National Institute of Polar Research Japan 2011 - 2012 National Institute of Polar Research Japan 2011 - 2012 C O N T E N T S

Total Page:16

File Type:pdf, Size:1020Kb

National Institute of Polar Research Japan 2011 - 2012 National Institute of Polar Research Japan 2011 - 2012 C O N T E N T S Inter-University Research Institute Corporation Research Organization of Information and Systems National Institute of Polar Research Japan 2011 - 2012 National Institute of Polar Research Japan 2011 - 2012 C o n t e n t s Foreword ...... 3 Polar Programs ...... 18 Activities ...... 4 ¡Center for Antarctic Programs ...... 19 Organization ...... 5 ¡Arctic Environment Research Center ...... 20 Research Staff ...... 6 International Affairs Section ...... 21 Data ...... 7 Library / Archives Section ...... 22 History ...... 8 Public Relations Section / Intellectual Property Section ...... 23 Research and Education ...... 9 Graduate Education ...... 24 ¡Space and Upper Atmospheric Sciences Group / ¡The Graduate University for Advanced Studies (SOKENDAI) / Meteorology and Glaciology Group ...... 10 The Department of Polar Science ...... 24 ¡Geoscience Group / Bioscience Group ...... 11 ¡Special Collaborative research Fellows / Joint Graduate School ...... 24 ¡Polar Engineering Group / Transdisciplinary Research Integration Center ...... 26 Advanced Scientific Research Group ...... 12 ¡Project ...... 13 Antarctic Activities ...... 27 ¡Collaborative Research ...... 14 ¡Transportation to the Antarctic andSetting Up Research Stations ...... 28 ¡Research Stations ...... 28 Polar Information ...... 15 ¡Research Observation Activities ...... 30 ¡Polar Data Center ...... 16 ¡Expedition Activity Topics ...... 30 ¡Polar Science Resources Center ...... 17 ¡Environmental Protection ...... 31 0 2 F o r e w o r d The National Institute of Polar Research (NIPR) was founded in 1973 as an inter-university research institute to carry out comprehensive scientific research and observations in polar regions. Since 2004, as one of the research institutes constituting the Research Organization of Information and Systems (ROIS), NIPR has been playing a major role in Japanese Antarctic research programs, while pursuing cutting-edge studies in collaboration with research communities relating to the earth, the environment, life, space and other fields. Furthermore, NIPR is opening up new frontiers in interdisciplinary research under the framework of the Transdisciplinary Research Integration Center (TRIC) at ROIS and various other inter- university research programs. Japanese Antarctic research programs have the history of more than 50 National Institute of Polar Research Japan 2011 - 2012 years and observations in polar regions are becoming increasingly important for monitoring earth environment. NIPR involves in wide range of activities in the Antarctic research programs both temporally and spatially through C o n t e n t s research by using advanced method, long-term monitoring observations and field and ocean observations in extensive areas. Arctic research is drawing attention in recent years in particular, along with growing interest in global warming. NIPR steadily implements the Arctic Climate Change Project as one of Green Network of Excellence (GRENE) programs in collaboration with various research communities. NIPR further develops research in other areas of polar science not only in Arctic but also in bipolar areas. Katabatic wind that blow down These studies are planned and implemented under international Yamato mountains. frameworks. Having participated in activities of the Scientific Committee on Antarctic Research (SCAR), the International Arctic Science Committee (IASC), the Asian Forum for Polar Sciences (AFoPS) and international joint observations with legacy of International Polar Year 2007-2008 (IPY2007-2008), NIPR plays an important role in international global observations. The training of the researchers is a big task of the institute, too. As a parent institute of the Graduate University for Advanced Studies (SOKENDAI), NIPR accommodates a 5-year doctoral course for graduate students in the Department of Polar Science, School of Multidisciplinary Sciences and is involved in fostering promising researchers with high-level research capabilities and skills for field science. Utilizing the findings of observations and research in polar regions, NIPR promotes outreach activities for schools using INTELSAT satellite communication system. In addition, Polar Science Museum opened in the Tachikawa campus in 2010, is used as the information center to transmit history and current status of polar research and its achievement. We ask all of you for understanding and support in our activities. Kazuyuki SHIRAISHI Director-General, National Institute of Polar Research 0 3 Activities NIPR was founded on April 1, 2004, by the Inter-University Research Institute Corporation as a Research Organization of Information and Systems in accordance with Article 5-2 of the National University Corporation Law to carry out multidisciplinary scientific research into the polar regions and conduct polar observations. As the main center for Japanese polar research, NIPR undertakes multidisciplinary research and observations in the polar regions. Recognizing that polar science is an advanced, multidisciplinary earth systems science that includes earth science, Research environmental science, solar-terrestrial physics, space and planetary science, biological science. etc., NIPR conducts joint research projects with researchers from various universities and institutions. As an Inter-University Research Institute, NIPR provides the infrastructure and Collaborative scientific materials and information required for research in the Antarctic and Arctic Research to researchers from universities, research institutes, etc. As a parent institute of the Graduate University for Advanced Studies (SOKENDAI), NIPR provides doctoral education and research guidance. In 2006, Graduate NIPR began accepting students in 5-year integrated doctoral course with the aim of Education developing researchers who have a broad, international perspective and a high level of creativity. When requested, NIPR assists with education in graduate schools of the other universities. As the main institute for carrying out the Japanese Antarctic Research Expedition (JARE), NIPR develops and carries out comprehensive research and observation Antarctic projects related to science in the polar regions. NIPR also maintains and operates Research observation station facilities in the Antarctic. In addition, NIPR organizes research Activities expeditions, conducts training, obtains the equipment required for research projects, plans logistics and other tasks, and gathers and maintains the scientific materials and data obtained in the course of observations. Front of NIPR 0 4 Organization Inter-University Research Institute Corporation, Research Organization of Information and Systems President Nomination Committee Auditors (2 part-time) National Institute of Polar Research 10-3 Midori-cho, Tachikawa-shi, Tokyo President Board of Directors Executive Directors 4 or less (Consists of President and Genshiro KITAGAWA Executive Directors) National Institute of Informatics Management Council Education and Research Council The Institute of Conference of Directors-General Statistical Mathematics Executive Directors Masao SAKAUCHI Tomoyuki HIGUCHI National Institute of Genetics Yuji KOHARA Mitiko GOU Auditors Yoshifumi YASUOKA Hitoshi TERAO Transdisciplinary Research Integration Center Database Center for Life Science General Planning Office Intellectual Property Center Administration Office Planning Division National Institute of Polar Research Director-General Kazuyuki SHIRAISHI Administrative Council Vice Director-General Natsuo SATO Yoichi MOTOYOSHI Takashi YAMANOUCHI Division for Research and Education Space and Upper Atmospheric Sciences Group Leader Takuji NAKAMURA Meteorology and Glaciology Group Leader Hideaki MOTOYAMA Geoscience Group Leader Hideyasu KOJIMA Bioscience Group Leader Tsuneo ODATE Polar Engineering Group Leader Yoichi MOTOYOSHI Advanced Scientific Research Group Leader Hideaki MOTOYAMA Center for Antarctic Programs Director Yoichi MOTOYOSHI Deputy Director (for Research) Kokichi KAMIYAMA Deputy Director (for JARE Management) Manager of Planning Unit Takuya OKAMOTO Takuya OKAMOTO* Manager of Logistics Unit Kenji ISHIZAWA Arctic Environment Research Center Director Hiroyuki ENOMOTO Deputy Director Hiroshi MIYAOKA Polar Science Resources Center Director Yoichi MOTOYOSHI Polar Data Center Director Akira KADOKURA Public Relations Section Head Mamoru KAWAKUBO Library Director Tsuneo ODATE International Affairs Section Head Kentaro WATANABE Intellectual Property Section Head Takashi YAMANOUCHI Archives Section Head Takashi YAMANOUCHI *concurrent post NIPR/ISM Joint Administration Office National Institute of Polar Research NIPR/ISM Joint Administration Office The Institute of Statistical Mathematics 0 5 Research Staff Space and Upper Atmospheric Sciences Group Project Researcher Professor Natsuo SATO Aurora Physics Kazue SUZUKI Polar Climatology Professor Hisao YAMAGISHI Upper Atmosphere Physics Tetsuo MOTOBA Upper Atmosphere Physics Professor Takuji NAKAMURA Atmospheric Dynamics Jun’ichi OKUNO Solid Earth Geophysics Associate Prof. Hiroshi MIYAOKA Plasma Physics Kenji HORIE Isotopic Geochemistry Associate Prof. Akira KADOKURA Magnetospheric Physics Motohiro HIRABAYASHI Analytical Chemistry Associate Prof. Masaki TSUTSUMI Atmospheric Physics Hidehiko SUZUKI Upper Atmosphere Physics Associate Prof. Akira YUKIMATSU Magnetospheric Physics Hisashi OIWANE Marine Geology Associate Prof. Masaki OKADA Plasma Physics Chikako TAKAMURA Atmospheric Science Lecturer Yasunobu OGAWA Ionospheric Physics Takurou KOBASHI
Recommended publications
  • E-Region Auroral Ionosphere Model
    atmosphere Article AIM-E: E-Region Auroral Ionosphere Model Vera Nikolaeva 1,* , Evgeny Gordeev 2 , Tima Sergienko 3, Ludmila Makarova 1 and Andrey Kotikov 4 1 Arctic and Antarctic Research Institute, 199397 Saint Petersburg, Russia; [email protected] 2 Earth’s Physics Department, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] 3 Swedish Institute of Space Physics, 981 28 Kiruna, Sweden; [email protected] 4 Saint Petersburg Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN), 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: The auroral oval is the high-latitude region of the ionosphere characterized by strong vari- ability of its chemical composition due to precipitation of energetic particles from the magnetosphere. The complex nature of magnetospheric processes cause a wide range of dynamic variations in the auroral zone, which are difficult to forecast. Knowledge of electron concentrations in this highly turbulent region is of particular importance because it determines the propagation conditions for the radio waves. In this work we introduce the numerical model of the auroral E-region, which evaluates density variations of the 10 ionospheric species and 39 reactions initiated by both the solar extreme UV radiation and the magnetospheric electron precipitation. The chemical reaction rates differ in more than ten orders of magnitude, resulting in the high stiffness of the ordinary differential equations system considered, which was solved using the high-performance Gear method. The AIM-E model allowed us to calculate the concentration of the neutrals NO, N(4S), and N(2D), ions + + + + + 4 + 2 + 2 N ,N2 , NO ,O2 ,O ( S), O ( D), and O ( P), and electrons Ne, in the whole auroral zone in the Citation: Nikolaeva, V.; Gordeev, E.; 90-150 km altitude range in real time.
    [Show full text]
  • Miniature Space GPS Receiver by Means of Automobile-Navigation Technology
    [SSC07-VIII-1] Miniature Space GPS Receiver by means of Automobile-Navigation Technology Hirobumi Saito Institute of Space and Astronautical Science, Japan Aerospace Exploration Agenc 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 Japan; 81-42-759-8363 [email protected]/jp Takahide Mizuno*, Kousuke Kawahara*, Kenji Shinkai*, Takanao Saiki*, Yousuke Fukushima*, Yusuke Hamada**, Hiroyuki Sasaki***, Sachiko Katumoto*** and Yasuhiro Kajikawa**** *Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 Japan **Musashi Institute of Technology, 1-28-1 Tamazutsumi, Setahaya-ku, Tokyo, 158-8557 Japan ***Soka University, 1-236 Tangi-cho, Hachioji-city, Tokyo, 192-8577 Japan ****Tokyo Denki University, 2-2 kanda, Nishikicyou, chiyoda-ku, Tokyo, 101-8457 Japan ABSTRACT Miniature space GPS receivers have been developed by means of automobile-navigation technology. We expanded the frequency sweep range in order to cover large Doppler shift on orbit. The GPS receiver was modified to output pseudorange data with accurate time tag. We tested the performance in low earth orbits by means of a GPS simulator. The range error caused by the receiver is measured to be 0.9 meter in RMS. Receiver was on-boarded on INDEX (“REIMEI”) satellite, which was launched in 2005. Cold start positioning was confirmed repeatedly to finish within 30 minutes on orbit. The orbit determination was performed to evaluate the random position error of GPS receiver by means of the residual error. The random error of GPS position is as large as 2 meter for PDDP=2.5 on orbit. The RMS value of range error is evaluated to be 0.6m from the flight data.
    [Show full text]
  • A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
    A B 1 Name of Satellite, Alternate Names Country of Operator/Owner 2 AcrimSat (Active Cavity Radiometer Irradiance Monitor) USA 3 Afristar USA 4 Agila 2 (Mabuhay 1) Philippines 5 Akebono (EXOS-D) Japan 6 ALOS (Advanced Land Observing Satellite; Daichi) Japan 7 Alsat-1 Algeria 8 Amazonas Brazil 9 AMC-1 (Americom 1, GE-1) USA 10 AMC-10 (Americom-10, GE 10) USA 11 AMC-11 (Americom-11, GE 11) USA 12 AMC-12 (Americom 12, Worldsat 2) USA 13 AMC-15 (Americom-15) USA 14 AMC-16 (Americom-16) USA 15 AMC-18 (Americom 18) USA 16 AMC-2 (Americom 2, GE-2) USA 17 AMC-23 (Worldsat 3) USA 18 AMC-3 (Americom 3, GE-3) USA 19 AMC-4 (Americom-4, GE-4) USA 20 AMC-5 (Americom-5, GE-5) USA 21 AMC-6 (Americom-6, GE-6) USA 22 AMC-7 (Americom-7, GE-7) USA 23 AMC-8 (Americom-8, GE-8, Aurora 3) USA 24 AMC-9 (Americom 9) USA 25 Amos 1 Israel 26 Amos 2 Israel 27 Amsat-Echo (Oscar 51, AO-51) USA 28 Amsat-Oscar 7 (AO-7) USA 29 Anik F1 Canada 30 Anik F1R Canada 31 Anik F2 Canada 32 Apstar 1 China (PR) 33 Apstar 1A (Apstar 3) China (PR) 34 Apstar 2R (Telstar 10) China (PR) 35 Apstar 6 China (PR) C D 1 Operator/Owner Users 2 NASA Goddard Space Flight Center, Jet Propulsion Laboratory Government 3 WorldSpace Corp. Commercial 4 Mabuhay Philippines Satellite Corp. Commercial 5 Institute of Space and Aeronautical Science, University of Tokyo Civilian Research 6 Earth Observation Research and Application Center/JAXA Japan 7 Centre National des Techniques Spatiales (CNTS) Government 8 Hispamar (subsidiary of Hispasat - Spain) Commercial 9 SES Americom (SES Global) Commercial
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • Possibilities and Future Vision of Micro/Nano/Pico-Satellites - from Japanese Experiences
    CanSat & Rocket Experiment(‘99~) Hodoyoshiハイブリッド-1 ‘14 ロケット Possibilities and Future Vision of Micro/nano/pico-satellites - From Japanese Experiences Shinichi Nakasuka University of Tokyo PRISM ‘09 CubeSat 03,05 Nano-JASMINE ‘15 Contents • Features of Micro/nano/pico-satellites • Japanese History and Lessons Learned – CanSat to CubeSat “First CubeSat on orbit” – From education to practical applications – Important tips for development • Visions on Various Applications of Micro/nano/pico-satellites • University Space Engineering Consortium (UNISEC) and International Collaborations Micro/nano/pico-satellite “Lean Satellite” Micro-satellite: 20-100kg Nano-satellite: 2-20kg Pico-satellite: 0.5-2kg Japanese Governmental Satellites ALOS-1: 4 ton ASNARO: 500 kg Kaguya: 3 ton Hayabusa: 510 kg Motivation of Smaller Satellites Current Problem of Mid-large Satellites ALOS 4.0 (4t) Trend towards 3.5 larger satellites Weight SELENE ・Enormous cost >100M$ 3.0 (3t) ・Development period >5-10 years 2.5 ・Conservative design (ton 2.0 ・Almost governmental use ・No new users and utilization ideas ) ・Low speed of innovation 1.5 10-50M$ Micro 1.0 Small-sat /Nano /Pico 0.5 Sat 0 1975 1980 1985 1990 1995 2000 2005 <50kg Introduce more variedGEO new players intoOTHERS space. 1-5M$ Innovation by Micro/nano/pico satellites (<100kg) 超小型衛星革命 Education Remote sensing Telescope Weather Bio-engineering Re-entry Rendezvous/ Communication Space Science Atmosphere Exploration High Resolution. docking Universty/venture companies’ innovative idea and development process <10M$
    [Show full text]
  • Small and Meso-Scale Properties of a Substorm Onset Auroral Arc H
    Small and meso-scale properties of a substorm onset auroral arc H. U. Frey, O. Amm, C. C. Chaston, S. Fu, G. Haerendel, L. Juusola, T. Karlsson, B. Lanchester, R. Nakamura, N. Ostgaard, et al. To cite this version: H. U. Frey, O. Amm, C. C. Chaston, S. Fu, G. Haerendel, et al.. Small and meso-scale properties of a substorm onset auroral arc. Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2010, 115, pp.A10209. 10.1029/2010JA015537. hal-00666355 HAL Id: hal-00666355 https://hal.archives-ouvertes.fr/hal-00666355 Submitted on 5 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A10209, doi:10.1029/2010JA015537, 2010 Small and meso‐scale properties of a substorm onset auroral arc H. U. Frey,1 O. Amm,2 C. C. Chaston,1 S. Fu,3 G. Haerendel,4 L. Juusola,2,5 T. Karlsson,6 B. Lanchester,7 R. Nakamura,8 N. Østgaard,5 T. Sakanoi,9 E. Séran,10 D. Whiter,6 J. Weygand,11 K. Asamura,12 and M. Hirahara13 Received 6 April 2010; revised 22 June 2010; accepted 28 June 2010; published 7 October 2010.
    [Show full text]
  • Kobe University Repository : Thesis
    Kobe University Repository : Thesis Study on LEO Satellite Charging and Associated Plasma Disturbance 学位論文題目 in the Ionosphere(電離層における地球低軌道衛星の帯電とそれに伴う Title プラズマ擾乱に関する研究) 氏名 NIZAM, AHMAD Author 専攻分野 博士(計算科学) Degree 学位授与の日付 2019-03-25 Date of Degree 公開日 2020-03-01 Date of Publication 資源タイプ Thesis or Dissertation / 学位論文 Resource Type 報告番号 甲第7519号 Report Number 権利 Rights JaLCDOI URL http://www.lib.kobe-u.ac.jp/handle_kernel/D1007519 ※当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。 PDF issue: 2021-10-08 Doctoral Dissertation Study on LEO Satellite Charging and Associated Plasma Disturbance in the Ionosphere (電離層における地球低軌道衛星の帯電とそれに伴う プラズマ擾乱に関する研究) January 2019 Graduate School of System Informatics, Kobe University Nizam Ahmad Study on LEO Satellite Charging and Associated Plasma Disturbance in the Ionosphere Nizam Ahmad ABSTRACT The placement of satellite in space will always be affected by space environment resulting in various impacts from temporary faults to permanent failures depending on several factors such as satellite orbit, level of solar and geomagnetic activities, satellite local time and types of satellite material. Anomaly events commonly occured during the period of high geomagnetic activity that also triggered the plasma variation in low earth orbit (LEO) environment. Diagnosis process used electron data from MEPED (Medium Energy Proton and Electron Detector) onboard NOAA 15 satellite in addition to fluctuated electron fluxes associated with geomagnetic disturbances within period of 3 days prior to and after the anomaly day. We selected 20 LEO anomaly cases registered in satellite news digest (SND) database in the period of year 2000 to 2008. Satellite local time, one of important parameters in the anomaly diagnosis, is determined by using propagated two line elements (TLE) of Simplified General Perturbations-4 (SGP4) to calculate the Longitude of Ascending Node (LAN) of satellite through the position and velocity vectors.
    [Show full text]
  • The Relationship Between Auroral Phenomenology and Magnetospheric Processes
    The Relationship Between Auroral Phenomenology and Magnetospheric Processes © 2010 Zoltan Kenwell American Geophysical Union Chapman Conference Fairbanks, Alaska, USA 27 February – 4 March 2011 AGU Chapman Conference on the Relationship Between Auroral Phenomenology and Magnetispheric Processes Fairbanks, Alaska, USA 27 February – 4 March 2011 Conveners Andreas Keiling, UC Berkeley (USA) Eric Donovan, University of Calgary (Canada) Program Committee Dirk Lummerzheim, University of Alaska (USA) Dave Knudsen, University of Calgary (Canada) Göran Marklund, Royal Institute of Technology (Sweden) Vassilis Angelopoulos, University of California Los Angeles (USA) Masafumi Hirahara, University of Tokyo (Japan) Kirsti Kauristie, Finnish Meteorological Institute (Finland) Fran Bagenal, University of Colorado (USA) Robert Rankin, University of Alberta (Canada) 2 AGU Chapman Conference on the Relationship Between Auroral Phenomenology and Magnetispheric Processes Meeting At A Glance Sunday, 27 February 2011 1700h-1900h Icebreaker and Registration Monday, 28 February 2011 0915h-0930h Welcome and Introductory Comments 0930h-1115h Auroral Phenomenology I 1115h-1145h Break 1145h-1330h Auroral Phenomenology II 1330h-1430h Lunch 1430h-1530h Auroral Phenomenology Poster Presentations 1530h-1715h Auroral Phenomenology III 1715h-1730h Break 1730h-1800h Discussion 1800h-1900h Social Hour (cash bar) Tuesday, 1 March 2011 0915h-0930h Field Trip Information and News 0930h-1115h Relationship Between Aurora and Ionospheric Electrodynamics I 1115h-1145h Break 1145h-1330h
    [Show full text]
  • Financial Operational Losses in Space Launch
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE FINANCIAL OPERATIONAL LOSSES IN SPACE LAUNCH A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By TOM ROBERT BOONE, IV Norman, Oklahoma 2017 FINANCIAL OPERATIONAL LOSSES IN SPACE LAUNCH A DISSERTATION APPROVED FOR THE SCHOOL OF AEROSPACE AND MECHANICAL ENGINEERING BY Dr. David Miller, Chair Dr. Alfred Striz Dr. Peter Attar Dr. Zahed Siddique Dr. Mukremin Kilic c Copyright by TOM ROBERT BOONE, IV 2017 All rights reserved. \For which of you, intending to build a tower, sitteth not down first, and counteth the cost, whether he have sufficient to finish it?" Luke 14:28, KJV Contents 1 Introduction1 1.1 Overview of Operational Losses...................2 1.2 Structure of Dissertation.......................4 2 Literature Review9 3 Payload Trends 17 4 Launch Vehicle Trends 28 5 Capability of Launch Vehicles 40 6 Wastage of Launch Vehicle Capacity 49 7 Optimal Usage of Launch Vehicles 59 8 Optimal Arrangement of Payloads 75 9 Risk of Multiple Payload Launches 95 10 Conclusions 101 10.1 Review of Dissertation........................ 101 10.2 Future Work.............................. 106 Bibliography 108 A Payload Database 114 B Launch Vehicle Database 157 iv List of Figures 3.1 Payloads By Orbit, 2000-2013.................... 20 3.2 Payload Mass By Orbit, 2000-2013................. 21 3.3 Number of Payloads of Mass, 2000-2013.............. 21 3.4 Total Mass of Payloads in kg by Individual Mass, 2000-2013... 22 3.5 Number of LEO Payloads of Mass, 2000-2013........... 22 3.6 Number of GEO Payloads of Mass, 2000-2013..........
    [Show full text]
  • DARTS: JAXA’S Multi-Disciplinary Space Science Data Archives Ken Ebisawa, K
    DARTS: JAXA’s Multi-disciplinary Space Science Data Archives Ken Ebisawa, K. Matsuzaki, I. Shinohara, T. Tamura, Y. Yamamoto, A. Miura, H. Baba, C. Yamauchi, N. Okada and Y. Miyashita Center for Science-satellite Operation and Data Archive(C-SODA), JAXA/ISAS Yoshiodai 3-1-1, Sagamihara, Kanagawa, 229-8510, Jpana EMail: [email protected] ABSTRACT DARTS (Data Archives and Transmission System: http://darts. jaxa.jp) is JAXA’s multi- disciplinary space science data archive, which covers space astronomy (X-ray, infrared and radio), solar physics, solar-terrestrial physics (STP), and lunar and planetary science. DARTS is developed and maintained by Center for Science-satellite Operation and Data Archive (C-SODA) at JAXA/ISAS. We archive all the telemetry data of the ISAS satellite for the last ~30 years, and high-level data of most science satellites since 1980`s. Currently we support seven active missions: Hinode (solar), Suzaku (X-rays), Akari (IR), Geotail (STP), Akebono (STP), Reimei (STP) and Hayabusa (planetary). These satellite data are highly processed , and the high-level data are archived at DARTS. Almost all the data go public after some proprietary periods, of which lengths depend on individual projects. Keywords: data archives, space science, astrophysics, solar physics, solar-terrestrial physics, lunar and planetary science INTRODUCTION Data ARchives and Transfer System (DARTS; http://darts.jaxa.jp) is the scientific satellite data archive at Institute of Space and Astronautical Science (ISAS), which is a part of JAXA. DARTS is developed and maintained by Center for Science-satellite Operation and Data Archives (C-SODA) in ISAS. Development of DARTS started in 1997 with the aim of archiving scientific data of ISAS satellites, and providing the space science data by Japanese missions to global space science community.
    [Show full text]
  • Small and Micro/Nanoâ•'Satellite Possibilities in Space Science And
    PROCYON ‘14 Hodoyoshiハイブリッド-1 ‘14 ロケット Small and Micro/nano-satellite Possibilities in Space Science and Exploration - Examples from Japan - Shinichi Nakasuka and Ryu Funase University of Tokyo PRISM ‘09 CubeSat 03,05 Nano-JASMINE ‘17 Overview and Contents • Three streamlines of space science and exploration projects in Japan 1. JAXA/ISAS has excellent history of space sciences using small-large(3t) satellites 2. Universities started own contributions using micro/nano/pico-satellites (since 2003) 3. University-JAXA joint missions for space exploration started in 2013 with PROCYON • University of Tokyo’s contributions in micro/nano/pico-satellite fields • Key strategies to pursue science missions using small/micro/nano/pico-satellites Space Science and Exploration - Japanese Missions and Players - Size(kg) Cate Players Project Examples gory >500 Mid- JAXA Science: Ginga, Akari, Suzaku, Hitomi— large Exploration: Hayabusa & 2, Kaguya, Akatsuki-- 100-500 Small JAXA Science: Hisaki (2013), ERG (2016) ---- Engineering: Ikaros (2010) 20-100 Micro JAXA Science: Reimei (Index, 72kg, 2005) University Nano-JASMINE(38kg, 2017), RiseSat (2018) Exploration: PROCYON (58kg, 2014) 2-20 Nano University Science: CUTE-1.7+APD II (3kg 2008) <2 Pico Exploration: ECUULEUS (6U EM-1 2018) REIMEI CUTE1.7 Nano-JASMINE PROCYON JAXA: “Larger than small-satellite” Exploration Projects • Kaguya: Japanese first lunar orbiter. Improved global topography maps, global gravity map and observation of shadowed interior of the crate, etc (2.9t, launch 2007) • Hayabusa :Challenging space technology demonstration leading to the birth of a new pillar in planetary sciences. Returned and asteroid dusts obtained, and samples are under investigation. (510kg, launch 2003, return 2010) • Akatsuki : Understanding the atmospheric dynamics and cloud physics of Venus, Succeed in inserting into Venus orbit in Dec 2015.
    [Show full text]
  • JUDO and UDON Dedicated Web‐Tools for Browsing and Quick‐ Analysis of Space Astronomical Data
    JUDO and UDON Dedicated web‐tools for browsing and quick‐ analysis of space astronomical data Ken EBISAWA, T. TAMURA, H. MURAKAMI, C. YAMAUCHI and H. NARUMI Center for Science‐satellite Operaon and Data Archive (C‐SODA) Japan Aerospace eXploraon Agency (JAXA) Instute of Space and Astronaucal Science (ISAS) ADASS2008 Focus DEMO:JUDO and UDON by K. EBISAWA JAXA, ISAS and DARTS • JAXA (Japan Aerospace eXploraon Agency ) – Japan’s sole instute to develop and launch rockets and satellites. • ISAS (Instute of Space and Astronaucal Science) – A part of JAXA, and a research instute for Space Science. • DARTS (Data Archives and Transmission System; hp://darts.isas.jaxa.jp) Mul‐disciplinary, mul‐wavelength archives for science satellite data – Space astronomy • Suzaku, Akari, ASCA, Ginga, HALCA, IRTS – Solar physics • Hinode, Yohkoh – Solar Terrestrial Physics (STP) • Geotail, Akebono, Reimei • Visit “DARTS of the Month”! – hp://darts.isas.jaxa.jp/month – DARTS introducon movie: hp://darts.isas.jaxa.jp/month/200708/200708.html ADASS2008 Focus DEMO:JUDO and UDON by K. EBISAWA JUDO and UDON hp://www.netlaputa.ne.jp/~ryufuu/udon/image/udon2.jpg hp://www2.hawaii.edu/~nhiraoka/judo_clipart.jpg • JUDO and UDON are parts of DARTS (DATA Archives and Transmission System) • On‐line tools developed for DARTS users to access and browse archival data easily • No need to download soware • Work with standard browsers • Targeted for professional astronomers using DARTS ADASS2008 Focus DEMO:JUDO and UDON by K. EBISAWA JUDO JAXA Universe Data Oriented hp://darts.isas.jaxa.jp/astro/judo • Navigate the enre sky using mouse to search for desired targets/observaons • Browse images easily, zoom‐in, zoom‐out • Directly access FITS images in DARTS – WCS compliant • Designed for mul‐mission – Currently only Suzaku X‐ray data available – Akari infrared data being implemented • Developed in C and Java script with Ajax technology ADASS2008 Focus DEMO:JUDO and UDON by K.
    [Show full text]