FI 3103 Quantum Physics the Emergence of Quantum Physics

Total Page:16

File Type:pdf, Size:1020Kb

FI 3103 Quantum Physics the Emergence of Quantum Physics 05/09/2014 FI 3103 Quantum Physics Alexander A. Iskandar Physics of Magnetism and Photonics Research Group Institut Teknologi Bandung The Emergence of Quantum Physics Wave Properties of Particle Bohr Atom Alexander A. Iskandar Emergence of Quantum Physics 2 1 05/09/2014 Wave Properties of Particle . Louis-Victor-Pierre-Raymond, 7th duc de Broglie (15 August 1892 – 19 March 1987) was a French physicist who made ground breaking contributions to quantum theory. In his 1924 PhD thesis (thesis advisor : Paul Langevin), he postulated the wave nature of electrons and suggested that all matter has de Broglie wave properties. This concept is known as wave-particle duality or the de Broglie hypothesis. h h h h de Broglie p c p mv wavelength photon momentum Alexander A. Iskandar Emergence of Quantum Physics 3 Proof of Wave Properties of Particle Electron Diffraction . J. J. Thomson was awarded the Physics Prize in 1906 for showing that electrons are particles. His son, George Paget Thomson, received the same prize in 1937 (together with Davisson) for showing that they also have the properties of waves. J.J. Thomson C.J. Davisson – L. Germer C.J. Davisson G.P. Thomson Alexander A. Iskandar Emergence of Quantum Physics 4 2 05/09/2014 Bragg’s X-ray Diffraction . Nobel Prize in Physics 1915. William Lawrence Bragg, was to date the youngest Nobel Laureate (he was 25 years old when he received the Nobel Prize). W.H. Bragg W.L. Bragg Alexander A. Iskandar Emergence of Quantum Physics 5 Davisson-Germer Experiment de Broglie relationship p mv 2mE 2meV C.J. Davisson – L. Germer Alexander A. Iskandar Emergence of Quantum Physics 6 3 05/09/2014 Electron Diffraction-Interference . What happens if we send electrons through a double slit apparatus? • initially, the pattern looks random • start to see interference • characteristic interference pattern Alexander A. Iskandar Emergence of Quantum Physics 7 Electron Diffraction-Interference Alexander A. Iskandar Emergence of Quantum Physics 8 4 05/09/2014 Electron Diffraction-Interference Alexander A. Iskandar Emergence of Quantum Physics 9 Louis de Broglie (15 August 1892 – 19 March 1987) . For his wave properties of particle, de Broglie won the Nobel Prize for Physics in 1929 for the proposal that he put forward in 1924 and proven by experiment in 1927. The wave-like behaviour of particles discovered by de Broglie was used by Erwin Schrödinger in his formulation of wave de Broglie mechanics. Alexander A. Iskandar Emergence of Quantum Physics 10 5 05/09/2014 Limit of Wave Properties of Particle . Example 1.6 . At macroscopic scale, we will not be able to see the wave nature of particles. A 0.1 mm diameter water droplet moving at 1 mm/s will have a de Broglie wavelength of 10-25 m, which is tens of order of magnitude smaller than the size of a proton. The smallness of Planck’s constant that makes the separation of wave and particle properties so striking in the classical domain. Alexander A. Iskandar Emergence of Quantum Physics 11 Evolution of the Atomic Model . Dalton atomic model (1803) • Elements are made of extremely small particles called atoms. • Atoms of different elements differ in size, mass, and other properties • The law of multiple proportions . Thomson atomic model (plum- pudding model, 1904) • The atom as being made up of negatively charged corpuscles orbiting in a sea of positive charge. Rutherford atomic model (1911) • Atoms have their charge concentrated in a very small nucleus, and electrons are tiny particles orbiting the nucleus. Bohr atomic model (1913) Alexander A. Iskandar Emergence of Quantum Physics 12 6 05/09/2014 Thomson Cathode Ray Experiment . In 1897, Thomson showed that cathode rays were composed of a previously unknown negatively charged particle, and thus is credited with the discovery and identification of the electron. J. J. Thomson was awarded the Physics Prize in 1906 for showing that electrons are particles. Alexander A. Iskandar Emergence of Quantum Physics 13 Thomson Cathode Ray Experiment . J. J. Thomson also performed further experiments using magnetic field to determine the ratio of e/m. Alexander A. Iskandar Emergence of Quantum Physics 14 7 05/09/2014 Thomson Cathode Ray Experiment . Thomson’s method of measuring the ratio of the electron’s charge to mass was to send electrons through a region containing a magnetic field perpendicular to an electric field. Alexander A. Iskandar Emergence of Quantum Physics 15 Thomson Cathode Ray Experiment . An electron moving through the electric field is accelerated by a force: Fyy ma eE . Electron angle of deflection: v at eE yy t tan( ) 2 vx v00m v v0 . Then turn on the magnetic field, which deflects the electron against the electric field force. F eE ev00 B . The magnetic field is then adjusted until the net force is zero. eE tan( ) EB v0 v/0 EB 2 m(/) E B eEtan( ) . Charge to mass ratio : mB2 Alexander A. Iskandar Emergence of Quantum Physics 16 8 05/09/2014 Thomson’s Plum-Pudding model . Thomson imagined the atom as being made up of these corpuscles orbiting in a sea of positive charge; this was his plum pudding model. This model was later proved incorrect when Ernest Rutherford showed that the positive charge is concentrated in the nucleus of the atom. J.J. Thomson Alexander A. Iskandar Emergence of Quantum Physics 17 Geiger-Marsden Experiment . In 1909, Rutherford inspired Hans Geiger and Ernest Marsden to perform the gold-foil experiment. Geiger Marsden Alexander A. Iskandar Emergence of Quantum Physics 18 9 05/09/2014 Geiger-Marsden Experiment 1 N sin 4 2 PhET: Rutherford Scattering Alexander A. Iskandar Emergence of Quantum Physics 19 Rutherford Atomic Model . In 1911, Rutherford put forward the theory that atoms have their charge concentrated in a very small nucleus, and electrons are tiny particles orbiting the nucleus. Geiger Marsden Rutherford model of the atom. Alexander A. Iskandar Emergence of Quantum Physics 20 10 05/09/2014 Ernst Rutherford (30 August 1871 – 19 October 1937) . Awarded the Nobel Prize in Chemistry in 1908 for his investigations into the disintegration of the elements, and the chemistry of radioactive substances, work that was done at McGill Univ., Canada. Rutherford was born in New Zealand, where he studied at Canterbury College, University of New Zealand. 1895 Rutherford was awarded a scholarship to travel to England for postgraduate study at the Cavendish Laboratory, University of Cambridge. He was among the first of the 'aliens' (those without a Cambridge degree) allowed to do research at the university, under the inspiring leadership of J. J. Thomson. Alexander A. Iskandar Emergence of Quantum Physics 21 Ernst Rutherford (30 August 1871 – 19 October 1937) . In 1898 Thomson offered Rutherford the chance of a post at McGill University in Montreal, Canada. In 1907 he moved to Victoria University of Manchester (today University of Manchester) in the UK. He is widely credited with first "splitting the atom" in 1917 in a nuclear reaction between nitrogen and alpha particles, in which he also discovered (and named) the proton. Alexander A. Iskandar Emergence of Quantum Physics 22 11 05/09/2014 Problem with Rutherford atomic model . From classical EM theory, an accelerated electric charge radiates energy (electromagnetic radiation), which means total energy must decrease. And the radius r must decrease and the electron must fall to the nucleus! Alexander A. Iskandar Emergence of Quantum Physics 23 Line Spectra . Chemical elements were observed to produce unique wavelengths of light when burned or excited in an electrical discharge. Alexander A. Iskandar Emergence of Quantum Physics 24 12 05/09/2014 Balmer Series . In 1885, Johann Balmer found an empirical formula for the wavelength of the visible hydrogen line spectra in nm: nm (where k = 3,4,5…) Johann Balmer Alexander A. Iskandar Emergence of Quantum Physics 25 Rydberg Formula . As more scientists discovered emission lines at infrared and ultraviolet wavelengths, the Balmer series equation was extended to the Rydberg equation (1888): J. Rydberg Alexander A. Iskandar Emergence of Quantum Physics 26 13 05/09/2014 Bohr’s Postulate . In 1913, Bohr put forward 3 postulates that govern the atomic structure which can explained the spectral lines and bypass the stability problem. These postulates are • An atomic system can only exist in a discrete set of stationary states, with discrete values of energy, and any change of the energy of the system, including emission and absorption of electromagnetic radiation must take place by a complete transition between two stationary states. • The radiation absorbed or emitted during a transition between two stationary states of energies E1 and E2 (E1 > E2) is characterized by a unique frequency given by E1 E2 h Alexander A. Iskandar Emergence of Quantum Physics 27 Bohr’s Postulate Alexander A. Iskandar Emergence of Quantum Physics 28 14 05/09/2014 Bohr’s Postulate • The stationary states corresponds to a set of allowed orbits in the Rutherford atomic model. They are determined by the requirement that the kinetic energy of the electron in the orbit is related to the frequency f of the motion of the electron in that orbit by 1 m v2 1 nhf 2 e 2 where n = 1, 2, 3, … For circular orbits this reduces to the statement that the angular momentum takes on integer values in units of h/2p, so that h v Lcircular mevr n n f 2p 2pr Alexander A. Iskandar Emergence of Quantum Physics 29 Bohr’s Postulate . Alternatively, for a circular orbit, we can consider that the electron is a standing wave in an orbit around the proton. This standing wave will have nodes and be an integral number of wavelengths. h 2pr n n p .
Recommended publications
  • 2019 in the Academic Ranking of World Universities (ARWU)
    THE UNIVERSITY OF MANCHESTER FACTS AND FIGURES 2020 2 The University 4 World ranking 6 Academic pedigree 8 World-class research CONTENTS 10 Students 12 Making a difference 14 Global challenges, Manchester solutions 16 Stellify 18 Graduate careers 20 Staff 22 Faculties and Schools 24 Alumni 26 Innovation 28 Widening participation UNIVERSITY OF MANCHESTER 30 Cultural institutions UNIVERSITY OF MANCHESTER 32 Income 34 Campus investment 36 At a glance 1 THE UNIVERSITY OF MANCHESTER Our vision is to be recognised globally for the excellence of our people, research, learning and innovation, and for the benefits we bring to society and the environment. Our core goals and strategic themes Research and discovery Teaching and learning Social responsibility Our people, our values Innovation Civic engagement Global influence 2 3 WORLD RANKING The quality of our teaching and the impact of our research are the cornerstones of our success. We have risen from 78th in 2004* to 33rd – our highest ever place – in 2019 in the Academic Ranking of World Universities (ARWU). League table World ranking European ranking UK ranking 33 8 6 ARWU 33 8 6 WORLD EUROPE UK QS 27 8 6 Times Higher Education 55 16 8 *2004 ranking refers to the Victoria University of Manchester prior to the merger with UMIST. 4 5 ACADEMIC PEDIGREE 1906 1908 1915 1922 1922 We attract the highest-calibre researchers and teachers, with 25 Nobel Prize winners among J Thomson Ernest Rutherford William Archibald V Hill Niels Bohr Physics Chemistry Larence Bragg Physiology or Medicine Physics our current and former staff and students.
    [Show full text]
  • Wave Nature of Matter: Made Easy (Lesson 3) Matter Behaving As a Wave? Ridiculous!
    Wave Nature of Matter: Made Easy (Lesson 3) Matter behaving as a wave? Ridiculous! Compiled by Dr. SuchandraChatterjee Associate Professor Department of Chemistry Surendranath College Remember? I showed you earlier how Einstein (in 1905) showed that the photoelectric effect could be understood if light were thought of as a stream of particles (photons) with energy equal to hν. I got my Nobel prize for that. Louis de Broglie (in 1923) If light can behave both as a wave and a particle, I wonder if a particle can also behave as a wave? Louis de Broglie I’ll try messing around with some of Einstein’s formulae and see what I can come up with. I can imagine a photon of light. If it had a “mass” of mp, then its momentum would be given by p = mpc where c is the speed of light. Now Einstein has a lovely formula that he discovered linking mass with energy (E = mc2) and he also used Planck’s formula E = hf. What if I put them equal to each other? mc2 = hf mc2 = hf So for my photon 2 mp = hfhf/c/c So if p = mpc = hfhf/c/c p = mpc = hf/chf/c Now using the wave equation, c = fλ (f = c/λ) So mpc = hc /λc /λc= h/λ λ = hp So you’re saying that a particle of momentum p has a wavelength equal to Planck’s constant divided by p?! Yes! λ = h/p It will be known as the de Broglie wavelength of the particle Confirmation of de Broglie’s ideas De Broglie didn’t have to wait long for his idea to be shown to be correct.
    [Show full text]
  • Von Richthofen, Einstein and the AGA Estimating Achievement from Fame
    Von Richthofen, Einstein and the AGA Estimating achievement from fame Every schoolboy has heard of Einstein; fewer have heard of Antoine Becquerel; almost nobody has heard of Nils Dalén. Yet they all won Nobel Prizes for Physics. Can we gauge a scientist’s achievements by his or her fame? If so, how? And how do fighter pilots help? Mikhail Simkin and Vwani Roychowdhury look for the linkages. “It was a famous victory.” We instinctively rank the had published. However, in 2001–2002 popular French achievements of great men and women by how famous TV presenters Igor and Grichka Bogdanoff published they are. But is instinct enough? And how exactly does a great man’s fame relate to the greatness of his achieve- ment? Some achievements are easy to quantify. Such is the case with fighter pilots of the First World War. Their achievements can be easily measured and ranked, in terms of their victories – the number of enemy planes they shot down. These aces achieved varying degrees of fame, which have lasted down to the internet age. A few years ago we compared1 the fame of First World War fighter pilot aces (measured in Google hits) with their achievement (measured in victories); and we found that We can estimate fame grows exponentially with achievement. fame from Google; Is the same true in other areas of excellence? Bagrow et al. have studied the relationship between can this tell us 2 achievement and fame for physicists . The relationship Manfred von Richthofen (in cockpit) with members of his so- about actual they found was linear.
    [Show full text]
  • A Brief History of Nuclear Astrophysics
    A BRIEF HISTORY OF NUCLEAR ASTROPHYSICS PART I THE ENERGY OF THE SUN AND STARS Nikos Prantzos Institut d’Astrophysique de Paris Stellar Origin of Energy the Elements Nuclear Astrophysics Astronomy Nuclear Physics Thermodynamics: the energy of the Sun and the age of the Earth 1847 : Robert Julius von Mayer Sun heated by fall of meteors 1854 : Hermann von Helmholtz Gravitational energy of Kant’s contracting protosolar nebula of gas and dust turns into kinetic energy Timescale ~ EGrav/LSun ~ 30 My 1850s : William Thompson (Lord Kelvin) Sun heated at formation from meteorite fall, now « an incadescent liquid mass » cooling Age 10 – 100 My 1859: Charles Darwin Origin of species : Rate of erosion of the Weald valley is 1 inch/century or 22 miles wild (X 1100 feet high) in 300 My Such large Earth ages also required by geologists, like Charles Lyell A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J.
    [Show full text]
  • Nobel Prizes Social Network
    Nobel prizes social network Marie Skłodowska Curie (Phys.1903, Chem.1911) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Irène Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Maurice de Broglie Louis de Broglie (Phys.1929) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Sir J. J. Thomson (Phys.1906) Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Maurice de Broglie Louis de Broglie (Phys.1929) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Clinton Davisson (Phys.1937) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Charlotte Richardson = Clinton Davisson (Phys.1937) Nobel prizes social network (more) Sir J.
    [Show full text]
  • Marischal College
    The Scientific Tourist: Aberdeen Marischal College George P Thomson – Nobel Prize winning physicist Sir George Paget Thomson FRS (1892-1975) was the only son of Sir J. J. Thomson, the Cavendish Professor of Physics who is probably most famous for discovering the existence of the electron and measuring its mass. G. P. Thomson was one of a select group of academics in the University of Aberdeen to be awarded the Nobel Prize. He earned it for his work in the Department of Natural Philosophy at Marischal College during his tenure from 1922-1930. There is now a commemorative plaque in the Marischal College quadrangle. Thomson was a high achieving Trinity College, Cambridge, scholar who graduated in 1913 and was elected Fellow and Lecturer at Corpus Christi College in the following year. He was, though, of the generation whose adult lives were to be shaped by two World Wars and their aftermaths. Thomson spent most of the First World War in France and in the research wing of the Royal Flying Corps. His first book1 came out of this experience and is simply entitled “Applied Aerodynamics”. It is a well-illustrated summary of the lessons of wartime work on the science of aircraft design and operation, underlining the basic physics involved. Upon Thomson’s return to Cambridge he took up research into his father’s long-standing interest of electrical discharges in gases. He brought this interest with him when he came to Aberdeen in 1922 and did much of the work enlarging J. J. Thomson’s “Conduction of Electricity through Gases” into a long awaited 3rd edition that was published in their joint names in 1928.
    [Show full text]
  • William Lawrence Bragg
    W ILLIAM L AWRENCE B R A G G The diffraction of X-rays by crystals Nobel Lecture, September 6, 1922* It is with the very greatest pleasure that I take this opportunity of expressing my gratitude to you for the great honour which you bestowed upon me, when you awarded my father and myself the Nobel Prize for Physics in the year 1915. In other years scientists have come here to express their thanks to you, who have received this great distinction for the work of an illustrious career devoted to research. That you should have given me, at the very out- set of my scientific career, even the most humble place amongst their ranks, is an honour of which I cannot but be very proud. You invited me here two years ago, after the end of the war, but a series of unfortunate circumstances made it impossible for me to accept your invi- tation. I have always profoundly regretted this, and it was therefore with the very greatest satisfaction that I received the invitation of Prof. Arrhenius a few months ago, and arranged for this visit. I am at last able to tell you how deeply grateful I am to you, and to give you my thanks in person. You have already honoured with the Nobel Prize Prof. von Laue, to whom we owe the great discovery which has made possible all progress in a new realm of science, the study of the structure of matter by the diffraction of X-rays. Prof von Laue, in his Nobel Lecture, has described to you how he was led to make his epochal discovery.
    [Show full text]
  • Physics 1928 OWEN WILLANS RICHARDSON
    Physics 1928 OWEN WILLANS RICHARDSON <<for his work on the thermionic phenomenon and especially-for the discovery of the law named after him>> Physics 1928 Presentation Speech by Professor C. W. Oseen, Chairman of the Nobel Committee for Physics of the Royal Swedish Academy of Sciences Your Majesty, Your Royal Highnesses, Ladies and Gentlemen. Among the great problems that scientists conducting research in electro- technique are today trying to solve, is that of enabling two men to converse in whatever part of the world each may be. In 1928 things had reached the stage when we could begin to establish telephonic communication between Sweden and North America. On that occasion there was a telephone line of more than 22,000 kilometres in length between Stockholm and New York. From Stockholm, speech was transmitted via Berlin to England by means of a cable and overhead lines; from England by means of wireless to New York; then, via a cable and lines by land, over to Los Angeles and back to New York, and from there by means of a new line to Chicago, returning finally to New York. In spite of the great distance, the words could be heard distinctly and this is explained by the fact that there were no fewer than 166 amplifiers along the line. The principle of construction of an amplifier is very simple. A glowing filament sends out a stream of electrons. When the speech waves reach the amplifier, they oscillate in tune with the sound waves but are weakened. The speech waves are now made to put the stream of electrons in the same state of oscillation as they have themselves.
    [Show full text]
  • Electron Microscopy
    Electron microscopy 1 Plan 1. De Broglie electron wavelength. 2. Davisson – Germer experiment. 3. Wave-particle dualism. Tonomura experiment. 4. Wave: period, wavelength, mathematical description. 5. Plane, cylindrical, spherical waves. 6. Huygens-Fresnel principle. 7. Scattering: light, X-rays, electrons. 8. Electron scattering. Born approximation. 9. Electron-matter interaction, transmission function. 10. Weak phase object (WPO) approximation. 11. Electron scattering. Elastic and inelastic scattering 12. Electron scattering. Kinematic and dynamic diffraction. 13. Imaging phase objects, under focus, over focus. Transport of intensity equation. 2 Electrons are particles and waves 3 De Broglie wavelength PhD Thesis, 1924: “With every particle of matter with mass m and velocity v a real wave must be associated” h p 2 h mv p mv Ekin eU 2 2meU Louis de Broglie (1892 - 1987) – wavelength h – Planck constant hc eU – electron energy in eV eU eU2 m c2 eU m0 – electron rest mass 0 c – speed of light The Nobel Prize in Physics 1929 was awarded to Prince Louis-Victor Pierre Raymond de Broglie "for his discovery of the wave nature of electrons." 4 De Broigle “Recherches sur la Théorie des Quanta (Researches on the quantum theory)” (1924) Electron wavelength 142 pm 80 keV – 300 keV 5 Davisson – Germer experiment (1923 – 1929) The first direct evidence confirming de Broglie's hypothesis that particles can have wave properties as well 6 C. Davisson, L. H. Germer, "The Scattering of Electrons by a Single Crystal of Nickel" Nature 119(2998), 558 (1927) Davisson – Germer experiment (1923 – 1929) The first direct evidence confirming de Broglie's hypothesis that particles can have wave properties as well Clinton Joseph Davisson (left) and Lester Germer (right) George Paget Thomson Nobel Prize in Physics 1937: Davisson and Thomson 7 C.
    [Show full text]
  • Lawrence Bragg's “Brainwave” Drives Father-Son Collaboration
    www.mrs.org/publications/bulletin HISTORICAL NOTE Lawrence Bragg’s “Brainwave” Drives Father-Son Collaboration In 1912, some 17 years after the serendip- and quickly began to learn what he could itous discovery of x-rays by Wilhelm on the subject. Röntgen, a debate raged as to the wave or Until this point in his life, at age 42, particle nature of this radiation phenome- William later recalled, “It had never non. William Henry Bragg, a 50-year-old entered my head that I should do any professor of physics at Leeds University in research work.” His curiosity aroused by England, came down firmly on the side of his reading on radiation, he soon obtained particles, citing the bullet-like nature of the some radium samples and began the rays, and how they were preferentially experiments that were to make him a lead- scattered in the forward direction when ing figure in radiation theory in a few colliding with matter. Max von Laue of years’ time. He quickly developed novel Germany, having produced elegant spot- hypotheses about the nature of radioactiv- diffraction photographs of CuS by aiming ity. The penetrating power of x-rays, and x-rays at crystal samples, used the diffrac- the fact that they are not deflected by a tion behavior as evidence for the wave magnetic field, were accounted for by the argument. Experiments by Charles G. “neutral pair hypothesis,” which stated Barkla that demonstrated the polarization that x-rays consisted of “an electron which of x-rays confirmed the wave theory in the has assumed a cloak of darkness in the minds of many scientists.
    [Show full text]
  • Otto Stern Annalen 4.11.11
    (To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.
    [Show full text]
  • (Owen Willans) Richardson
    O. W. (Owen Willans) Richardson: An Inventory of His Papers at the Harry Ransom Center Descriptive Summary Creator: Richardson, O. W. (Owen Willans), 1879-1959 Title: O. W. (Owen Willans) Richardson Papers Dates: 1898-1958 (bulk 1920-1940) Extent: 112 document boxes, 2 oversize boxes (49.04 linear feet), 1 oversize folder (osf), 5 galley folders (gf) Abstract: The papers of Sir O. W. (Owen Willans) Richardson, the Nobel Prize-winning British physicist who pioneered the field of thermionics, contain research materials and drafts of his writings, correspondence, as well as letters and writings from numerous distinguished fellow scientists. Call Number: MS-3522 Language: Primarily English; some works and correspondence written in French, German, or Italian . Note: The Ransom Center gratefully acknowledges the assistance of the Center for History of Physics, American Institute of Physics, which provided funds to support the processing and cataloging of this collection. Access: Open for research Administrative Information Additional The Richardson Papers were microfilmed and are available on 76 Physical Format reels. Each item has a unique identifying number (W-xxxx, L-xxxx, Available: R-xxxx, or M-xxxx) that corresponds to the microfilm. This number was recorded on the file folders housing the papers and can also be found on catalog slips present with each item. Acquisition: Purchase, 1961 (R43, R44) and Gift, 2005 Processed by: Tessa Klink and Joan Sibley, 2014 Repository: The University of Texas at Austin, Harry Ransom Center Richardson, O. W. (Owen Willans), 1879-1959 MS-3522 2 Richardson, O. W. (Owen Willans), 1879-1959 MS-3522 Biographical Sketch The English physicist Owen Willans Richardson, who pioneered the field of thermionics, was also known for his work on photoelectricity, spectroscopy, ultraviolet and X-ray radiation, the electron theory, and quantum theory.
    [Show full text]