West Nile Virus Bibliography, 1965-2004 May Be Viewed As One Complete Publication File Below Or by Individual Sections at Westnilebib.Htm

Total Page:16

File Type:pdf, Size:1020Kb

West Nile Virus Bibliography, 1965-2004 May Be Viewed As One Complete Publication File Below Or by Individual Sections at Westnilebib.Htm NATIONAL AGRICULTURAL LIBRARY ARCHIVED FILE Archived files are provided for reference purposes only. This file was current when produced, but is no longer maintained and may now be outdated. Content may not appear in full or in its original format. All links external to the document have been deactivated. For additional information, see http://pubs.nal.usda.gov. West Nile Virus NOTE: West Nile Virus Bibliography, 1965-2004 may be viewed as one complete publication file below or by individual sections at westnilebib.htm United States Department of West Nile Virus Bibliography, 1965-2004 Agriculture February 2003, Updated December 2004 Agricultural West Nile Virus Fact Sheet Research Service National Gregg Goodman Laudie Baer* Agricultural Barbara Buchanan The College of Information Studies Library Jean Larson University of Maryland, College Park Animal Welfare Information Center U.S. Department of Agriculture Agricultural Research Service Animal Welfare National Agricultural Library Information 10301 Baltimore Avenue Center Beltsville, MD 20705-2351 Telephone: (301) 504-6212 Fax: (301) 504-7125 Contact us: http://awic.nal.usda.gov/contact-us Website: http://awic.nal.usda.gov *Updates for 2003 through May 2004 were completed as an independent study requirement for a Masters Degree in Information Management. Web Policies and Important Links Information on how to request materials that are included in the collection of the National Agricultural Library (NAL) may be found on the Collection Services Branch Website at http://www.nal.usda.gov/borrow-materials. Please read carefully as there are certain restrictions on media and document types. Bibliography 2004 / 2003 / 2002 / 2001 / 2000 / 1999 / 1998 / 1997 / 1996 / 1995 / 1994 / 1993 / 1992 / 1991 / 1990 / 1989 / 1988 / 1987 / 1986 / 1985 / 1984 / 1983 / 1982 / 1981 / 1980 / 1979 / 1978 / 1977 / 1976 / 1975 / 1974 / 1973 / 1972 / 1971 / 1970 / 1969 / 1968 / 1967 / 1966 / 1965 Introduction In 1999, an exotic disease emerged in the middle of New York City. It killed several humans and thousands of native crows. Viral testing determined that the illness in both humans and animals was caused by the West Nile virus. http://www.nal.usda.gov/awic/pubs/westnile/westnilebib2.htm[4/6/2015 10:12:50 AM] West Nile Virus This particular virus is an arbovirus that is endemic in the old world especially Africa. Until 1999, it had never been observed in the Western hemisphere. In its native lands, it seldom causes death in either humans or animals. For some reason, the strain that emerged in New York City is a more deadly strain often causing death via encephalitis in susceptible individuals— the very young, the very old, the sick, and the immune compromised. For others, the symptoms of the disease are typically mild. It has been determined that some species of mosquitoes—especially Culex and Aedes—can spread the disease from wild birds to other species including many mammals including humans. The virus is able to winter over in temperate climates in those species of mosquitoes that survive in winter temperatures. Migratory wild birds often play a role by acting as reservoir of the virus. Since the birds migrate over great distances, they are proving to be very effective distribution agents. Infected birds land and feed, they are often bitten by the local mosquito populations and if the mosquito is one that can in turn transmit the virus, then the virus becomes established in a new geographical area. As a result of this effective disease transmission pattern, the disease has expanded rapidly to other parts of North America since 1999. Since West Nile virus is an important emerging and rapidly expanding disease of humans and animals, it was decided to compile a bibliography of both the current literature and historical data going back to 1965. The focus of the scientific literature of this bibliography deals with the virus, its effects on animals, how the mosquito harbors and maintains the virus, how the virus is maintained over the seasons and how disease spreads. The major topics include: techniques of viral isolation and purification, viral genetics and strain differentiation, mosquito vector biology and behavior, transmission factors, animal species susceptible to the disease, animals as disease sentinels, disease reservoirs, surveillance programs, vector control programs, etc. There are many other resources available from the biomedical community that deal with the pathobiology of the disease in humans. Those topics are not addressed in this document. 2004 Abutarbush, Sameeh M.; O'Connor, Brendan P.; Clark, Chris; Sampieri, Francesca; Naylor, Jonathan M. Clinical West Nile virus infection in 2 horses in western Canada. Canadian Veterinary Journal / La Revue Veterinaire Canadienne. 2004 Nov; 45(4): 315-317. ISSN: 0008-5286. NAL call no.: 41.8 R3224 Descriptors: horses, West Nile virus infection, ataxia, recumbency, detected by polymerase chain reaction. Abstract: Two horses had a history of ataxia and weakness or recumbency. One recovered and was diagnosed with West Nile virus (WNV) infection by serologic testing. The other was euthanized; it had meningoencepha lomyelitis, WNV was detected by polymerase chain reaction. West Nile virus infection is an emerging disease. Year 2002 is the first year in which cases have been seen in Saskatchewan. Anonymous. Equine WNV cases drop. Journal of Equine Veterinary Science. 2004 Apr; 24(4): 142-143. ISSN: 0737- 0806. NAL call no.: SF951.J65 Descriptors: USDA approved vaccine--West Nile Innovator/Encephalomyletis combination, Fort Dodge Animal Health, effective in horses, effective disease prevention, horses, West Nile virus, 13 million protected with vaccine, forecast fewe r cases due to prevention via vaccine. Anonymous. Getting out into the field, and forest. Editorial. Lancet Infectious Diseases. 2004; 4(3): 127. ISSN: 1473- 3099. Descriptors: influenza, severe acute respiratory syndrome, rabies virus, Ebola virus, West Nile virus. Anonymous. Recombinant DNA vaccine technology. Edited from Merial literature. Journal of Equine Veterinary Science. 2004; 24(2): 64-67. ISSN: 0737-0806. NAL call no.: SF951.J65 Descriptors: animals, horses, Aedes, Culicidae, Diptera, Equidae, Chordata, Flaviviridae, antibodies, disease vectors, experimental infection, genetic engineering, immunity, recombinant DNA, recombinant vaccines, seroconversion, vaccination, vaccine development, vaccines, West Nile fever. Anonymous. West Nile virus vaccine. Journal of Equine Veterinary Science. 2004 Jan; 24(1): 12-13. ISSN: 0737-0806. http://www.nal.usda.gov/awic/pubs/westnile/westnilebib2.htm[4/6/2015 10:12:50 AM] West Nile Virus NAL call no.: SF951.J65 Descriptors: West Nile virus, horses, vaccine for equines. Anonymous. West Nile virus 2003. Journal of Equine Veterinary Science. 2004 Mar; 24(3): 100-101. ISSN: 0737-0806. NAL call no.: SF951.J65 Descriptors: West Nile virus, horses, epidemiology, levels of the disease in equines. Apperson, Charles S.; Hassan, Hassan K.; Harrison, Bruce A.; Savage, Harry M.; Aspen, Stephen E.; Farajollahi, Ary; Crans, Wayne; Daniels, Thomas J.; Falco, Richard C.; Benedict, Mark; Anderson, Michael; McMillen, Larry; Unnasch, T homas R. Host feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States. Vector Borne and Zoonotic Diseases. 2004 Spring; 4(1): 71-82. ISSN: 1530-3667. NAL call no.: RA639.5.V43 Descriptors: mosquitos, vector capacity, degree of vector and vertebrate reservoir contact, host feeding habits of vectors, vector feeding preferences, serological and polymerase chain r eactions for host–feeding patterns, 21 mosquito species, vector species for West Nile virus may prefer certain avian hosts, mammalophilic mosquito species, New Jersey, New York. Abstract: An important variable in determining the vectorial capacity of mosquito species for arthropod-borne infections is the degree of contact of the vector and the vertebrate reservoir . This parameter can be estimated by examining the host-feeding habits of vectors. Serological and polymerase chain reaction based methods have been used to study th e host-feedings patterns of 21 mosquito species from New York, New Jersey, and Tennessee, 19 of which previously have been found infected with West Nile virus. Mammalophilic mosquito species in New Jersey and New York fed primarily upon white-t ailed deer, while those from Memphis, Tennessee, fed mainly upon domestic dogs. A total of 24 different avian host species were detected among the avian-derived blood meals. American Robin, Northern Cardinal, North ern Mockingbird, Tufted Titmouse, and Brown-headed Cowbird were common avian hosts, while blood meals derived from the American Crow were relatively rare. Although the majority of common host species were poten tially among the most abundant birds at each location, the proportion of blood meals from the most commonly fed upon avian species was greater than was predicted based upon the likely abundance of these species alone. These findings suggest that vector species for West Nile virus may preferentially feed upon certain avian hosts. Austgen, Laura E.; Bowen, Richard A.; Bunning, Michel L.; Davis, Brent S.; Mitchell, Carl J.; Chang, Gwong-Jen J. Experimental infection of cats and dogs with West Nile virus. Emerging Infectious Diseases. 2004 Jan; 10(1): 82-86. ISSN: 1080-6040. NAL call no.: RA648.5.E46 Descriptors: dogs and cats readily infected with WNV, viremia peak titers, carnivores infected by eating WNV infected prey, no-clinical sign of disease, oral transmission. Abstract: Domestic dogs and cats were infected by mosquito bite and evaluated as hosts for West Nile virus (WNV). Viremia of low magnitude and short durati on developed in four dogs but they did not display signs of disease. Four cats became viremic, with peak titers ranging from 10(3.0) to 10(4.0) PFU/mL. Three of the cats showed mild, non-neurologic signs of disease. WNV was not isolated from saliva of either dogs or cats during the period of viremia. An additional group of four cats were exposed to WNV orally, through ingestion of infected mice. Two cats consumed an infected mouse on three consecutive days, and two cats ate a single infected mouse.
Recommended publications
  • Syllabus for M
    Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for M. Sc. In Biotechnology Semester I Code Course Title Contact Credit Hrs./wk A Theory L- T -P MSBT-101 Biochemistry 3-0-0 3 MSBT-102 Laboratory 3-0-0 3 techniques MSBT-103 Cell and Molecular 3-0-0 3 Biology MSBT-104 Biostatistics 3-0-0 3 MSBT-105 Microbiology 3-0-0 3 B Practical MSBT-191 Biochemistry & 0-0-6 3 Analytical Techniques Lab MSBT-192 Microbiology Lab 0-0-6 3 MSBT-193 Cell Biology Lab 0-0-6 2 C MSBT-181 Seminar 1 Semester Total 24 Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for M. Sc. In Biotechnology MSBT101: Biochemistry credits 3 Unit 1: Basic chemistry for biologists Formation of chemical bonds, molecular orbital (MO) theory and linear combination of atomic orbitals (LCAO),basics of mass spectrometry, molecules, Avogadro number, molarity, chemical reactions, reaction stoichiometry, rates of reaction, rate constants, order of reactions,kinetic versus thermodynamic controls of a reaction, reaction equilibrium (equilibrium constant); light and matter interactions (optical spectroscopy, fluorescence, bioluminescence, paramagnetism and diamagnetism, photoelectron spectroscopy; chemical bonds (ionic, covalent, Van derWalls forces); electronegativity, polarity; VSEPR theory and molecular geometry, dipole moment, orbital hybridizations; acids, bases and pH - Arrhenious theory, pH, ionic product of water, weak acids and bases, conjugate acid-base pairs, buffers and buffering action etc; chemical thermodynamics - internal energy, heat and temperature, enthalpy (bond enthalpy and reaction enthalpy), entropy, Gibbs free energy of ATP driven reactions, spontaneity versus driven reactions in biology;bond rotations and molecular conformations - Newman projections, conformational analysis of alkanes, alkenes and alkynes; functional groups, optically asymmetric carbon centers, amino acids, proteins, rotational freedoms in polypeptide backbone (Ramachandran plot).
    [Show full text]
  • 2016 Book Reviews
    Animal Behavior Society Outstanding Children’s Book Award 2016 Reviews of Winner and Finalist Books WINNER: The Queen’s Shadow: A Story About How Animals See, by Cybèle Young Published by Kids Can Press, 2015 Review by Dr. Jennifer Mather, University of Lethbridge The Queen’s Shadow is an enjoyable way to learn about the many aspect of vision in different animals, through a story. The queen has played host to a diverse group of animals in the palace, but during a thunderstorm she has lost her shadow. She accuses them of stealing it and, one by one, they explain why their particular perceptual abilities eliminate them from her accusation. Well, the squid say all his arms were busy…. On each double page, we hear how they perception of each animal actually works. In the end the sea urchins reveal that she ‘left her show in the loo’ and they all go home, with us much the wiser. Children liked the story, and learning about how animal see. FINALIST: Bite Into Bloodsuckers, by Kari-Lynn Winters and Ishta Mercurio Published by Fitzhenry & Whiteside, 2015 Review by Dr. Michelle Solensky, University of Jamestown Bite into bloodsuckers, by Kari-Lynn Winters and Ishta Mercurio (Fitzhenry & Whiteside) describes the benefits and challenges of hematophagy, or using blood as a food source, and features vivid behavioral accounts of the usual suspects (ticks, leeches, mosquitos and vampire bats) and some less familiar bloodsuckers (torpedo snail, catfish, kissing bugs). Vivid graphics pull the reader into the fascinating world of blood sucking, while the text provides an interesting and scientifically accurate and thorough description of the pros and cons of using blood as a primary or only food source.
    [Show full text]
  • Microrna Mir-275 Is Indispensable for Blood Digestion and Egg
    microRNA miR-275 is indispensable for blood digestion INAUGURAL ARTICLE and egg development in the mosquito Aedes aegypti Bart Bryant, Warren Macdonald, and Alexander S. Raikhel1 Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Alexander S. Raikhel, November 4, 2010 (sent for review October 1, 2010) The mosquito Aedes aegypti is the major vector of arboviral dis- Drosha to form the premiRNAs, which are then exported into eases, particularly of Dengue fever, of which there are more than the cytoplasm by Exportin-5. premiRNAs are cleaved by Dicer1 100 million cases annually. Mosquitoes, such as A. aegypti, serve (Dcr1), resulting in a miRNA/miRNA duplex. The mature as vectors for disease pathogens because they require vertebrate miRNA molecule is then loaded into an Argonaute (Ago) com- blood for their egg production. Pathogen transmission is tightly plex, which targets multiple mRNAs for either destruction or in- linked to repeated cycles of obligatory blood feeding and egg hibition of translation (9). In addition, some miRNAs are found in maturation. Thus, the understanding of mechanisms governing introns of genes and bypass Drosha processing (9). Since the egg production is necessary to develop approaches that limit the discovery of miRNAs in Caenorhabditis elegans (10, 11), numerous spread of mosquito-borne diseases. Previous studies have identi- studies have demonstrated their essential role in regulating de- fied critical roles of hormonal- and nutrition-based target of rapa- velopment, cell differentiation, apoptosis, and other critical bi- mycin (TOR) pathways in controlling blood-meal–mediated egg ological events in both animals and plants (12, 13).
    [Show full text]
  • Technical Methods
    J Clin Pathol 1987;40:581-588 J Clin Pathol: first published as 10.1136/jcp.40.5.581 on 1 May 1987. Downloaded from 56°C for 30 minutes. Technical methods Complement fixation tests were performed accord- ing to established methods,10 1 except that microtitre plates were used instead of World Health Organisation trays. For maximum sensitivity an ini- Cytomegalovirus (CMV) tial serum dilution of 1/4 was used. The antigen prep- antibody screening in blood aration used was a CMV complement fixation test antigen supplied by either Flow Laboratories Ltd, donors: modification of new latex Irvine, Scotland, or the Central Public Health Labo- ratory, Colindale, England. Guinea pig complements agglutination test compared with were supplied by Wellcome Diagnostics, Dartford, two standard methods England, or Don Whitly Scientific Ltd, Shipley, England. Complement fixation tests were performed A PUCKETT J E DAVIS From the Regional Blood using the following CMV antigen and complement Transfusion Centre, John Radeliffe Hospital, combinations: (1) PHLS CMV antigen + Wellcome Headington, Oxford, England Diagnostics complement, (2) PHLS CMV antigen + Don Whitly complement, and (3) Flow Laboratories CMV antigen + Wellcome Diagnostics complement. Infection with cytomegalovirus (CMV) is common, Immunofluorescence tests were performed and between 50 and 100% of adults may show evi- according to a standard method12 13 using substrate dence of infection.1 The transmission of the virus by slides of CMV infected (Westwood strain) fibroblasts blood transfusion2 and, therefore, the need to screen the Oxford Public Health Laboratory. donations intended for at risk groups such as provided by immunocompromised patients34 and neonates5 -7 iS CMV Scan passive latex agglutination kits were now well established.
    [Show full text]
  • BIO 313 ANIMAL ECOLOGY Corrected
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment).
    [Show full text]
  • Molecular Evolutionary Trends and Feeding Ecology Diversification In
    bioRxiv preprint doi: https://doi.org/10.1101/201731; this version posted October 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Molecular evolutionary trends and 2 feeding ecology diversification in the Hemiptera, 3 anchored by the milkweed bug genome 4 5 6 Kristen A. Panfilio1, 2*, Iris M. Vargas Jentzsch1, Joshua B. Benoit3, Deniz 7 Erezyilmaz4, Yuichiro Suzuki5, Stefano Colella6, 7, Hugh M. Robertson8, Monica F. 8 Poelchau9, Robert M. Waterhouse10, 11, Panagiotis Ioannidis10, Matthew T. 9 Weirauch12, Daniel S.T. Hughes13, Shwetha C. Murali13, 14, 15, John H. Werren16, Chris 10 G.C. Jacobs17, 18, Elizabeth J. Duncan19, 20, David Armisén21, Barbara M.I. Vreede22, 11 Patrice Baa-Puyoulet6, Chloé S. Berger21, Chun-che Chang23, Hsu Chao13, Mei-Ju M. 12 Chen9, Yen-Ta Chen1, Christopher P. Childers9, Ariel D. Chipman22, Andrew G. 13 Cridge19, Antonin J.J. Crumière21, Peter K. Dearden19, Elise M. Didion3, Huyen 14 Dinh13, HarshaVardhan Doddapaneni13, Amanda Dolan16, 24, Shannon Dugan13, 15 Cassandra G. Extavour25, 26, Gérard Febvay6, Markus Friedrich27, Neta Ginzburg22, Yi 16 Han13, Peter Heger28, Thorsten Horn1, Yi-min Hsiao23, Emily C. Jennings3, J. Spencer 17 Johnston29, Tamsin E. Jones25, Jeffery W. Jones27, Abderrahman Khila21, Stefan 18 Koelzer1, Viera Kovacova30, Megan Leask19, Sandra L. Lee13, Chien-Yueh Lee9, 19 Mackenzie R. Lovegrove19, Hsiao-ling Lu23, Yong Lu31, Patricia J. Moore32, Monica 20 C. Munoz-Torres33, Donna M. Muzny13, Subba R. Palli34, Nicolas Parisot6, Leslie 21 Pick31, Megan Porter35, Jiaxin Qu13, Peter N. Refki21, 36, Rose Richter16, 37, Rolando 22 Rivera Pomar38, Andrew J.
    [Show full text]
  • CINDY LEE VAN DOVER March 2017
    CINDY LEE VAN DOVER March 2017 CONTACT INFORMATION Division of Marine Science and Conservation Duke University Marine Laboratory 135 Duke Marine Lab Road Beaufort NC 28516 Tel: 252-504-7655 Fax: 252-504-7648 [email protected] EDUCATION 1989 PhD Massachusetts Institute of Technology and Woods Hole Oceanographic Institution Joint Program in Biological Oceanography. Department of Biology, Woods Hole Oceanographic Institution. Dissertation Title: Chemosynthetic Communities in the Deep Sea: Ecological Studies. PhD. Advisor: J.F. Grassle 1985 MA University of California, Los Angeles; Ecology 1977 BS Cook College, Rutgers University; Environmental Science ACADEMIC POSITIONS 2016 Visiting Scientist, Université de Bretagne Occidentale 2006- Harvey W. Smith Professor, Division of Marine Science and Conservation, Duke University 2006-2016 Director, Duke University Marine Laboratory 2006-2016 Chair, Division of Marine Science and Conservation 2006-2014 Director, Certificate in Marine Science and Conservation Leadership 2005-2006 Associate Professor, Biology Department, College of William & Mary 2002-2005 Marjorie S. Curtis Associate Professor, Biology Department, College of William & Mary 2005 Instructor, Oregon Institute of Marine Biology, University of Oregon 2004 Fulbright Research Scholar, IFREMER, Centre de Brest, France 1998-2002 Assistant Professor, Biology Department, College of William & Mary 1995-1998 Science Director, West Coast National Undersea Research Center and Research Associate Professor, Institute of Marine Science, University of Alaska, Fairbanks; Visiting Investigator, Dept. Geology & Geophysics, WHOI 1994-1995 Mary Derrickson McCurdy Visiting Scholar, Duke University School of the Environment, Duke Marine Lab., Beaufort, NC 1992-1994 Visiting Investigator, Department of Marine Chemistry and Geochemistry, WHOI 1989-1992 Submersible Pilot, ALVIN Group and Post-Doctoral Investigator, Biology Department, WHOI.
    [Show full text]
  • Serological Methods in the Identification and Characterization of Viruses
    CHAPTER 4 Serological Methods in the Identification and Characterization of Viruses M. H. V. Van Regenmortel Laboratoire de Virologie Institut de Biologie Mo!eculaire et Cellulaire 67000 Strasbourg, France 1. INTRODUCTION The purpose of this chapter is to present an integrated view of the various serological techniques that have been used in virology. The accent will be placed on the principles that govern each type of test and on the general applicability of the different serological techniques in all fields of virus research. In recent years, advances in serological tech­ niques have sometimes been applied in only one area of virology, although they could have been equally useful to workers studying other groups of viruses. No doubt this stems from the host-oriented approach that has guided the compartmentation of virology into separate fields of specialization. When it comes to serological properties, however, the similarities between animal, insect, bacterial, and plant viruses are paramount. The same immunochemical principles govern the in vitro serological reactions of all viral antigens, and much of general interest can be learned from the findings obtained with each particular group of viruses. An attempt will be made here to emphasize the general validity of specific experimental procedures. A number of recent reviews restricted to the serology of particular groups of viruses are available 183 H. Fraenkel-Conrat et al. (eds.), Comprehensive Virology © Plenum Press, New York 1981 184 Chapter 4 (Cowan, 1973; Schmidt and Lennette, 1973; Ball, 1974; Kurstak and Morisset, 1974; Burns and Allison, 1975; Mazzone and Tignor, 1976; Mayr et al., 1977; Tyrrell, 1978; Van Regenmortel, 1978; Cooper, 1979).
    [Show full text]
  • Characterization of a Recombinant Modified Vaccinia Virus Ankara Expressing the Severe Acute Respiratory Syndrome Virus 2 Spike Protein
    Characterization of a recombinant Modified Vaccinia virus Ankara expressing the severe acute respiratory syndrome virus 2 spike protein von Alina Tscherne, M.Sc. Inaugural-Dissertation zur Erlangung der Doktorwürde (Dr. rer. biol. vet.) der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Characterization of a recombinant Modified Vaccinia virus Ankara expressing the severe acute respiratory syndrome virus 2 spike protein von Alina Tscherne, M.Sc. aus Voitsberg (Österreich) München 2021 Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Lehrstuhl für Virologie Arbeit angefertigt unter der Leitung von: Univ.-Prof. Dr. Gerd Sutter Mitbetreuung durch: Univ.-Prof. Dr. Asisa Volz Gedruckt mit Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Dekan: Univ.-Prof. Dr. Reinhard K. Straubinger, Ph.D. Berichterstatter: Univ.-Prof. Dr. Gerd Sutter Korreferentin: Priv.-Doz. Dr. Simone M.-L. Renner Tag der Promotion: 17. Juli 2021 Für meine Familie Die vorliegende Dissertationsschrift enthält wissenschaftliche Daten, die im Journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) veröffentlicht wurden: Alina Tscherne, Jan Hendrik Schwarz, Cornelius Rohde, Alexandra Kupke, Georgia Kalodimou, Leonard Limpinsel, Nisreen M.A. Okba, Berislav Bošnjak, Inga Sandrock, Sandro Halwe, Lucie Sauerhering, Katrin Brosinski, Liangliang Nan, Elke Duell, Sylvia Jany, Astrid Freudenstein, Jörg Schmidt, Anke Werner, Michelle Gellhorn Sera, Wolfgang Guggemos, Michael Seilmaier, Clemens- Martin Wendtner, Reinhold Förster, Bart L. Haagmans, Stephan Becker, Gerd Sutter, Asisa Volz “Immunogenicity and efficacy of the COVID-19 candidate vector vaccine MVA-SARS-2-S in preclinical vaccination”, erschienen am 13.07.2021 (doi: 10.1073/pnas.2026207118.) Table of Contents VI TABLE OF CONTENTS I.
    [Show full text]
  • Passerina Ciris)
    UNLV Theses, Dissertations, Professional Papers, and Capstones 8-2011 Phylogeography of a vanishing North American songbird: The painted bunting (Passerina ciris) Connie Ann Herr University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Behavior and Ethology Commons, Biodiversity Commons, Ornithology Commons, Population Biology Commons, and the Poultry or Avian Science Commons Repository Citation Herr, Connie Ann, "Phylogeography of a vanishing North American songbird: The painted bunting (Passerina ciris)" (2011). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1318. http://dx.doi.org/10.34917/3038776 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. PHYLOGEOGRAPHY OF A VANISHING NORTH AMERICAN SONGBIRD: THE PAINTED BUNTING (PASSERINA CIRIS) by Connie Ann Herr Bachelor
    [Show full text]
  • Msc Biochemistry Autonomy 2015-17
    Bhavan’s Vivekananda College of Science, Humanities and Commerce, Sainikpuri, Secunderabad–500094 Autonomous (Accredited with ‘A’ grade by NAAC) MSc Biochemistry Autonomy 2015-17 Bhavan’s Vivekananda College of Science, Humanities and Commerce, Sainikpuri, Secunderabad–500094 Autonomous (Accredited with ‘A’ grade by NAAC) M.Sc. Biochemistry Syllabus (Effective from 2015 admitted batch) SEMESTER I PAPERS TITLE Teaching Credits Internal Final hrs/week marks exam marks 1 Paper-I : BI101T:Chemistry and Metabolism of Proteins, Lipids and Porphyrins 4 4 30 70 2 Paper-II : BI102T:Chemistry and Metabolism of Carbohydrates, Vitamins 4 4 30 70 and Nucleic Acids 3 Paper-III: BI 103T: Bio-Analytical Techniques 4 4 30 70 4 Paper-IV: BI104T:BioenergeticsAndCellBiology 4 4 30 70 5 Paper-V: BI105P: Amino acids and protein analysis 8 4 -- 100 6 Paper-VI: BI106P: Carbohydrate and lipid analysis 8 4 -- 100 Total 32 24 120 480 SEMESTER II PAPERS TITLE Teaching Credits Internal Final hrs/week marks exam marks 1 Paper-I:BI201T:Enzymology 4 4 30 70 2 Paper-II:BI202T:MolecularBiology 4 4 30 70 3 Paper-III:BI203T:BiochemicalGeneticsAndModelOrganisms 4 4 30 70 4 Paper-IV: B1 204T: Computational methods and Cell study methods 4 4 30 70 5 Paper-V:BI205P:Enzymology and Biochemical preparations 8 4 -- 100 6 Paper-VI:BI206P: Molecular Biology, Genetics and Quantitative Biology 8 4 -- 100 Total 32 24 120 480 SEMESTER III PAPERS TITLE Teaching Credits Internal Final hrs/week marks exam marks 1 Paper-I:BI301T:GeneRegulation and Genetic Engineering 4 4 30 70 2 Paper-II:BI302T:Immunology and Immunotechnology 4 4 30 70 3 Paper-III:BI303T: Virology, Nutrition & Clinical Biochemistry.
    [Show full text]
  • I M M U N O L O G Y Core Notes
    II MM MM UU NN OO LL OO GG YY CCOORREE NNOOTTEESS MEDICAL IMMUNOLOGY 544 FALL 2011 Dr. George A. Gutman SCHOOL OF MEDICINE UNIVERSITY OF CALIFORNIA, IRVINE (Copyright) 2011 Regents of the University of California TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 3 CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS ..............................................9 CHAPTER 3 ANTIBODY STRUCTURE I..................................................................17 CHAPTER 4 ANTIBODY STRUCTURE II.................................................................23 CHAPTER 5 COMPLEMENT...................................................................................... 33 CHAPTER 6 ANTIBODY GENETICS, ISOTYPES, ALLOTYPES, IDIOTYPES.....45 CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION..................................................................53 CHAPTER 8 GENETIC BASIS OF ANTIBODY DIVERSITY...................................61 CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS ...............................................69 CHAPTER 10 BLOOD GROUPS: ABO AND Rh .........................................................77 CHAPTER 11 CELL-MEDIATED IMMUNITY AND MHC ........................................83 CHAPTER 12 CELL INTERACTIONS IN CELL MEDIATED IMMUNITY ..............91 CHAPTER 13 T-CELL/B-CELL COOPERATION IN HUMORAL IMMUNITY......105 CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES...............................................................111
    [Show full text]