T. Gallé – Luxembourg Institute of Science and Technology
Total Page:16
File Type:pdf, Size:1020Kb
Emission inventories for priority substances at catchment levels: Solving the PAH source conundrum with an array of in‐stream tools T. Gallé Michael Bayerle, Denis Pittois, Andreas Krein Luxembourg Institue of Science and Technology Contact: [email protected] BAD CHEMICAL STATUS PAH EQS exceedance most common reason • All surveillance sites in Luxembourg exceed EQS for high-molecular weight PAH • Same trends in the neighboring regions (Rhine-Mosel Commission) • PAH often considered as ubiquitous with important atmospheric immission • Fatalistic attitude upon improving the situation (little concrete measures in RBMP) • Scarce efforts to investigate spatial differentitation and sources more thoroughly 2 PAH SOURCES AND DYNAMICS What the literature says • Exports from catchments > current atmospheric deposition (urban areas) • Street deposits major source • Soils often secondary source • Accumulation in soils in vicinity of traffic • Building up of stocks in sewers (first flushs) • Role of combustion derived carbonaceous particles • Contaminated industrial sites (historical) 3 EMISSION INVENTORIES One scheme for all compounds? 4 • Is this adapted to secondary pollutants with diffuse sources and a strong affinity for solids? SUBSTANCE FLOW ANALYSIS Regionalized emission balances Susp. matter [mg/L] 500 • Substance flow Ettelbruck analysis in different 400 catchment 300 • Establishment of Q-C Data: Data1_B 200 Model: Allometric1 Equation: y = a*x^b relationships Weighting: y No weighting Chi^2/DoF = 1240.40378 Susp. matter [mg/L] matter Susp. 100 R^2 = 0.76735 • Calculation of a 0.92937 ±0.34971 b 1.32497 ±0.09034 catchment loads 0 • Characterization of 0 20 40 60 80 100 120 Discharge [m3/s] pollution level in 7000 Ettelbruck different hydrological 6000 situations 5000 y = a*x^b R^2 = 0.98238 4000 a 0.02843 ±0.03588 • Contribution of b 3.11534 ±0.32406 3000 Sum PAH WWTPs and urban [ng/l] PAH runoff 2000 1000 0 -1000 0 5 10 15 20 25 30 35 40 45 50 55 3 5 Discharge [m /s] SUSPENDED MATTER POLLUTION Source discrimination PAH solid > 15 mg/L Susp M Sum PAH solid > 15 mg/L susp. m 35 Sum PAH solid > 15 mg/L susp. matter 30 Steinsel 30 Ettelbruck 30 Hunnebour 25 25 20 20 20 15 15 10 PAH solidPAH [mg/kg] PAH solid [mg/kg] PAHsolid [mg/kg] 10 10 5 5 0 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 0 100 200 300 400 Susp. M. [mg/l] Susp. M. [mg/l] Susp. M. [mg/l] • Solid contamination levels allow for objective comparison in different hydrological situations and catchments (SPM as main carrier) • High levels of SPM indicate strong catchment wide erosion and background levels of (alluvial) contamination 6 CATCHMENT BALANCES Yearly variability - uncertainties Daily discharge [mM3] Daily discharge [Mm3] 25 Daily average PAH solid [mg/kg] Ettelbruck 250 25 Ettelbruck 250 Daily average PAH solid [mg/kg] DAily PAH 16 load [kg] Daily PAH 16 load [kg] 20 200 20 200 ] 3 ] 3 15 150 15 150 2002-2003 2003-2004 3 Discharge 401 Mm3 Discharge 210 Mm 10 PAH 16 load 123 kg 100 10 PAH 16 load 824 kg 100 Average PAH 16 conc. 2.05 g/L Average PAH 16 conc. 0.58 g/L Daily 16loadPAH [kg] Daily loadPAH 16 [kg] Dailydischarge [Mm Dailydischarge [Mm 5 50 5 50 Average solid [mg/kg] PAH 16 Average solid 16[mg/kg] PAH 0 0 0 0 01/04/2003 01/08/2003 01/12/2003 01/04/2004 01/04/2002 01/08/2002 01/12/2002 01/04/2003 Steinsel Ettelbrück Steinsel Ettelbrück 2002-2003 2002-2003 2003-2004 2003-2004 Yearly discharge [Mm3] 183 401 99 210 Yearly load PAH [kg] 241 824 56 123 Yearly average 1.32 2.05 0.58 0.58 concentration PAH [µg/L] Yearly average 95 160 33 37 concentration SPM [mg/L] • Yearly loads are governed by SPM yield – read: hydrological events 7 • SPM pollution levels is the more objective measure CONTRIBUTION BY URBAN AREAS WWTPs vs runoff pollution 500 • Contribution of WWTPs: WWTP outlets Schifflange medians of measurement 400 Bettembourg Bonnevoie Beggen campaigns 300 Mersch • Contribution of surface runoff 200 PAH 15PAH[ng/l] • Combined sewers 100 Difference between 0 A B C D E effective precipitation 25 Schifflange Bettembourg Bonnevoie Beggen Mersch on impervious surfaces WWTP outlet SPM and discharge of WWTPs 20 • Separative sewers: Effective 15 precipitation 10 • Median concentrations: PAHsolid [mg/kg] 5 measurements/literature 0 A B C D E Schifflange Bettembourg Bonnevoie Beggen Mersch Beringen 8 CONTRIBUTION PATTERNS Runoff as the main source? Alzette by Difference Alzette by Difference Steinsel PAH loads [kg/y] WWTP Steinsel discharge [Mm3/y] WWTP 2002-2003 CSO 2002-2003 CSO Stormwater Stormwater 5.52 (3.02%) 149.93 (81.93%) 31.9 (17.45%) 15.9 (8.69%) 142 (77.68%) 5.7 (3.12%) 11.65 (6.37%) 3.2 (1.75%) Alzette by Difference Steinsel Cu loads [kg/y] Alzette by Difference tot WWTP WWTP Steinsel PAH loads [kg/y] 2002-2003 CSO CSO 2003-2004 Stormwater Stormwater 138 (12.59%) 249 (22.72%) 5.34 (9.54%) 12.56 (22.43%) 8.76 (15.64%) 133 (12.14%) 576 (52.55%) 29.34 (52.39%) • The contribution of WWTPs and urban runoff is much smaller for PAH than for metals 9 • The contribution is largely dependent on the hydrological season (wet year vs. dry year) FLOOD EVENTS Source mobilisation and transport dynamics • Follow-up project on urban runoff through in- stream balances • 3 triggerd autosamplers in a longitudinal profile from industrial region to strongly urbanized segments • Event based balancing and peak analysis in flood waves • Can we depict fast urban runoff contributions in chemographs? 10 EVENT MEAN CONCENTRATIONS Fingerprinitng the sources Hesperange Pfaffenthal Livange 200 150 250 Cu solid [mg/kg] Model: Allometric1 Model: Allometric1 200 150 Equation: Equation: y = 73,93306*x^-0,34051 y = 63,96336*x^-0,23224 100 R^2 = 0.70805 R^2 = 0.87077 150 100 100 50 50 EMC Cu solid [mg/kg] EMC Cu solid [mg/kg] 50 0 Event mean concentration [mg/kg] 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 3 3 Q tot [Mm ] 3 Q tot [Mm ] Q tot [Mm ] Livange Hesperange Pfaffenthal 40 40 40 Data: EMC_J Sum 16 PAH [mg/kg] Model: Allometric1 Sum 16 PAH [mg/kg] Data: EMC_J Equation: Model: Allometric1 y = a*x^b Sum 16 PAH [mg/kg] Equation: Weighting: y = a*x^b y No weighting Weighting: Chi^2/DoF = 13.59298 30 30 y No weighting 30 R^2 = 0.77278 Chi^2/DoF = 14.56994 a 20.9788 ±1.73531 R^2 = 0.84231 b -0.19328 ±0.05202 a 22.75079 ±2.07217 b -0.28274 ±0.08227 20 20 20 10 10 10 Event mean concentration [mg/kg] Event mean concentration [mg/kg] Event mean concentration [mg/kg] 0 0 0 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 3 3 Q tot [Mm3] Q tot [Mm ] Q tot [Mm ] • EMC for Copper and PAH show higher solid contamination in small events (Cu > PAH) 11 • Small events have higher contributions of first-flushes vs catchment erosion SPATIAL VARIABILITY Limited outreach of PAH pollution 200 40 Livange 150 30 Hesperange 35 Livange 200 Pfaffenthal Hesperange Pfaffenthal 30 150 25 100 20 20 100 16 PAH [mg/kg] 15 PAH 16solidPAH [mg/kg] EMC Cu solid [mg/kg] 10 EMC EMC CuEMCsolid [mg/kg] 50 50 10 EMC 5 0 0 Event 1 Event 2 Event3 Event 6 Event 7 Event 8 Event 9 Event 1 Event 2 Event3 Event 6 Event 7 Event 8 Event 9 Event 10 Event 11 Event 10 0 0 Event 4+5 Event 4+5 Livange Livange Pfaffenthal Pfaffenthal Hesperange Hesperange • PAH pollution and Copper pollution behave differently in longitudinal profile • Sources seem to be diverse and variably mobilisable 12 MASS FLOW COMPONENTS Deconvoluting flood waves Livange Wave 2 Real load Cu 9.07 kg FF load Cu 2.26 kg (28%) 7000 BG load Cu 4.27 kg (52 %) 200 FF2 load Cu 1.63 kg (20%) 6000 Sum load Cu 8.16 kg (fit 0.9) Discharge 150 5000 Particle solid concentrations /15 min]/15 Livange Wave 2 3000 3 4000 [mg/kg]: FF: 122 Real load ssp 129.90 t 100 BG: 44 7000 FF load ssp 18.45 t (15%) 3000 FF2: 161 BG load ssp 97.14 t (77%) 2500 2000 Culoadmin] [g/15 6000 FF2 load ssp 10.10 t (8%) Discharge[m 50 Sum load ssp 127.7 t (fit 0.97) 1000 2000 5000 Discharge 0 0 0 50 100 150 200 250 /15 min]/15 3 4000 1500 time step [15 min] Livange Wave 2 Real load PAH 3.36 kg 3000 FF load PAH 0.29 kg (10%) 1000 7000 BG load PAH 2.44 kg (81 %) FF2 load PAH 0.27 kg (9%) 2000 Susp. M. [kg/15 min][kg/15 M. Susp. 60 Discharge[m 6000 Sum load PAH 3.00 kg (fit 0.89) 500 Discharge 1000 5000 Particle solid concentrations /15 min]/15 40 3 4000 [mg/kg]: 0 0 FF: 16 0 50 100 150 200 250 BG: 25 3000 FF2: 27 time steps [15 min] 20 2000 min]loadPAH [g/15 • First we identify and fit SPM loads (turbidity signal) Discharge[m 1000 • Then we allocate a pollution to each SPM source 0 0 0 50 100 150 200 250 13 time step [15 min] MASS FLOW COMPONENTS Deconvoluting flood waves Pfaffenthal wave 2 120 12000 Discharge Event First FF BG Real load PAH 6.85 kg load Flush conc.