mention for always being the voice of reason and support at the end of the phone, but also for pushing me to succeed throughout my entire education. I have no doubts I would not be in the position I am now without her! Finally, a huge thanks to my partner Hannah, who has been there to support me through all the highs and lows of my PhD, and has sacrificed many weekend trips to allow me to finish experiments and to tend to my viruses! iii Abstract Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is a negative sense single stranded RNA virus, capable of causing fatal hemorrhagic fever in humans.
    [Show full text]
  • Innate Immune Signalling Induced by Crimean-Congo Haemorrhagic Fever Virus Proteins in Vitro
    INNATE IMMUNE SIGNALLING INDUCED BY CRIMEAN-CONGO HAEMORRHAGIC FEVER VIRUS PROTEINS IN VITRO Natalie Viljoen January 2019 INNATE IMMUNE SIGNALLING INDUCED BY CRIMEAN-CONGO HAEMORRHAGIC FEVER VIRUS PROTEINS IN VITRO Natalie Viljoen PhD Medical Virology Submitted in fulfilment of the requirements in respect of the PhD Medical Virology degree completed in the Division of Virology in the Faculty of Health Sciences at the University of the Free State Promoter: Professor Felicity Jane Burt Co-promoter: Professor Dominique Goedhals Division of Virology Faculty of Health Sciences University of the Free State The financial assistance of the National Research Foundation and the Poliomyelitis Research Foundation is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily attributed to these institutions. University of the Free State, Bloemfontein, South Africa January 2019 Table of content Declaration .................................................................................................................. i Acknowledgements ..................................................................................................... ii List of figures .............................................................................................................. iii List of tables ............................................................................................................... iv List of abbreviations ..................................................................................................
    [Show full text]
  • Crimean-Congo Hemorrhagic Fever Virus: Current Advances and Future Prospects of Antiviral Strategies
    viruses Review Crimean-Congo Hemorrhagic Fever Virus: Current Advances and Future Prospects of Antiviral Strategies Shiyu Dai 1, Fei Deng 1,2,* , Hualin Wang 1,2,* and Yunjia Ning 1,2,* 1 State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; [email protected] 2 Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China * Correspondence: [email protected] (F.D.); [email protected] (H.W.); [email protected] (Y.N.); Tel./Fax: +86-27-8719-8465 (F.D.); +86-27-8719-9353 (H.W.); +86-27-8719-7200 (Y.N.) Abstract: Crimean-Congo hemorrhagic fever virus (CCHFV) is a widespread, tick-borne pathogen that causes Crimean-Congo hemorrhagic fever (CCHF) with high morbidity and mortality. CCHFV is transmitted to humans through tick bites or direct contact with patients or infected animals with viremia. Currently, climate change and globalization have increased the transmission risk of this biosafety level (BSL)-4 virus. The treatment options of CCHFV infection remain limited and there is no FDA-approved vaccine or specific antivirals, which urges the identification of potential therapeutic targets and the design of CCHF therapies with greater effort. In this article, we discuss the current progress and some future directions in the development of antiviral strategies against CCHFV. Keywords: Crimean-Congo hemorrhagic fever virus; bunyavirus; tick-borne virus; antiviral strategies Citation: Dai, S.; Deng, F.; Wang, H.; Ning, Y. Crimean-Congo 1. Introduction Hemorrhagic Fever Virus: Current Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus causing Advances and Future Prospects of Crimean-Congo hemorrhagic fever (CCHF), a severe hemorrhagic fever in humans, with a Antiviral Strategies.
    [Show full text]
  • The Cranberry Extract Oximacro® Prevents Hazara Virus Infection by Inhibiting the Attachment to Target Cells
    The Cranberry Extract Oximacro® Prevents Hazara Virus Infection by Inhibiting the Attachment to Target Cells Author Mattia Mirandola1+, Maria Vittoria Salvati1+, Carola Rodigari1, Ali Mirazimi2,3, Massimo E. Maffei4, Giorgio Gribaudo4 and Cristiano Salata1,* Affiliation 1Department of Molecular Medicine, University of Padova, 35121 Padova, Italy. 2Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden. 3National Veterinary Institute, 75189 Uppsala, Sweden (A.M.) 4Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy. +Equally contributions Background and Aims removed from infected cells cultures, and cell Hazara Virus (HAZV) belongs to the Nairoviridae monolayers were fixed (using acetone:methanol family and is included in the same serogroup of the (1:1) solution). Subsequently, an immunostaining Crimean-Congo haemorrhagic fever virus was performed with an in house-developed primary (CCHFV) [1]. CCHFV is the most widespread tick- anti-nucleoprotein antibody (α-NP), and after this borne arbovirus responsible for a serious incubation cells were incubated with Alexa haemorrhagic disease for which specific and FluorTM 488 goat anti-rabbit IgG (Thermo Fisher effective treatment or preventive system are Scientific, Italy). missing, thus is classified in the group risk-4 Antiviral Assays: Full treatment, Vero cells were human pathogen [2,3]. Bioactive compounds treated with different concentration of cranberry derived from several natural products may provide extract (0-0.2-0.4-0.8-0.15-3.125-6.25-12.5-25-50- a natural source of broad-spectrum antiviral agents 100 μg/mL) for 1 h before the infection, during the and, in addition, provided by a good tolerability and HAZV adhesion and after the infection until the minimal side effects.
    [Show full text]
  • (CCHFV): Surveillance Studies Among D
    University of Veterinary Medicine Hannover Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV): Surveillance studies among different livestock in sub-Saharan Africa and the molecular characterization of Hyalomma ticks serving as main reservoir and vector Inaugural-Dissertation to obtain the academic degree Doctor medicinae veterinariae (Dr. med. vet.) submitted by Ansgar Schulz Wismar Hannover 2020 Academic supervision: Prof. Dr. Martin H. Groschup Friedrich-Loeffler-Institut Federal Research Institute for Animal Health Institute of Novel and Emerging Infectious Diseases Greifswald-Insel Riems 1. Referee: Prof. Dr. Martin H. Groschup Friedrich-Loeffler-Institut Federal Research Institute for Animal Health Institute of Novel and Emerging Infectious Diseases Greifswald - Insel Riems 2. Referee: Prof. Dr. Christina Strube Institute of Parasitology University of Veterinary Medicine Hannover Hannover Day of the oral examination: 16th June 2020 - Sponsorship: This work was supported by the German Federal Foreign Office in the framework of the German Partnership Program for Excellence in Biological and Health Security. TABLE OF CONTENTS 1 INTRODUCTION ...........................................................................01 2 LITERATURE REVIEW ................................................................04 2.1 History and naming of CCHFV ..........................................................................04 2.2 Classification ......................................................................................................04
    [Show full text]