Database Normalization Tips Luke Chung FMS, President

Total Page:16

File Type:pdf, Size:1020Kb

Database Normalization Tips Luke Chung FMS, President Page 1 of 4 MSDN Home > MSDN Library > Microsoft Access > Rate this page: 25 users 4.4 out of 5 Database Normalization Tips Luke Chung FMS, President September 2002 Applies to: Microsoft® Access Summary: This article offers tips to developers to help them avoid some of the pitfalls when designing Access tables. This article applies to Microsoft Access databases (.mdb) and Microsoft Access projects (.adp). Contents Introduction Understanding Your Data What Data Do You Need? What Are You Going to Do with the Data? How Is Your Data Related to Each Other? What Is Going to Happen to the Data Over Time? Learn How to Use Queries Database Normalization Concepts Store Unique Information in One Place Records are Free, New Fields are Expensive Know When Data Needs to Be Duplicated Use Meaningless Field for the Key Field Use Referential Integrity Conclusion Introduction One of the most important steps in designing a database is ensuring that the data is properly distributed among its tables. With proper data structures, the remainder of the application (the queries, forms, reports, code, and so on) is significantly simplified. The formal name for proper table design is database normalization. This article is an overview of the basic database normalization concepts and some common pitfalls to consider and avoid. Understanding Your Data Before proceeding with table design, it's important to understand what you're planning to do with your data and how it will change over time. The assumptions you make will affect the eventual design. What Data Do You Need? When designing an application, it's critical to understand the final results to ensure that you have all the necessary data and know where it comes from. For instance, what is the appearance of the reports, where does each piece of data come from, and does all the data exist? Nothing is more damaging to a project than the realization, late in the process, that data is missing for an important report. Once you know what data you need, you must determine where it comes from. Is the data imported from another source? Does that data need to be cleaned or verified? Does the user enter data? Having a firm grasp of what data is required and where it comes from is the first step in database design. What Are You Going to Do with the Data? http://msdn.microsoft.com/library/en-us/dnacc2k2/h.../odc_FMSNormalization.asp?frame=tru 10/18/02 Page 2 of 4 Will your users need to edit the data and, if so, how should the data be displayed for them to understand and edit? Are there validation rules and related lookup tables? Are there auditing issues associated with data entry that require keeping backups of edits and deletions? What kind of summary information needs to be displayed to the user? Do you need to generate export files? With this information, you can envision how the fields are related to each other. How Is Your Data Related to Each Other? Group your data into related fields (such as customer-related information, invoice-related information, and so on). Each group of fields represents future tables. You should then consider how they are related to each other. For instance, what tables are related in a one-to-many relationship (for example, one customer may have multiple invoices)? What tables have a one-to-one relationship (often a consideration to combine into one table)? What Is Going to Happen to the Data Over Time? After the tables are designed, the impact of time is often not considered and can cause huge problems later. Many table designs work perfectly well for immediate use. However, many designs break down as users modify the data, as new data gets added, and as time passes. Often, developers find they need to restructure their tables to accommodate these changes. When table structures change, all their dependencies (queries, forms, reports, code, and so on) also need to be updated. By understanding and anticipating change over time, a better design can be implemented to minimize the problems. Learn How to Use Queries Understanding how you are going to analyze and manipulate the data is also important. You should have a firm grasp of how queries work, how to use them to link data across multiple tables, how to use them to group and summarize data, and how to use crosstab queries when you need to display data in non-normalized format. Ultimately, the goal of good data design is to balance the needs of storing the data efficiently over time, versus easily retrieving and analyzing it. Understanding the power of queries significantly helps with properly designing your tables. Database Normalization Concepts Rather than presenting a theoretical discussion about database normalization, this section explains basic concepts involved in database normalization. How you apply them in your situation may differ based on the needs of your application. The goal is to understand these basic concepts, apply them when you can, and understand the issues when you need to deviate from them. Store Unique Information in One Place Most database developers understand the basic concept of data normalization. Ideally, you'd like to store the same data in one place and refer to it with an ID when you need to reference it. Therefore, if some information changes, you can change it in one place and the information changes throughout your application. For instance, a customer table would store a record for each customer, including name, address, phone numbers, e-mail address, and other characteristics. The customer table would have a unique CustomerID field (usually an Autonumber field) that is its key field and used by other tables to refer to the customer. Therefore, an invoice table, rather than storing all the customer information with each invoice (because the same customer may have multiple invoices), would simply refer to the customer ID value, which could be used to look up the customer details in the customer table. Access makes it very easy to do this through its powerful forms that use combo boxes and subforms. If you need to make a change to the customer's information (such as a new phone number), you can change it in the customer table and know that any other part of your application that references that information is automatically updated. With a properly normalized database, changes to data over time are easily handled with a simple edit. Improperly normalized databases often include programming or queries to make changes across multiple records or tables. This not only requires more work to implement, but it also increases the chances of the data becoming inconsistent if the code or queries don't execute properly. Records are Free, New Fields are Expensive http://msdn.microsoft.com/library/en-us/dnacc2k2/h.../odc_FMSNormalization.asp?frame=tru 10/18/02 Page 3 of 4 Databases should be designed so that over time, you simply add new records. Database tables are designed to hold huge numbers of records. However, if you find you need to add more fields, you probably have a design problem. This often happens with spreadsheet experts who design databases the way they are accustomed to designing spreadsheets. Designing time-sensitive fields (such as Year, Quarter, Product, and Salesman) requires new fields to be added in the future. But the correct design is to transpose the information and have the time-sensitive data in one field so more records can be added. For instance, rather than creating a separate field for each year, create a Year field, and enter the value of each record's year in that field. The reason it’s problematic to add additional fields is due to the impact of structural changes to tables on other parts of the application. When more fields are added to a table, the objects and code that depend on the table also need to be updated. For instance, queries need to grab the extra fields, forms need to display them, reports need to include them, and so on. However, if the data were normalized, the existing objects would automatically retrieve the new data and calculate or display it correctly. Queries are particularly powerful because they allow you to group on the Year field to show summaries by year — no matter what years are in your table. Data normalization does not mean, however, that you can't display or use data with time-sensitive or time- dependent fields. Developers who need to show and display such information can often do so by using crosstab queries. If you aren’t familiar with crosstab queries, you should learn how to use them. They are not the same as tables (in particular, you cannot edit the results of a crosstab query), but they can certainly be used for displaying information in a datasheet (up to 255 fields). If you want to use them in reports, it's more complicated because your report will need to accommodate the additional or changing field names. That's why most reports will show data as separate groupings within the report, rather than as separate columns. For those instances where you have no choice, you'll have to invest the time to support this, but hopefully all parties will understand the implication such decisions have on additional resources over time. So, that's why additional records are free (the big advantage of databases) and why additional fields are so expensive. Databases can accommodate massive amounts of change, if they are designed properly. Know When Data Needs to Be Duplicated Sometimes, data needs to be de-normalized to preserve information that may change over time.
Recommended publications
  • Database Design Solutions
    spine=1.10" Wrox Programmer to ProgrammerTM Wrox Programmer to ProgrammerTM Beginning Stephens Database Design Solutions Databases play a critical role in the business operations of most organizations; they’re the central repository for critical information on products, customers, Beginning suppliers, sales, and a host of other essential information. It’s no wonder that Solutions Database Design the majority of all business computing involves database applications. With so much at stake, you’d expect most IT professionals would have a firm understanding of good database design. But in fact most learn through a painful process of trial and error, with predictably poor results. This book provides readers with proven methods and tools for designing efficient, reliable, and secure databases. Author Rod Stephens explains how a database should be organized to ensure data integrity without sacrificing performance. He shares procedures for designing robust, flexible, and secure databases that provide a solid foundation for all of your database applications. The methods and techniques in this book can be applied to any database environment, including Oracle®, Microsoft Access®, SQL Server®, and MySQL®. You’ll learn the basics of good database design and ultimately discover how to design a real-world database. What you will learn from this book ● How to identify database requirements that meet users’ needs ● Ways to build data models using a variety of modeling techniques, including Beginning entity-relational models, user-interface models, and
    [Show full text]
  • Normalization of Databases
    Normalization of databases Database normalization is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data redundancy and undesirable characteristics such as insertion, update and delete anomalies. It is a multi-step process that puts data in to tabular form by removing duplicated data from the relational table. Normalization is used mainly for 2 purpose. - Eliminating redundant data - Ensuring data dependencies makes sense. ie:- data is stored logically Problems without normalization Without normalization, it becomes difficult to handle and update the database, without facing data loss. Insertion, update and delete anomalies are very frequent is databases are not normalized. Example :- S_Id S_Name S_Address Subjects_opted 401 Adam Colombo-4 Bio 402 Alex Kandy Maths 403 Steuart Ja-Ela Maths 404 Adam Colombo-4 Chemistry Updation Anomaly – To update the address of a student who occurs twice or more than twice in a table, we will have to update S_Address column in all the rows, else data will be inconsistent. Insertion Anomaly – Suppose we have a student (S_Id), name and address of a student but if student has not opted for any subjects yet then we have to insert null, which leads to an insertion anomaly. Deletion Anomaly – If (S_id) 401 has opted for one subject only and temporarily he drops it, when we delete that row, entire student record will get deleted. Normalisation Rules 1st Normal Form – No two rows of data must contain repeating group of information. Ie. Each set of column must have a unique value, such that multiple columns cannot be used to fetch the same row.
    [Show full text]
  • Database Normalization
    Outline Data Redundancy Normalization and Denormalization Normal Forms Database Management Systems Database Normalization Malay Bhattacharyya Assistant Professor Machine Intelligence Unit and Centre for Artificial Intelligence and Machine Learning Indian Statistical Institute, Kolkata February, 2020 Malay Bhattacharyya Database Management Systems Outline Data Redundancy Normalization and Denormalization Normal Forms 1 Data Redundancy 2 Normalization and Denormalization 3 Normal Forms First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form Elementary Key Normal Form Fourth Normal Form Fifth Normal Form Domain Key Normal Form Sixth Normal Form Malay Bhattacharyya Database Management Systems These issues can be addressed by decomposing the database { normalization forces this!!! Outline Data Redundancy Normalization and Denormalization Normal Forms Redundancy in databases Redundancy in a database denotes the repetition of stored data Redundancy might cause various anomalies and problems pertaining to storage requirements: Insertion anomalies: It may be impossible to store certain information without storing some other, unrelated information. Deletion anomalies: It may be impossible to delete certain information without losing some other, unrelated information. Update anomalies: If one copy of such repeated data is updated, all copies need to be updated to prevent inconsistency. Increasing storage requirements: The storage requirements may increase over time. Malay Bhattacharyya Database Management Systems Outline Data Redundancy Normalization and Denormalization Normal Forms Redundancy in databases Redundancy in a database denotes the repetition of stored data Redundancy might cause various anomalies and problems pertaining to storage requirements: Insertion anomalies: It may be impossible to store certain information without storing some other, unrelated information. Deletion anomalies: It may be impossible to delete certain information without losing some other, unrelated information.
    [Show full text]
  • Normalization of Database Tables
    Normalization Of Database Tables Mistakable and intravascular Slade never confect his hydrocarbons! Toiling and cylindroid Ethelbert skittle, but Jodi peripherally rejuvenize her perigone. Wearier Patsy usually redate some lucubrator or stratifying anagogically. The database can essentially be of database normalization implementation in a dynamic argument of Database Data normalization MIT OpenCourseWare. How still you structure a normlalized database you store receipt data? Draw data warehouse information will be familiar because it? Today, inventory is hardware key and database normalization. Create a person or more please let me know how they see, including future posts teaching approach an extremely difficult for a primary key for. Each invoice number is assigned a date of invoicing and a customer number. Transform the data into a format more suitable for analysis. Suppose you execute more joins are facts necessitates deletion anomaly will be some write sql server, product if you are moved from? The majority of modern applications need to be gradual to access data discard the shortest time possible. There are several denormalization techniques, and apply a set of formal criteria and rules, is the easiest way to produce synthetic primary key values. In a database performance have only be a candidate per master. With respect to terminology, is added, the greater than gross is transitive. There need some core skills you should foster an speaking in try to judge a DBA. Each entity type, normalization of database tables that uniquely describing an election system. Say that of contents. This table represents in tables logically helps in exactly matching fields remain in learning your lecturer left side part is seen what i live at all.
    [Show full text]
  • Database Design and Normalization
    Database Design and Normalization 3.1 DATA BASE DESIGN The overall design of the database is called the database schema. Database system have several schemas, partitioned according to the level of abstraction. • Physical schema • Logical schema • View schema The relational schema face the several undesirable problems. (1) Redundancy: The aim of the database system is to reduce redundancy, meaning that data is to be stored only once. Storing the data/information many times leads to the wastage of storage space and an increase in the total size of the data stored. Name Course Phone No Major Prof. Grade Vijay 160 2374539 Comp Sci V. Singh A Sanjay 170 4277390 Physics R. Singh B Vijay 165 2374539 Comp Sci S. Singh B Gopal 456 3885183 Mathematics R.J. Lal A Santosh 491 8237293 ·Chemistry Ved Prakash C Santosh 356 8237293 Chemistry J. Singh A Vijay 168 2374539 Comp Sci Vinay In prof. Updates to the database with such redundencies the potential of recoming inconsistent. In the above table the major and phone no. of a student are stored many times in the database. e.g., The major and phone no. of Vijay stored many times in the database. Thus it is the example of redundancy of data in the database. (2) Update Anomalies : Multiple copies of the same fact may lead to update anomalies or inconsistencies. When an update is made and only some of the multiple copies are updated. Thus, a change in the phone no. of 'Vijay' must be made for consistency, in all tuples pertaining to the student 'Vijay'.
    [Show full text]
  • Identifying and Managing Technical Debt in Database Normalization Using Machine Learning and Trade-Off Analysis
    Identifying and Managing Technical Debt in Database Normalization Using Machine Learning and Trade-off Analysis Mashel Albarak Muna Alrazgan Rami Bahsoon University of Birmingham UK King Saud University University of Birmingham King Saud University KSA KSA UK [email protected] [email protected] [email protected] ABSTRACT fast system release; savings in Person Months) and applying optimal design and development practices [21]. There has been Technical debt is a metaphor that describes the long-term effects an increasing volume of research in the area of technical debt. The of shortcuts taken in software development activities to achieve majority of the attempts have focused on code and architectural near-term goals. In this study, we explore a new context of level debts [21]. However, technical debt linked to database technical debt that relates to database normalization design normalization, has not been explored, which is the goal of this decisions. We posit that ill-normalized databases can have long- study. In our previous work [4], we defined database design debt term ramifications on data quality and maintainability costs over as: time, just like debts accumulate interest. Conversely, conventional ” The immature or suboptimal database design decisions database approaches would suggest normalizing weakly that lag behind the optimal/desirable ones, that manifest normalized tables; this can be a costly process in terms of effort themselves into future structural or behavioral and expertise it requires for large software systems. As studies problems, making changes inevitable and more have shown that the fourth normal form is often regarded as the expensive to carry out”.
    [Show full text]
  • Database Normalization—Chapter Eight
    DATABASE NORMALIZATION—CHAPTER EIGHT Introduction Definitions Normal Forms First Normal Form (1NF) Second Normal Form (2NF) Third Normal Form (3NF) Boyce-Codd Normal Form (BCNF) Fourth and Fifth Normal Form (4NF and 5NF) Introduction Normalization is a formal database design process for grouping attributes together in a data relation. Normalization takes a “micro” view of database design while entity-relationship modeling takes a “macro view.” Normalization validates and improves the logical design of a data model. Essentially, normalization removes redundancy in a data model so that table data are easier to modify and so that unnecessary duplication of data is prevented. Definitions To fully understand normalization, relational database terminology must be defined. An attribute is a characteristic of something—for example, hair colour or a social insurance number. A tuple (or row) represents an entity and is composed of a set of attributes that defines an entity, such as a student. An entity is a particular kind of thing, again such as student. A relation or table is defined as a set of tuples (or rows), such as students. All rows in a relation must be distinct, meaning that no two rows can have the same combination of values for all of their attributes. A set of relations or tables related to each other constitutes a database. Because no two rows in a relation are distinct, as they contain different sets of attribute values, a superkey is defined as the set of all attributes in a relation. A candidate key is a minimal superkey, a smaller group of attributes that still uniquely identifies each row.
    [Show full text]
  • NEBC Database Course 2008 – Bonus Material
    NEBC Database Course 2008 ± Bonus Material Part I, Database Normalization ªI once had a client ask me to normalize a database that already was. When I asked her what she was really asking for, she said, ©You know, so normal people can read it.© She wasn©t very techno-savvy.º Quetzzz on digg.com, 31st May 2008 In the course, we have shown how to design a well-structured database for your own use. The formal process of structuring your data in this way is known as normalization. Relational database theory, and the principles of normalisation, were first constructed by people with a strong mathematical background. They wrote about databases using terminology which was not easily understood outside those mathematical circles. Data normalisation is a set of rules and techniques concerned with: • Identifying relationships among attributes. • Combining attributes to form relations. • Combining relations to form a database. It follows a set of rules worked out by E F Codd in 1970. A normalised relational database provides several benefits: • Elimination of redundant data storage. • Close modelling of real world entities, processes, and their relationships. • Structuring of data so that the model is flexible. There are numerous steps in the normalisation process - 1st Normal Form (1NF), 2NF, 3NF, Boyce- Codd Normal Form (BCNF), 4NF, 5NF and DKNF. Database designers often find it unnecessary to go beyond 3rd Normal Form. This does not mean that those higher forms are unimportant, just that the circumstances for which they were designed often do not exist within a particular database. 1st Normal Form A table is in first normal form if all the key attributes have been defined and it contains no repeating groups.
    [Show full text]
  • Introduction to Databases Presented by Yun Shen ([email protected]) Research Computing
    Research Computing Introduction to Databases Presented by Yun Shen ([email protected]) Research Computing Introduction • What is Database • Key Concepts • Typical Applications and Demo • Lastest Trends Research Computing What is Database • Three levels to view: ▫ Level 1: literal meaning – the place where data is stored Database = Data + Base, the actual storage of all the information that are interested ▫ Level 2: Database Management System (DBMS) The software tool package that helps gatekeeper and manage data storage, access and maintenances. It can be either in personal usage scope (MS Access, SQLite) or enterprise level scope (Oracle, MySQL, MS SQL, etc). ▫ Level 3: Database Application All the possible applications built upon the data stored in databases (web site, BI application, ERP etc). Research Computing Examples at each level • Level 1: data collection text files in certain format: such as many bioinformatic databases the actual data files of databases that stored through certain DBMS, i.e. MySQL, SQL server, Oracle, Postgresql, etc. • Level 2: Database Management (DBMS) SQL Server, Oracle, MySQL, SQLite, MS Access, etc. • Level 3: Database Application Web/Mobile/Desktop standalone application - e-commerce, online banking, online registration, etc. Research Computing Examples at each level • Level 1: data collection text files in certain format: such as many bioinformatic databases the actual data files of databases that stored through certain DBMS, i.e. MySQL, SQL server, Oracle, Postgresql, etc. • Level 2: Database
    [Show full text]
  • Chapter- 7 DATABASE NORMALIZATION Keys Types of Key
    Chapter- 7 DATABASE NORMALIZATION Keys o Keys play an important role in the relational database. o It is used to uniquely identify any record or row of data from the table. It is also used to establish and identify relationships between tables. For example: In Student table, ID is used as a key because it is unique for each student. In PERSON table, passport_number, license_number, SSN are keys since they are unique for each person. Types of key: 1. Primary key o It is the first key which is used to identify one and only one instance of an entity uniquely. An entity can contain multiple keys as we saw in PERSON table. The key which is most suitable from those lists become a primary key. o In the EMPLOYEE table, ID can be primary key since it is unique for each employee. In the EMPLOYEE table, we can even select License_Number and Passport_Number as primary key since they are also unique. o For each entity, selection of the primary key is based on requirement and developers. 2. Candidate key o A candidate key is an attribute or set of an attribute which can uniquely identify a tuple. o The remaining attributes except for primary key are considered as a candidate key. The candidate keys are as strong as the primary key. For example: In the EMPLOYEE table, id is best suited for the primary key. Rest of the attributes like SSN, Passport_Number, and License_Number, etc. are considered as a candidate key. 3. Super Key Super key is a set of an attribute which can uniquely identify a tuple.
    [Show full text]
  • P1 Sec 1.8.1) Database Management System(DBMS) with Majid Tahir
    Computer Science 9608 P1 Sec 1.8.1) Database Management System(DBMS) with Majid Tahir Syllabus Content 1.8.1 Database Management Systems (DBMS) understanding the limitations of using a file-based approach for the storage and retrieval of data describe the features of a relational database & the limitations of a file-based approach show understanding of the features provided by a DBMS to address the issues of: o data management, including maintaining a data dictionary o data modeling o logical schema o data integrity o data security, including backup procedures and the use of access rights to individuals/groups of users show understanding of how software tools found within a DBMS are used in practice: o developer interface o query processor11 show that high-level languages provide accessing facilities for data stored in a Database 1.8.2 Relational database modeling show understanding of, and use, the terminology associated with a relational database model: entity, table, tuple, attribute, primary key, candidate key, foreign key, relationship, referential integrity, secondary key and indexing produce a relational design from a given description of a system use an entity-relationship diagram to document a database design show understanding of the normalisation process: First (1NF), Second (2NF) and Third Normal Form (3NF) explain why a given set of database tables are, or are not, in 3NF make the changes to a given set of tables which are not in 3NF to produce a solution in 3NF, and justify the changes made File-based Systems A flat file database is a type of database that stores data in a single table.
    [Show full text]
  • Database Normalization
    CPS352 Lecture - Database Normalization last revised March 6, 2017 Objectives: 1. To define the concepts “functional dependency” and “multivalued dependency” 2. To show how to find the closure of a set of FD’s and/or MVD’s 3. To define the various normal forms and show why each is valuable 4. To show how to normalize a design 5. To discuss the “universal relation” and “ER diagram” approaches to database design. Materials: 1. Projectable of first cut at library FDs 2. Projectable of Armstrong’s Axioms and additional rules of inference (from 5th ed slides) 3. Projectable of additional rules of inference (from 5th ed slide) 4. Projectable of algorithm for computing F+ from F (from 5th ed slides) 5. Projectables of ER examples on pp. 11-12 6. Projectable of algorithm for computing closure of an attribute (From 5th ed slides) 7. Projectable of 3NF algorithm (From 5th ed slides) 8. Projectable of BCNF algorithm (5th ed slide) 9. Projectable of rules of inference for FD’s and MVD’s (5th ed slide) CHECK Projectable of additional MVD Rules (5th ed slide) 10.Projectable of 4NF algorithm (5th ed slide) 11.Projectable of ER diagrams and relational scheme resulting from normalizing library database. I. Introduction A. We have already looked at some issues arising in connection with the design of relational databases. We now want to take the intuitive concepts and expand and formalize them. 1 B. We will base most of our examples in this series of lectures on a simplified library database similar to the one we used in our introduction to relational algebra and SQL lectures, with some modifications 1.
    [Show full text]