3 Development of the Satellite System 3-1 Development of Optical Inter-Orbit Communi- Cations Engineering Test Satellite (OICETS)

Total Page:16

File Type:pdf, Size:1020Kb

3 Development of the Satellite System 3-1 Development of Optical Inter-Orbit Communi- Cations Engineering Test Satellite (OICETS) 3 Development of the Satellite System 3-1 Development of Optical Inter-orbit Communi- cations Engineering Test Satellite (OICETS) YAMAWAKI Toshihiko Optical Inter-orbit Communications Engineering Test Satellite (OICET) “Kirari” is a satellite developed to demonstrate innovative technologies of laser-based optical inter-orbit communi- cations between OICETS and European Space Agency’s (ESA) Advanced Relay and Technolo- gy Mission Satellite (ARTEMIS) and planned to be launched by Japanese J-Ⅰ launch vehicle from Tanegashima Space Center. After its Proto Flight Test has been completed, the plan had to be changed. Finally OICETS was launched by Dnepr launch vehicle from the Baikonur Cosmodrome in the Republic of Ka- zakhstan in August 2005, and succeeded in the world first bi-directional optical communication experiments between two satellites and between low earth orbiting satellite and a ground sta- tion. This paper describes the overview of OICETS and features of its development. Keywords Inter-satellite laser communications, Optical Inter-orbit Communications Engineering Test Satellite (OICETS) 1 Introduction equipments in 1985 and made research model prototypes of the equipments between 1991 Optical communications are expected to and 1993. Based on the results, JAXA investi- promote, in principle, the downsizing and gated if it was possible to conduct an in-orbit weight saving of communication equipments, experiment using ARTEMIS. It then began to and improve their communication speed. Opti- develop Kirari to be launched, using the J-Ⅰ cal communications have great directivity with launch vehicle, to a low earth orbit at an alti- less interference than radio waves, and hence tude of 610 km, with an orbital inclination of have an advantage in transmitting highly- 35°. confidential information. It is therefore ex- The project was suspended after the proto- pected that optical communications can be flight test (PFT) of Kirari, although periodic used for making a compact, light-weight com- tests, tests for life-limited items, and additional munication equipment mounted in a small or tests for installed software were still conducted medium-size earth-orbiting satellite or a deep- to maintain or improve reliability. space exploration spacecraft. When ARTEMIS succeeded in reaching Japan Aerospace Exploration Agency geo-stationary orbit using its propulsion sys- (JAXA) (formerly, National Space Develop- tem, we brought a Laser Utilizing Communi- ment Agency of Japan) began to survey and cations Equipment (LUCE) engineering model examine optical inter-orbit communication (EM) to an ESA optical ground station on Te- YAMAWAKI Toshihiko 13 nerife Island off the coast of Spain in Septem- ber 2003, and performed experiments to check the acquisition and tracking of ARTEMIS in its orbit, as well as communication functions. The project was restarted in 2004 with the launch vehicle switched to a Dnepr rocket and the orbit to a sun-synchronous orbit. Although the situation surrounding the satellite had changed greatly, we did not have to change the basic design of Kirari because it had been de- signed for a broad range of missions with an aim to make it a standard 500 kg-class bus for J-Ⅰ launch vehicles. The satellite was then launched successfully in August 2005 and used for various in-orbit experiments until it was switched off in September 2009. 2 Overview of Kirari development Kirari is a satellite with a launch weight of about 570 kg. The dimensions of the satellite Fig.1 Final appearance of Kirari before launch body are 1.1 m wide × 0.78 m long × 1.5 m high (1.7 m including the rocket connection ring). This rectangular parallelepiped shape the inertial reference frame according to IRU can fit in the φ1.4 fairing of the three-stage J-Ⅰ measurements. When going half way around launch vehicle and also in the fairing of the the earth in “inertia lock” mode, the satellite Dnepr rocket. The satellite deploys two solar points the face where the LUCE-O was array paddles in orbit to produce necessary mounted to the earth, which allowed for the power. When deployed, the distance between communication experiments with the optical both ends of the paddles is 9.36 m. Figure 1 ground station. shows the appearance of the satellite finalized Figure 2 shows a functional block diagram at the launch site. of Kirari, and Table 1 presents the major Kirari usually uses an inertial reference specifications. The mission payload consists of unit (IRU), conical scanning earth sensor the Laser Utilizing Communications Equip- (CES), and a fine sun sensor (FSS) for attitude ment (LUCE) and Micro Vibration measure- detection, and four reaction wheels (RW) for ment Equipment (MVE). LUCE has two main three-axis stabilized attitude control to keep units: One is the optical unit (LUCE-O) which the bottom of the satellite (rocket connection acquires, tracks and points a target satellite side) oriented to the earth. The optical unit of and sends/receives optical signals, and the oth- the Laser Utilizing Communications Equip- er is the electronic circuit unit (LUCE-E) ment (LUCE-O) and S-band inter-orbit com- which sends/receives electric signals to/from munications antennas are mounted on the up- satellite buses and controls the optical unit. per panel of the satellite for clear The electronic unit is installed inside the satel- communications with ARTEMIS and Japan’s lite body. LUCE-O consists of a dual-axis Data Relay Test Satellite (DRTS). gimbal, Cassegrain telescope optical antenna In the communication experiments with with a 26 cm primary mirror, and inner optical the optical ground station, an “inertia lock” unit in which sensors, laser diodes, and relay mode was used to fix the satellite’s attitude in optical systems are installed. MVE is used to 14 Journal of the National Institute of Information and Communications Technology Vol. 59 Nos. 1/2 2012 Communication and Data Handling System(C&DH) Laser Utilizing Micro vibration S band Semiconductor data recorder Communications measurement antenna Equipment(LUCE) equipment(MVE) Switch,Diplexer USB/SSA Attitude and orbit control system(AOCS) Central unit(CU) Transponder S band /Remote interface unit(RIU) Attitude control Conical scanning antenna electronic unit earth sensor(CES) Reaction wheel Inertia reference All devices (RW) unit(IRU) Fine sun sensor (FSS) Distributor Drive Thermal control (DIST) mechanism system Rate gyro Structure (For spin phase) system 13Ah Ni-MH Power control Solar cell Battery unit(PCU) paddle Instrumentation Paddle system Drive Magnetic system circuit torquer Electric power system(EPS) (PDL) Tank Valve Thruster Reaction control system(RCS) The double squares indicate the unit has a redundant system. Fig.2 Functional block diagram of Kirari measure micro vibrations produced by the weight and cost saving. On the other hand, drive system of a reaction wheel, etc. in Kirari, since the thrusters are all had to be located and to evaluate any influence from vibrations only for increasing the speed of the satellite, on the acquisition and tracking performance of speed reduction control has to be made by us- LUCE. ing the “inertia lock” mode to reverse the atti- The S band transponder of the communi- tude and orient the thrusters in the desired di- cation system has the following modes: USB rection. The tank can contain up to 45 kg of (Unified S Band) mode which is used mainly fuel to compensate for rocket injection error. for house-keeping telemetry and command The thermal control system is mostly passive transmission from/to a ground station, SSA (S system but provides heater control for the bat- band Single Access) mode which is used for tery, reaction control system, and other equip- communication with a data relay satellite, and ment whose allowable temperature ranges are HSB (High-speed S Band) mode which is used critical. mostly for mission data downlinks to a ground In order to make these units and their re- station. The attitude control system not only dundant systems compact, and to maintain has an earth sensor, a fine sun sensor, and an their accessibility, the main body structure is inertia reference unit, but also a rate gyro, designed in such a way that the two side pan- which is used when the solid rocket J-Ⅰ injects els (+X and ‒X panels), which have no solar a spinning satellite into orbit. For the actuator, cell paddles, can be opened. four reaction wheels and three magnetic torqu- ers are used. The reaction control system con- 3 Development of Kirari sists of four sets of thrusters and two tanks. These four sets of thrusters are minimum sets To reduce the development costs of Kirari, to control the attitude and orbit and so lead to a two-step development was employed: the YAMAWAKI Toshihiko 15 Table 1 Major specifi cations of Kirari actions in relation to major problems faced: Item Specifi cations 1) LUCE was developed with original Jap- Weight About 570 kg anese technology, according to the documen- Shape Box shape with two solar cell tation for the interface with the Optical Pay- paddles load for Intersatellite Link Experiments Dimensions Satellite body: 1.1 m × 0.78 m × (OPALE) mounted on ARTEMIS. Due to the (height)1.5 m development schedules of the LUCE and Height with LUCE at top: 2.93 m OPALE, it was planned not to check the inter- Width when paddles are opened: 9.36 m face using actual units on the ground. We Solar cell paddle Power generation: 1220 W or therefore checked the interface in the follow- system higher (EOL, β angle = 0°) ing manner. Highly-effi cient NRS/BSF -The effectiveness of the communication silicon cell sequence, which was important to establish an Power system Astable bus-type distributed optical link, was checked by performing simu- power system 13Ah, Two Ni-MH cells in paral- lations based on a mathematical model created lel by Japan and ESA.
Recommended publications
  • SPACE RESEARCH in POLAND Report to COMMITTEE
    SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report
    [Show full text]
  • E-Region Auroral Ionosphere Model
    atmosphere Article AIM-E: E-Region Auroral Ionosphere Model Vera Nikolaeva 1,* , Evgeny Gordeev 2 , Tima Sergienko 3, Ludmila Makarova 1 and Andrey Kotikov 4 1 Arctic and Antarctic Research Institute, 199397 Saint Petersburg, Russia; [email protected] 2 Earth’s Physics Department, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] 3 Swedish Institute of Space Physics, 981 28 Kiruna, Sweden; [email protected] 4 Saint Petersburg Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN), 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: The auroral oval is the high-latitude region of the ionosphere characterized by strong vari- ability of its chemical composition due to precipitation of energetic particles from the magnetosphere. The complex nature of magnetospheric processes cause a wide range of dynamic variations in the auroral zone, which are difficult to forecast. Knowledge of electron concentrations in this highly turbulent region is of particular importance because it determines the propagation conditions for the radio waves. In this work we introduce the numerical model of the auroral E-region, which evaluates density variations of the 10 ionospheric species and 39 reactions initiated by both the solar extreme UV radiation and the magnetospheric electron precipitation. The chemical reaction rates differ in more than ten orders of magnitude, resulting in the high stiffness of the ordinary differential equations system considered, which was solved using the high-performance Gear method. The AIM-E model allowed us to calculate the concentration of the neutrals NO, N(4S), and N(2D), ions + + + + + 4 + 2 + 2 N ,N2 , NO ,O2 ,O ( S), O ( D), and O ( P), and electrons Ne, in the whole auroral zone in the Citation: Nikolaeva, V.; Gordeev, E.; 90-150 km altitude range in real time.
    [Show full text]
  • Lasercom Uncertainty Modeling and Optimization Simulation (LUMOS)
    Clements, E. et al. (2019): JoSS, Vol. 8, No. 1, pp. 815–836 (Peer-reviewed article available at www.jossonline.com) www.adeepakpublishing.com www. JoSSonline.com Lasercom Uncertainty Modeling and Optimization Simulation (LUMOS): A Statistical Approach to Risk-Tolerant Systems Engineering for Small Satellites Emily Clements, Jeffrey Mendenhall, and David Caplan MIT Lincoln Laboratory Lexington, Massachusetts US Kerri Cahoy Massachusetts Institute of Technology Cambridge, Massachusetts US Abstract In contrast to large-budget space missions, risk-tolerant platforms such as nanosatellites may be better posi- tioned to exchange moderate performance uncertainty for reduced cost and improved manufacturability. New uncertainty-based systems engineering approaches such as multidisciplinary optimization require the use of inte- grated performance models with input distributions, which do not yet exist for complex systems, such as laser communications (lasercom) payloads. This paper presents our development of a statistical, risk-tolerant systems engineering approach and apply it to nanosatellite-based design and architecture problems to investigate whether adding a statistical element to systems engineering enables improvements in performance, manufacturability, and cost. The scope of this work is restricted to a subset of nanosatellite-based lasercom systems, which are particu- larly useful given current momentum to field Earth-observing nanosatellite constellations and increasing chal- lenges for data retrieval. We built uncertainty-based lasercom
    [Show full text]
  • Miniature Space GPS Receiver by Means of Automobile-Navigation Technology
    [SSC07-VIII-1] Miniature Space GPS Receiver by means of Automobile-Navigation Technology Hirobumi Saito Institute of Space and Astronautical Science, Japan Aerospace Exploration Agenc 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 Japan; 81-42-759-8363 [email protected]/jp Takahide Mizuno*, Kousuke Kawahara*, Kenji Shinkai*, Takanao Saiki*, Yousuke Fukushima*, Yusuke Hamada**, Hiroyuki Sasaki***, Sachiko Katumoto*** and Yasuhiro Kajikawa**** *Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 Japan **Musashi Institute of Technology, 1-28-1 Tamazutsumi, Setahaya-ku, Tokyo, 158-8557 Japan ***Soka University, 1-236 Tangi-cho, Hachioji-city, Tokyo, 192-8577 Japan ****Tokyo Denki University, 2-2 kanda, Nishikicyou, chiyoda-ku, Tokyo, 101-8457 Japan ABSTRACT Miniature space GPS receivers have been developed by means of automobile-navigation technology. We expanded the frequency sweep range in order to cover large Doppler shift on orbit. The GPS receiver was modified to output pseudorange data with accurate time tag. We tested the performance in low earth orbits by means of a GPS simulator. The range error caused by the receiver is measured to be 0.9 meter in RMS. Receiver was on-boarded on INDEX (“REIMEI”) satellite, which was launched in 2005. Cold start positioning was confirmed repeatedly to finish within 30 minutes on orbit. The orbit determination was performed to evaluate the random position error of GPS receiver by means of the residual error. The random error of GPS position is as large as 2 meter for PDDP=2.5 on orbit. The RMS value of range error is evaluated to be 0.6m from the flight data.
    [Show full text]
  • A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
    A B 1 Name of Satellite, Alternate Names Country of Operator/Owner 2 AcrimSat (Active Cavity Radiometer Irradiance Monitor) USA 3 Afristar USA 4 Agila 2 (Mabuhay 1) Philippines 5 Akebono (EXOS-D) Japan 6 ALOS (Advanced Land Observing Satellite; Daichi) Japan 7 Alsat-1 Algeria 8 Amazonas Brazil 9 AMC-1 (Americom 1, GE-1) USA 10 AMC-10 (Americom-10, GE 10) USA 11 AMC-11 (Americom-11, GE 11) USA 12 AMC-12 (Americom 12, Worldsat 2) USA 13 AMC-15 (Americom-15) USA 14 AMC-16 (Americom-16) USA 15 AMC-18 (Americom 18) USA 16 AMC-2 (Americom 2, GE-2) USA 17 AMC-23 (Worldsat 3) USA 18 AMC-3 (Americom 3, GE-3) USA 19 AMC-4 (Americom-4, GE-4) USA 20 AMC-5 (Americom-5, GE-5) USA 21 AMC-6 (Americom-6, GE-6) USA 22 AMC-7 (Americom-7, GE-7) USA 23 AMC-8 (Americom-8, GE-8, Aurora 3) USA 24 AMC-9 (Americom 9) USA 25 Amos 1 Israel 26 Amos 2 Israel 27 Amsat-Echo (Oscar 51, AO-51) USA 28 Amsat-Oscar 7 (AO-7) USA 29 Anik F1 Canada 30 Anik F1R Canada 31 Anik F2 Canada 32 Apstar 1 China (PR) 33 Apstar 1A (Apstar 3) China (PR) 34 Apstar 2R (Telstar 10) China (PR) 35 Apstar 6 China (PR) C D 1 Operator/Owner Users 2 NASA Goddard Space Flight Center, Jet Propulsion Laboratory Government 3 WorldSpace Corp. Commercial 4 Mabuhay Philippines Satellite Corp. Commercial 5 Institute of Space and Aeronautical Science, University of Tokyo Civilian Research 6 Earth Observation Research and Application Center/JAXA Japan 7 Centre National des Techniques Spatiales (CNTS) Government 8 Hispamar (subsidiary of Hispasat - Spain) Commercial 9 SES Americom (SES Global) Commercial
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • Japanese SLR Challenges
    13-0507 Japanese SLR Challenges S. Nakamura (1), S. Kasho (1), K. Akiyama (1), H. Hashimoto (1), H. Kunimori (2), M. Sato (3), S. Watanabe (3), T. Otsubo (4) (1) Japan Aerospace Exploration Agency (2) National Institute of Information and Communications Technplogy (3) Japan Coast Guard (4) Hitotsubashi University [email protected] Abstract. Since 1986 in which AJISAI was lounched, JAXA, NICT, Hitotshubashi Univ. JCG, and GSI made a local consortim whose purpose is share orbital data and analysical results. In 2010, when GSI pulled out of an agreement, AJISAI consortium has restructured as Japanese ILRS committee. Example of its activities is evaluation of prediction file of ETS-8 before starting ILRS campaign, evaluation of long term tred of AJISAI spin rate, and shareing operational know-how and how to fix mechanical failure. Additionary, this workshop has been organized as well. Introduction In Japan, there are 3 SLR stations in Japan, KOGC (NICT), SISL (JCG) and GMSL (JAXA), and well known analysis center, HIT-U. Moreover, there were collaborative work among them since AJISAI launched in 1986, but no paper and no presentation about Japan activities. Taking LW18 opportunity, we summarize Japan activities. Present status, Topics and Future Plan of each organization First of all, we summarize Japanese 3 SLR stations in Table 1. Since KOGC-SISL-GMSL has good base line, about 1000km which is longer than meteological changing scale, each SLR station compensate each other. Moreover, for GEO/QZSS tracking, we have succeeded precise orbit determination by simultaneous tracking. Table 1, Japanese SLR stations Site Code Organization Location Mission of Organization KOGC NICT Tokyo Research for optical communication SISL JCG Wakayama Prefecture Marine cartography and geodesy GMSL JAXA Kagoshima Prefecture Satellite Operation (1) Koganei (KOGC, NICT) Past 1996 KSP 4 station, ADEOS-RIS Experiment, Join ILRS 2006 ADEOS-II 2008 ALOS, OICETS Optical Communication 2008 ETS-VIII, Technical development by domestic product 2010 QZS-1.
    [Show full text]
  • Communications Technologies in Space Applications in the Future
    Communications Technologies in Space Applications in the Future Dr. TACHIKAWA Keiji President Japan Aerospace Exploration Agency www.jaxa.jp n October 1, 2003, the National Space Development the “Galileo Project,” a global Agency of Japan (NASDA), the National Aerospace navigation satellite system, an O Laboratory of Japan (NAL) and the Institute of initiative launched by the Euro- Space and Astronautical Science (ISAS) were merged into pean Union and the European one independent administrative institution: the Japan Aero- Space Agency (ESA). Under such space Exploration Agency (JAXA). However, immediately circumstances, it is essential chal- after the merger, JAXA had to face the successive failures of lenges for JAXA how to promote space development activi- H-II A and M-V launch vehicles and the operational anomaly ties of Japan and how to expand space applications. Hence- with the Advanced Earth Observing Satellite-II (ADEOS-II: forth, JAXA is to develop a concrete implementation plan for Midori-II). Subsequently, during a year and a half after the realizing Japan’s long-term vision. merger, JAXA was forced to concentrate all our energy on With respect to JAXA’s R&D on communications tech- the accident investigation into the causes of these failures. nologies in space applications, JAXA has been implementing On February 26, 2005, JAXA successfully launched the two projects; i) Engineering Test Satellite-VIII (ETS-VIII) Multi-functional Transport Satellite-1 Replacement having two Large Deployable Antenna Reflectors (19 m × 17 (MTSAT-1R: Himawari 6) using the H-IIA Launch Vehicle m each) to demonstrate mobile satellite communication sys- No. 7 (H-IIA F7) and also successfully launched the M-V tem technology; and ii) the Wideband InterNetworking Launch Vehicle with the X-ray Astronomy Satellite engineering test and Demonstration Satellite (WINDS) to (ASTRO-E: Suzaku) onboard.
    [Show full text]
  • Atmospheric Influence on a Laser Beam Observed on the OICETS – ARTEMIS Communication Demonstration Link
    Atmos. Meas. Tech., 3, 1233–1239, 2010 www.atmos-meas-tech.net/3/1233/2010/ Atmospheric doi:10.5194/amt-3-1233-2010 Measurement © Author(s) 2010. CC Attribution 3.0 License. Techniques Atmospheric influence on a laser beam observed on the OICETS – ARTEMIS communication demonstration link A. Loscher¨ ESA/ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands Received: 18 March 2010 – Published in Atmos. Meas. Tech. Discuss.: 10 May 2010 Revised: 26 July 2010 – Accepted: 20 August 2010 – Published: 14 September 2010 Abstract. In 2006 bi-directional optical inter-satellite com- the limits concerning the capacity of X-band downlink sys- munication experiments were conducted between the Japan tems. One possible solution would be the use of optical Aerospace Exploration Agency (JAXA) Optical Inter-orbit terminals, increasing the bandwidth significantly, in a di- Communications Engineering Test Satellite (OICETS) and rect Earth observation satellite-to-ground or Earth observa- the European Space Agency (ESA) multi-purpose telecom- tion satellite-to-relay-satellites-to-ground configuration. The munications and technology demonstration satellite (Ad- links themselves are potentially a source of information con- vanced Relay and Technology MISsion) ARTEMIS. On 5 cerning Earth’s atmosphere depending on the transmission April 2006, an experiment was successfully carried out by geometry. maintaining the inter-satellite link during OICETS’s setting The Optical Inter-orbit Communications Engineering Test behind the Earth limb until the signal was lost. This setup Satellite (OICETS, Japanese name KIRARI) (Jono et al., resembles an occultation observation where the influence 2006) was developed by the Japan Aerospace Exploration of Earth’s atmosphere is evident in the power fluctuations Agency (JAXA) and launched into a circular Low Earth Or- recorded at ARTEMIS’s (and OICETS’s) receiver.
    [Show full text]
  • NEC Space Business
    Japan Space industry Workshop in ILA Berlin Airshow 2014 NEC Space Business May 22nd, 2014 NEC Corporation Kentaro (Kent) Sakagami (Mr.) General Manager Satellite Systems and Equipment, Global Business Unit E-mail: [email protected] NEC Corporate Profile Company Name: NEC Corporation Established: July 17, 1899 Kaoru Yano Nobuhiro Endo Chairman of the Board: Kaoru Yano President: Nobuhiro Endo Capital: ¥ 397.2 billion (As of Mar. 31, 2013) Consolidated Net Sales: ¥ 3,071.6 billion (FY ended Mar. 31, 2013) Employees: 102,375 (As of Mar. 31, 2013) Consolidated Subsidiaries: 270 (As of Mar. 31, 2013) Financial results are based on accounting principles generally accepted in Japan Page 2 © NEC Corporation 2014 NEC Worldwide: “One NEC” formation in 5 regions Marketing & Service affiliates 77 in 32 countries Manufacturing affiliates 8 in 5 countries Liaison Offices 7 in 7 countries Branch Offices 7 in 7 countries Laboratories 4 in 3 countries North America Greater China NECJ EMEA APAC Latin America (As of Apr. 1, 2014) Page 3 © NEC Corporation 2014 NEC in EMEA 1 NEC in Germany NEC Deutschland GmbH NEC Display Solutions Europe NEC Laboratories Europe (Internal division of NEC Europe Ltd.) NEC Tokin Europe NEC Scandinavia AB in Espoo, 2 NEC in Netherlands Finland NEC Logistics Europe NEC Nederland B.V. NEC Neva Communications Systems NEC Scandinavia AB in Oslo, Norway NEC in the U.K. 3 NEC Scandinavia AB NEC Europe Ltd. NEC Capital (UK) plc NEC in the UK NEC Technologies (UK) NEC in Netherlands NEC Telecom MODUS Limited 3 2 NEC (UK) Ltd.
    [Show full text]
  • Possibilities and Future Vision of Micro/Nano/Pico-Satellites - from Japanese Experiences
    CanSat & Rocket Experiment(‘99~) Hodoyoshiハイブリッド-1 ‘14 ロケット Possibilities and Future Vision of Micro/nano/pico-satellites - From Japanese Experiences Shinichi Nakasuka University of Tokyo PRISM ‘09 CubeSat 03,05 Nano-JASMINE ‘15 Contents • Features of Micro/nano/pico-satellites • Japanese History and Lessons Learned – CanSat to CubeSat “First CubeSat on orbit” – From education to practical applications – Important tips for development • Visions on Various Applications of Micro/nano/pico-satellites • University Space Engineering Consortium (UNISEC) and International Collaborations Micro/nano/pico-satellite “Lean Satellite” Micro-satellite: 20-100kg Nano-satellite: 2-20kg Pico-satellite: 0.5-2kg Japanese Governmental Satellites ALOS-1: 4 ton ASNARO: 500 kg Kaguya: 3 ton Hayabusa: 510 kg Motivation of Smaller Satellites Current Problem of Mid-large Satellites ALOS 4.0 (4t) Trend towards 3.5 larger satellites Weight SELENE ・Enormous cost >100M$ 3.0 (3t) ・Development period >5-10 years 2.5 ・Conservative design (ton 2.0 ・Almost governmental use ・No new users and utilization ideas ) ・Low speed of innovation 1.5 10-50M$ Micro 1.0 Small-sat /Nano /Pico 0.5 Sat 0 1975 1980 1985 1990 1995 2000 2005 <50kg Introduce more variedGEO new players intoOTHERS space. 1-5M$ Innovation by Micro/nano/pico satellites (<100kg) 超小型衛星革命 Education Remote sensing Telescope Weather Bio-engineering Re-entry Rendezvous/ Communication Space Science Atmosphere Exploration High Resolution. docking Universty/venture companies’ innovative idea and development process <10M$
    [Show full text]
  • Conference Report Report of ICSOS2009
    Conference Report Report of ICSOS2009 National Institute of Information and Communications Technology (NICT) Morio Toyoshima 1. Abstract 2. Main technical topics he International Conference on Space Optical The ICSOS2009 deals with the optical technologies TSystems and Applications 2009 (ICSOS2009) relating to space applications. The technical topics was held in Miraikan (National Museum of Emerging are listed as follows: Science and Innovation; see Fig. 1) from February 4 to ・ Systems and applications: 6, 2009. This conference had the following present and future laser communication systems objectives: (1) to provide a forum for discussion on the and scenarios realization and demonstration of space optical laser communication technologies for technologies including terrestrial optical and terahertz next-generation applications frequency technologies that are already used or space-based and terrestrial-based optical applicable in the future and (2) to build a community systems regarding these fields. This conference was novel optical systems for laser beams organized by the National Institute of Information and small satellite systems for laser Communications Technology (NICT) in Japan. This communications report describes the results of the ICSOS2009. space lidar systems imaging systems ・ Devices, components, and subsystems: novel optical devices for space-based applications optoelectronic subsystems and components laboratory demonstration hardware ・ Basic link technology: atmospheric propagation, transmission effects, and compensation techniques modulation formats for space-based systems trade-offs between optical and microwave (RF) systems Fig. 1. Photograph of Miraikan (National Museum new mm-wave/THz communication devices of Emerging Science and Innovation) and systems quantum optical communication and Space Japan Review, No. 61, April / May 2009 1 cryptography conference in Japan since the International Workshop standardization.
    [Show full text]