Kobe University Repository : Thesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
E-Region Auroral Ionosphere Model
atmosphere Article AIM-E: E-Region Auroral Ionosphere Model Vera Nikolaeva 1,* , Evgeny Gordeev 2 , Tima Sergienko 3, Ludmila Makarova 1 and Andrey Kotikov 4 1 Arctic and Antarctic Research Institute, 199397 Saint Petersburg, Russia; [email protected] 2 Earth’s Physics Department, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] 3 Swedish Institute of Space Physics, 981 28 Kiruna, Sweden; [email protected] 4 Saint Petersburg Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN), 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: The auroral oval is the high-latitude region of the ionosphere characterized by strong vari- ability of its chemical composition due to precipitation of energetic particles from the magnetosphere. The complex nature of magnetospheric processes cause a wide range of dynamic variations in the auroral zone, which are difficult to forecast. Knowledge of electron concentrations in this highly turbulent region is of particular importance because it determines the propagation conditions for the radio waves. In this work we introduce the numerical model of the auroral E-region, which evaluates density variations of the 10 ionospheric species and 39 reactions initiated by both the solar extreme UV radiation and the magnetospheric electron precipitation. The chemical reaction rates differ in more than ten orders of magnitude, resulting in the high stiffness of the ordinary differential equations system considered, which was solved using the high-performance Gear method. The AIM-E model allowed us to calculate the concentration of the neutrals NO, N(4S), and N(2D), ions + + + + + 4 + 2 + 2 N ,N2 , NO ,O2 ,O ( S), O ( D), and O ( P), and electrons Ne, in the whole auroral zone in the Citation: Nikolaeva, V.; Gordeev, E.; 90-150 km altitude range in real time. -
Miniature Space GPS Receiver by Means of Automobile-Navigation Technology
[SSC07-VIII-1] Miniature Space GPS Receiver by means of Automobile-Navigation Technology Hirobumi Saito Institute of Space and Astronautical Science, Japan Aerospace Exploration Agenc 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 Japan; 81-42-759-8363 [email protected]/jp Takahide Mizuno*, Kousuke Kawahara*, Kenji Shinkai*, Takanao Saiki*, Yousuke Fukushima*, Yusuke Hamada**, Hiroyuki Sasaki***, Sachiko Katumoto*** and Yasuhiro Kajikawa**** *Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 Japan **Musashi Institute of Technology, 1-28-1 Tamazutsumi, Setahaya-ku, Tokyo, 158-8557 Japan ***Soka University, 1-236 Tangi-cho, Hachioji-city, Tokyo, 192-8577 Japan ****Tokyo Denki University, 2-2 kanda, Nishikicyou, chiyoda-ku, Tokyo, 101-8457 Japan ABSTRACT Miniature space GPS receivers have been developed by means of automobile-navigation technology. We expanded the frequency sweep range in order to cover large Doppler shift on orbit. The GPS receiver was modified to output pseudorange data with accurate time tag. We tested the performance in low earth orbits by means of a GPS simulator. The range error caused by the receiver is measured to be 0.9 meter in RMS. Receiver was on-boarded on INDEX (“REIMEI”) satellite, which was launched in 2005. Cold start positioning was confirmed repeatedly to finish within 30 minutes on orbit. The orbit determination was performed to evaluate the random position error of GPS receiver by means of the residual error. The random error of GPS position is as large as 2 meter for PDDP=2.5 on orbit. The RMS value of range error is evaluated to be 0.6m from the flight data. -
A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
A B 1 Name of Satellite, Alternate Names Country of Operator/Owner 2 AcrimSat (Active Cavity Radiometer Irradiance Monitor) USA 3 Afristar USA 4 Agila 2 (Mabuhay 1) Philippines 5 Akebono (EXOS-D) Japan 6 ALOS (Advanced Land Observing Satellite; Daichi) Japan 7 Alsat-1 Algeria 8 Amazonas Brazil 9 AMC-1 (Americom 1, GE-1) USA 10 AMC-10 (Americom-10, GE 10) USA 11 AMC-11 (Americom-11, GE 11) USA 12 AMC-12 (Americom 12, Worldsat 2) USA 13 AMC-15 (Americom-15) USA 14 AMC-16 (Americom-16) USA 15 AMC-18 (Americom 18) USA 16 AMC-2 (Americom 2, GE-2) USA 17 AMC-23 (Worldsat 3) USA 18 AMC-3 (Americom 3, GE-3) USA 19 AMC-4 (Americom-4, GE-4) USA 20 AMC-5 (Americom-5, GE-5) USA 21 AMC-6 (Americom-6, GE-6) USA 22 AMC-7 (Americom-7, GE-7) USA 23 AMC-8 (Americom-8, GE-8, Aurora 3) USA 24 AMC-9 (Americom 9) USA 25 Amos 1 Israel 26 Amos 2 Israel 27 Amsat-Echo (Oscar 51, AO-51) USA 28 Amsat-Oscar 7 (AO-7) USA 29 Anik F1 Canada 30 Anik F1R Canada 31 Anik F2 Canada 32 Apstar 1 China (PR) 33 Apstar 1A (Apstar 3) China (PR) 34 Apstar 2R (Telstar 10) China (PR) 35 Apstar 6 China (PR) C D 1 Operator/Owner Users 2 NASA Goddard Space Flight Center, Jet Propulsion Laboratory Government 3 WorldSpace Corp. Commercial 4 Mabuhay Philippines Satellite Corp. Commercial 5 Institute of Space and Aeronautical Science, University of Tokyo Civilian Research 6 Earth Observation Research and Application Center/JAXA Japan 7 Centre National des Techniques Spatiales (CNTS) Government 8 Hispamar (subsidiary of Hispasat - Spain) Commercial 9 SES Americom (SES Global) Commercial -
Securing Japan an Assessment of Japan´S Strategy for Space
Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology -
Possibilities and Future Vision of Micro/Nano/Pico-Satellites - from Japanese Experiences
CanSat & Rocket Experiment(‘99~) Hodoyoshiハイブリッド-1 ‘14 ロケット Possibilities and Future Vision of Micro/nano/pico-satellites - From Japanese Experiences Shinichi Nakasuka University of Tokyo PRISM ‘09 CubeSat 03,05 Nano-JASMINE ‘15 Contents • Features of Micro/nano/pico-satellites • Japanese History and Lessons Learned – CanSat to CubeSat “First CubeSat on orbit” – From education to practical applications – Important tips for development • Visions on Various Applications of Micro/nano/pico-satellites • University Space Engineering Consortium (UNISEC) and International Collaborations Micro/nano/pico-satellite “Lean Satellite” Micro-satellite: 20-100kg Nano-satellite: 2-20kg Pico-satellite: 0.5-2kg Japanese Governmental Satellites ALOS-1: 4 ton ASNARO: 500 kg Kaguya: 3 ton Hayabusa: 510 kg Motivation of Smaller Satellites Current Problem of Mid-large Satellites ALOS 4.0 (4t) Trend towards 3.5 larger satellites Weight SELENE ・Enormous cost >100M$ 3.0 (3t) ・Development period >5-10 years 2.5 ・Conservative design (ton 2.0 ・Almost governmental use ・No new users and utilization ideas ) ・Low speed of innovation 1.5 10-50M$ Micro 1.0 Small-sat /Nano /Pico 0.5 Sat 0 1975 1980 1985 1990 1995 2000 2005 <50kg Introduce more variedGEO new players intoOTHERS space. 1-5M$ Innovation by Micro/nano/pico satellites (<100kg) 超小型衛星革命 Education Remote sensing Telescope Weather Bio-engineering Re-entry Rendezvous/ Communication Space Science Atmosphere Exploration High Resolution. docking Universty/venture companies’ innovative idea and development process <10M$ -
Small and Meso-Scale Properties of a Substorm Onset Auroral Arc H
Small and meso-scale properties of a substorm onset auroral arc H. U. Frey, O. Amm, C. C. Chaston, S. Fu, G. Haerendel, L. Juusola, T. Karlsson, B. Lanchester, R. Nakamura, N. Ostgaard, et al. To cite this version: H. U. Frey, O. Amm, C. C. Chaston, S. Fu, G. Haerendel, et al.. Small and meso-scale properties of a substorm onset auroral arc. Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2010, 115, pp.A10209. 10.1029/2010JA015537. hal-00666355 HAL Id: hal-00666355 https://hal.archives-ouvertes.fr/hal-00666355 Submitted on 5 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A10209, doi:10.1029/2010JA015537, 2010 Small and meso‐scale properties of a substorm onset auroral arc H. U. Frey,1 O. Amm,2 C. C. Chaston,1 S. Fu,3 G. Haerendel,4 L. Juusola,2,5 T. Karlsson,6 B. Lanchester,7 R. Nakamura,8 N. Østgaard,5 T. Sakanoi,9 E. Séran,10 D. Whiter,6 J. Weygand,11 K. Asamura,12 and M. Hirahara13 Received 6 April 2010; revised 22 June 2010; accepted 28 June 2010; published 7 October 2010. -
The Relationship Between Auroral Phenomenology and Magnetospheric Processes
The Relationship Between Auroral Phenomenology and Magnetospheric Processes © 2010 Zoltan Kenwell American Geophysical Union Chapman Conference Fairbanks, Alaska, USA 27 February – 4 March 2011 AGU Chapman Conference on the Relationship Between Auroral Phenomenology and Magnetispheric Processes Fairbanks, Alaska, USA 27 February – 4 March 2011 Conveners Andreas Keiling, UC Berkeley (USA) Eric Donovan, University of Calgary (Canada) Program Committee Dirk Lummerzheim, University of Alaska (USA) Dave Knudsen, University of Calgary (Canada) Göran Marklund, Royal Institute of Technology (Sweden) Vassilis Angelopoulos, University of California Los Angeles (USA) Masafumi Hirahara, University of Tokyo (Japan) Kirsti Kauristie, Finnish Meteorological Institute (Finland) Fran Bagenal, University of Colorado (USA) Robert Rankin, University of Alberta (Canada) 2 AGU Chapman Conference on the Relationship Between Auroral Phenomenology and Magnetispheric Processes Meeting At A Glance Sunday, 27 February 2011 1700h-1900h Icebreaker and Registration Monday, 28 February 2011 0915h-0930h Welcome and Introductory Comments 0930h-1115h Auroral Phenomenology I 1115h-1145h Break 1145h-1330h Auroral Phenomenology II 1330h-1430h Lunch 1430h-1530h Auroral Phenomenology Poster Presentations 1530h-1715h Auroral Phenomenology III 1715h-1730h Break 1730h-1800h Discussion 1800h-1900h Social Hour (cash bar) Tuesday, 1 March 2011 0915h-0930h Field Trip Information and News 0930h-1115h Relationship Between Aurora and Ionospheric Electrodynamics I 1115h-1145h Break 1145h-1330h -
Financial Operational Losses in Space Launch
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE FINANCIAL OPERATIONAL LOSSES IN SPACE LAUNCH A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By TOM ROBERT BOONE, IV Norman, Oklahoma 2017 FINANCIAL OPERATIONAL LOSSES IN SPACE LAUNCH A DISSERTATION APPROVED FOR THE SCHOOL OF AEROSPACE AND MECHANICAL ENGINEERING BY Dr. David Miller, Chair Dr. Alfred Striz Dr. Peter Attar Dr. Zahed Siddique Dr. Mukremin Kilic c Copyright by TOM ROBERT BOONE, IV 2017 All rights reserved. \For which of you, intending to build a tower, sitteth not down first, and counteth the cost, whether he have sufficient to finish it?" Luke 14:28, KJV Contents 1 Introduction1 1.1 Overview of Operational Losses...................2 1.2 Structure of Dissertation.......................4 2 Literature Review9 3 Payload Trends 17 4 Launch Vehicle Trends 28 5 Capability of Launch Vehicles 40 6 Wastage of Launch Vehicle Capacity 49 7 Optimal Usage of Launch Vehicles 59 8 Optimal Arrangement of Payloads 75 9 Risk of Multiple Payload Launches 95 10 Conclusions 101 10.1 Review of Dissertation........................ 101 10.2 Future Work.............................. 106 Bibliography 108 A Payload Database 114 B Launch Vehicle Database 157 iv List of Figures 3.1 Payloads By Orbit, 2000-2013.................... 20 3.2 Payload Mass By Orbit, 2000-2013................. 21 3.3 Number of Payloads of Mass, 2000-2013.............. 21 3.4 Total Mass of Payloads in kg by Individual Mass, 2000-2013... 22 3.5 Number of LEO Payloads of Mass, 2000-2013........... 22 3.6 Number of GEO Payloads of Mass, 2000-2013.......... -
DARTS: JAXA’S Multi-Disciplinary Space Science Data Archives Ken Ebisawa, K
DARTS: JAXA’s Multi-disciplinary Space Science Data Archives Ken Ebisawa, K. Matsuzaki, I. Shinohara, T. Tamura, Y. Yamamoto, A. Miura, H. Baba, C. Yamauchi, N. Okada and Y. Miyashita Center for Science-satellite Operation and Data Archive(C-SODA), JAXA/ISAS Yoshiodai 3-1-1, Sagamihara, Kanagawa, 229-8510, Jpana EMail: [email protected] ABSTRACT DARTS (Data Archives and Transmission System: http://darts. jaxa.jp) is JAXA’s multi- disciplinary space science data archive, which covers space astronomy (X-ray, infrared and radio), solar physics, solar-terrestrial physics (STP), and lunar and planetary science. DARTS is developed and maintained by Center for Science-satellite Operation and Data Archive (C-SODA) at JAXA/ISAS. We archive all the telemetry data of the ISAS satellite for the last ~30 years, and high-level data of most science satellites since 1980`s. Currently we support seven active missions: Hinode (solar), Suzaku (X-rays), Akari (IR), Geotail (STP), Akebono (STP), Reimei (STP) and Hayabusa (planetary). These satellite data are highly processed , and the high-level data are archived at DARTS. Almost all the data go public after some proprietary periods, of which lengths depend on individual projects. Keywords: data archives, space science, astrophysics, solar physics, solar-terrestrial physics, lunar and planetary science INTRODUCTION Data ARchives and Transfer System (DARTS; http://darts.jaxa.jp) is the scientific satellite data archive at Institute of Space and Astronautical Science (ISAS), which is a part of JAXA. DARTS is developed and maintained by Center for Science-satellite Operation and Data Archives (C-SODA) in ISAS. Development of DARTS started in 1997 with the aim of archiving scientific data of ISAS satellites, and providing the space science data by Japanese missions to global space science community. -
Small and Micro/Nanoâ•'Satellite Possibilities in Space Science And
PROCYON ‘14 Hodoyoshiハイブリッド-1 ‘14 ロケット Small and Micro/nano-satellite Possibilities in Space Science and Exploration - Examples from Japan - Shinichi Nakasuka and Ryu Funase University of Tokyo PRISM ‘09 CubeSat 03,05 Nano-JASMINE ‘17 Overview and Contents • Three streamlines of space science and exploration projects in Japan 1. JAXA/ISAS has excellent history of space sciences using small-large(3t) satellites 2. Universities started own contributions using micro/nano/pico-satellites (since 2003) 3. University-JAXA joint missions for space exploration started in 2013 with PROCYON • University of Tokyo’s contributions in micro/nano/pico-satellite fields • Key strategies to pursue science missions using small/micro/nano/pico-satellites Space Science and Exploration - Japanese Missions and Players - Size(kg) Cate Players Project Examples gory >500 Mid- JAXA Science: Ginga, Akari, Suzaku, Hitomi— large Exploration: Hayabusa & 2, Kaguya, Akatsuki-- 100-500 Small JAXA Science: Hisaki (2013), ERG (2016) ---- Engineering: Ikaros (2010) 20-100 Micro JAXA Science: Reimei (Index, 72kg, 2005) University Nano-JASMINE(38kg, 2017), RiseSat (2018) Exploration: PROCYON (58kg, 2014) 2-20 Nano University Science: CUTE-1.7+APD II (3kg 2008) <2 Pico Exploration: ECUULEUS (6U EM-1 2018) REIMEI CUTE1.7 Nano-JASMINE PROCYON JAXA: “Larger than small-satellite” Exploration Projects • Kaguya: Japanese first lunar orbiter. Improved global topography maps, global gravity map and observation of shadowed interior of the crate, etc (2.9t, launch 2007) • Hayabusa :Challenging space technology demonstration leading to the birth of a new pillar in planetary sciences. Returned and asteroid dusts obtained, and samples are under investigation. (510kg, launch 2003, return 2010) • Akatsuki : Understanding the atmospheric dynamics and cloud physics of Venus, Succeed in inserting into Venus orbit in Dec 2015. -
JUDO and UDON Dedicated Web‐Tools for Browsing and Quick‐ Analysis of Space Astronomical Data
JUDO and UDON Dedicated web‐tools for browsing and quick‐ analysis of space astronomical data Ken EBISAWA, T. TAMURA, H. MURAKAMI, C. YAMAUCHI and H. NARUMI Center for Science‐satellite Operaon and Data Archive (C‐SODA) Japan Aerospace eXploraon Agency (JAXA) Instute of Space and Astronaucal Science (ISAS) ADASS2008 Focus DEMO:JUDO and UDON by K. EBISAWA JAXA, ISAS and DARTS • JAXA (Japan Aerospace eXploraon Agency ) – Japan’s sole instute to develop and launch rockets and satellites. • ISAS (Instute of Space and Astronaucal Science) – A part of JAXA, and a research instute for Space Science. • DARTS (Data Archives and Transmission System; hp://darts.isas.jaxa.jp) Mul‐disciplinary, mul‐wavelength archives for science satellite data – Space astronomy • Suzaku, Akari, ASCA, Ginga, HALCA, IRTS – Solar physics • Hinode, Yohkoh – Solar Terrestrial Physics (STP) • Geotail, Akebono, Reimei • Visit “DARTS of the Month”! – hp://darts.isas.jaxa.jp/month – DARTS introducon movie: hp://darts.isas.jaxa.jp/month/200708/200708.html ADASS2008 Focus DEMO:JUDO and UDON by K. EBISAWA JUDO and UDON hp://www.netlaputa.ne.jp/~ryufuu/udon/image/udon2.jpg hp://www2.hawaii.edu/~nhiraoka/judo_clipart.jpg • JUDO and UDON are parts of DARTS (DATA Archives and Transmission System) • On‐line tools developed for DARTS users to access and browse archival data easily • No need to download soware • Work with standard browsers • Targeted for professional astronomers using DARTS ADASS2008 Focus DEMO:JUDO and UDON by K. EBISAWA JUDO JAXA Universe Data Oriented hp://darts.isas.jaxa.jp/astro/judo • Navigate the enre sky using mouse to search for desired targets/observaons • Browse images easily, zoom‐in, zoom‐out • Directly access FITS images in DARTS – WCS compliant • Designed for mul‐mission – Currently only Suzaku X‐ray data available – Akari infrared data being implemented • Developed in C and Java script with Ajax technology ADASS2008 Focus DEMO:JUDO and UDON by K. -
DARTS: JAXA's Multi-Disciplinary Space Science Data Archives
DARTS: JAXA’s Multi‐disciplinary Space Science Data Archives Ken Ebisawa, Yukio Yamamoto, K. Matsuzaki, I. Shinohara, T. Tamura, A. Miura, H. Baba, C. Yamauchi, N. Okada and Y. Miyashita Center for Science‐satellite Operation and Data Archive (C‐SODA) Japan Aerospace eXploration Agency (JAXA) Institute of Space and Astronautical Science (ISAS) Introduction to DARTS JAXA, ISAS and DARTS • JAXA (Japan Aerospace eXploration Agency ) – Japan’s only public organization for space developments – Launch rockets and satellites! • ISAS (Institute of Space and Astronautical Science) – A part of JAXA, and a research institute for Space Science. • C‐SODA (Center for Science‐satellite Operation and Data Archive) – Belongs to ISAS. Carry out science‐satellite operation, data processing and develop data archives – We develop DARTS, JAXA’s sole space‐science data archives JAXA ISAS C‐SODA JSPEC EORC Space Operation and Space Earth Science Data archive Exploration observation Introduction to DARTS JAXA, ISAS and DARTS • DARTS (Data Archives and Transmission System; http://darts.jaxa.jp) • JAXA’s sole space science data archives – Mostly archive ISAS satellite data, but also JSPEC data – In principle, public science data archives • Open to anybody via internet, free of charge • Multi‐disciplinary, multi‐wavelength data archives – Visit “DARTS of the Month”! • http://darts.jaxa.jp/month – DARTS introduction movie: • http://darts.jaxa.jp/month/200708/200708.html Introduction to DARTS C‐SODA and DARTS • C‐SODA develops and operates ground systems for all the