Database Management Systems Ebooks for All Edition (
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Available in PDF Format
Defining Business Rules ~ What Are They Really? the Business Rules Group formerly, known as the GUIDE Business Rules Project Final Report revision 1.3 July, 2000 Prepared by: Project Manager: David Hay Allan Kolber Group R, Inc. Butler Technology Solutions, Inc. Keri Anderson Healy Model Systems Consultants, Inc. Example by: John Hall Model Systems, Ltd. Project team: Charles Bachman David McBride Bachman Information Systems, Inc. Viasoft Joseph Breal Richard McKee IBM The Travelers Brian Carroll Terry Moriarty Intersolv Spectrum Technologies Group, Inc. E.F. Codd Linda Nadeau E.F. Codd & Associates A.D. Experts Michael Eulenberg Bonnie O’Neil Owl Mountain MIACO Corporation James Funk Stephanie Quarles S.C. Johnson & Son, Inc. Galaxy Technology Corporation J. Carlos Goti Jerry Rosenbaum IBM USF&G Gavin Gray Stuart Rosenthal Coldwell Banker Dyna Systems John Hall Ronald Ross Model Systems, Ltd. Ronald G. Ross Associates Terry Halpin Warren Selkow Asymetrix Corporation CGI/IBM David Hay Dan Tasker Group R, Inc. Dan Tasker John Healy Barbara von Halle The Automated Reasoning Corporation Spectrum Technologies Group, Inc. Keri Anderson Healy John Zachman Model Systems Consultants, Inc. Zachman International, Inc. Allan Kolber Dick Zakrzewski Butler Technology Solutions, Inc. Northwestern Mutual Life - ii - GUIDE Business Rules Project Final Report Table of Contents 1. Introduction 1 Project Scope And Objectives 1 Overview Of The Paper 2 The Rationale 2 A Context for Business Rules 4 Definition Of A Business Rule 4 Categories of Business Rule 6 2. Formalizing Business Rules 7 The Business Rules Conceptual Model 8 3. Formulating Business Rules 9 The Origins Of Business Rules — The Model 10 Types of Business Rule 13 Definitions 14 4. -
Getting Started with Derby Version 10.14
Getting Started with Derby Version 10.14 Derby Document build: April 6, 2018, 6:13:12 PM (PDT) Version 10.14 Getting Started with Derby Contents Copyright................................................................................................................................3 License................................................................................................................................... 4 Introduction to Derby........................................................................................................... 8 Deployment options...................................................................................................8 System requirements.................................................................................................8 Product documentation for Derby........................................................................... 9 Installing and configuring Derby.......................................................................................10 Installing Derby........................................................................................................ 10 Setting up your environment..................................................................................10 Choosing a method to run the Derby tools and startup utilities...........................11 Setting the environment variables.......................................................................12 Syntax for the derbyrun.jar file............................................................................13 -
Operational Database Offload
Operational Database Offload Partner Brief Facing increased data growth and cost pressures, scale‐out technology has become very popular as more businesses become frustrated with their costly “Our partnership with Hortonworks is able to scale‐up RDBMSs. With Hadoop emerging as the de facto scale‐out file system, a deliver to our clients 5‐10x faster performance Hadoop RDBMS is a natural choice to replace traditional relational databases and over 75% reduction in TCO over traditional scale‐up databases. With Splice like Oracle and IBM DB2, which struggle with cost or scaling issues. Machine’s SQL‐based transactional processing Designed to meet the needs of real‐time, data‐driven businesses, Splice engine, our clients are able to migrate their legacy database applications without Machine is the only Hadoop RDBMS. Splice Machine offers an ANSI‐SQL application rewrites” database with support for ACID transactions on the distributed computing Monte Zweben infrastructure of Hadoop. Like Oracle and MySQL, it is an operational database Chief Executive Office that can handle operational (OLTP) or analytical (OLAP) workloads, while scaling Splice Machine out cost‐effectively from terabytes to petabytes on inexpensive commodity servers. Splice Machine, a technology partner with Hortonworks, chose HBase and Hadoop as its scale‐out architecture because of their proven auto‐sharding, replication, and failover technology. This partnership now allows businesses the best of all worlds: a standard SQL database, the proven scale‐out of Hadoop, and the ability to leverage current staff, operations, and applications without specialized hardware or significant application modifications. What Business Challenges are Solved? Leverage Existing SQL Tools Cost Effective Scaling Real‐Time Updates Leveraging the proven SQL processing of Splice Machine leverages the proven Splice Machine provides full ACID Apache Derby, Splice Machine is a true ANSI auto‐sharding of HBase to scale with transactions across rows and tables by using SQL database on Hadoop. -
SAP IQ Administration: User Management and Security Company
ADMINISTRATION GUIDE | PUBLIC SAP IQ 16.1 SP 04 Document Version: 1.0.0 – 2019-04-05 SAP IQ Administration: User Management and Security company. All rights reserved. All rights company. affiliate THE BEST RUN 2019 SAP SE or an SAP SE or an SAP SAP 2019 © Content 1 Security Management........................................................ 5 1.1 Plan and Implement Role-Based Security............................................6 1.2 Roles......................................................................7 User-Defined Roles.........................................................8 System Roles............................................................ 30 Compatibility Roles........................................................38 Views, Procedures, and Tables That Are Owned by Roles..............................38 Display Roles Granted......................................................39 Determining the Roles and Privileges Granted to a User...............................40 1.3 Privileges..................................................................40 Privileges Versus Permissions.................................................41 System Privileges......................................................... 42 Object-Level Privileges......................................................64 System Procedure Privileges..................................................81 1.4 Passwords.................................................................85 Password and user ID Restrictions and Considerations...............................86 -
The Business Case for In-Memory Databases
THE BUSINESS CASE FOR IN-MEMORY DATABASES By Elliot King, PhD Research Fellow, Lattanze Center for Information Value Loyola University Maryland Abstract Creating a true real-time enterprise has long been a goal for many organizations. The efficient use of appropriate enterprise information is always a central element of that vision. Enabling organizations to operate in real-time requires the ability to access data without delay and process transactions immediately and efficiently. In-memory databases, (IMDB) which offer much faster I/O than on-disk database technology deliver on the promise of real-time access to data. Case studies demonstrate the value of real-time access to data provided by in-memory database systems. Organizations are increasingly recognizing the value of incorporating real- time data access with appropriate applications. In-memory databases, an established technology, have traditionally been used in telecommunications and financial applications. Now they are being successfully deployed in other applications. The overall increases in data volumes which can slow down on-disk database management systems have driven this shift. Additionally, increased computer processing power and main memory capacities have facilitated more ubiquitous in-memory databases which can either standalone or serve as a cache for on-disk databases—thus creating a hybrid infrastructure. Introduction: The Real-Time Enterprise For the last decade, the real-time enterprise has been a strategic objective for many organizations and has been the stimulus for significant investment in IT. Building a real-time enterprise entails implementing access to the most timely and up-to-date data, reducing or eliminating delays in transaction processing and accelerating decision- making at all levels of an organization. -
Charles Bachman
Charles Bachman Born December 11, 1924, Manhattan, Kan.; Proposer of a network approach to storing data as in the Integrated Data Store (IDS) and developer of the OSI Reference Model. Education: BS, mechanical engineering, Michigan State University, 1948; MS, mechanical engineering, University of Pennsylvania, 1950. Professional Experience: Dow Chemical Corporation, 1950-1960; General Electric Company, 1960-1970; Honeywell Information Systems, 1970-1981; Cullinet, 1981- 1983; founder and chairman, BACHMAN Information Systems, 1983-present. Honors and Awards: ACM Turing Award, 1973; distinguished fellow, British Computer Society, 1978. Bachman began his service to the computer industry in 1958 by chairing the SHARE Data processing Committee that developed the IBM 709 Data Processing Package (9PAC), and which preceded the development of the programming language Cobol. He continued this development work through the American National Standards Institute SPARC Study Group on Data Base Management Systems (ANSI/ SPARC/DBMS) that created the layer architecture and conceptual schema for database systems. This work led to the development of the international “Reference Model for Open Systems Integration,” which included the basic idea of a seven- layer architecture, the basis of the OSI networking standard. Bachman received the 1973 ACM Turing Award for his development of the Integrated Data Store, which lifted database work from the status of a specialty to first-class citizenship in computing. IDS provided an elegant logical framework for organizing large on-line collections of variously interrelated data. The system had pragmatic significance also in taking into account advice on expected usage patterns, to improve physical data layouts. The facilities of IDS were fully integrated into the Cobol language and so became available for full-scale practical use. -
SQL Server Column Store Indexes Per-Åke Larson, Cipri Clinciu, Eric N
SQL Server Column Store Indexes Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price, Srikumar Rangarajan, Aleksandras Surna, Qingqing Zhou Microsoft {palarson, ciprianc, ehans, artemoks, susanpr, srikumar, asurna, qizhou}@microsoft.com ABSTRACT SQL Server column store indexes are “pure” column stores, not a The SQL Server 11 release (code named “Denali”) introduces a hybrid, because they store all data for different columns on new data warehouse query acceleration feature based on a new separate pages. This improves I/O scan performance and makes index type called a column store index. The new index type more efficient use of memory. SQL Server is the first major combined with new query operators processing batches of rows database product to support a pure column store index. Others greatly improves data warehouse query performance: in some have claimed that it is impossible to fully incorporate pure column cases by hundreds of times and routinely a tenfold speedup for a store technology into an established database product with a broad broad range of decision support queries. Column store indexes are market. We’re happy to prove them wrong! fully integrated with the rest of the system, including query To improve performance of typical data warehousing queries, all a processing and optimization. This paper gives an overview of the user needs to do is build a column store index on the fact tables in design and implementation of column store indexes including the data warehouse. It may also be beneficial to build column enhancements to query processing and query optimization to take store indexes on extremely large dimension tables (say more than full advantage of the new indexes. -
An Efficient Concurrency Control Technique for Mobile Database Environment by Md
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Global Journal of Computer Science and Technology (GJCST) Global Journal of Computer Science and Technology Software & Data Engineering Volume 13 Issue 2 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350 An Efficient Concurrency Control Technique for Mobile Database Environment By Md. Anisur Rahman Dhaka University of Engineering & Technology Gazipur, Bangladesh Abstract - Day by day, wireless networking technology and mobile computing devices are becoming more popular for their mobility as well as great functionality. Now it is an extremely growing demand to process mobile transactions in mobile databases that allow mobile users to access and operate data anytime and anywhere, irrespective of their physical positions. Information is shared among multiple clients and can be modified by each client independently. However, for the assurance of timely access and correct results in concurrent mobile transactions, concurrency control techniques (CCT) happen to be very difficult. Due to the properties of Mobile databases e.g. inadequate bandwidth, small processing capability, unreliable communication, mobility etc. existing mobile database CCTs cannot employ effectively. With the client-server model, applying common classic pessimistic techniques of concurrency control (like 2PL) in mobile database leads to long duration Blocking and increasing waiting time of transactions. Because of high rate of aborting transactions, optimistic techniques aren`t appropriate in mobile database as well. This paper discusses the issues that need to be addressed when designing a CCT technique for Mobile databases, analyses the existing scheme of CCT and justify their performance limitations. -
9. SQL FUNDAMENTALS What Is SQL?
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 9. SQL FUNDAMENTALS What is SQL? • SQL stands for Structured Query Language • SQL allows you to access a database • SQL is an ANSI standard computer language • SQL can execute queries against a database • SQL can retrieve data from a database • SQL can insert new records in a database • SQL can delete records from a database • SQL can update records in a database • SQL is easy to learn SQL is an ANSI (American National Standards Institute) standard computer language for accessing and manipulating database systems. SQL statements are used to retrieve and update data in a database. • SQL works with database programs like MS Access, DB2, Informix, MS SQL Server, Oracle, Sybase, etc. There are many different versions of the SQL language, but to be in compliance with the ANSI standard, they must support the same major keywords in a similar manner (such as SELECT, UPDATE, DELETE, INSERT, WHERE, and others). SQL Database Tables • A database most often contains one or more tables. Each table is identified by a name (e.g. "Customers" or "Orders"). Tables contain records (rows) with data. Below is an example of a table called "Persons": CS8492-DATABASE MANAGEMENT SYSTEMS ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY SQL Language types: Structured Query Language(SQL) as we all know is the database language by the use of which we can perform certain operations on the existing database and also we can use this language to create a database. SQL uses certain commands like Create, Drop, Insert, etc. to carry out the required tasks. These SQL commands are mainly categorized into four categories as: 1. -
When Relational-Based Applications Go to Nosql Databases: a Survey
information Article When Relational-Based Applications Go to NoSQL Databases: A Survey Geomar A. Schreiner 1,* , Denio Duarte 2 and Ronaldo dos Santos Mello 1 1 Departamento de Informática e Estatística, Federal University of Santa Catarina, 88040-900 Florianópolis - SC, Brazil 2 Campus Chapecó, Federal University of Fronteira Sul, 89815-899 Chapecó - SC, Brazil * Correspondence: [email protected] Received: 22 May 2019; Accepted: 12 July 2019; Published: 16 July 2019 Abstract: Several data-centric applications today produce and manipulate a large volume of data, the so-called Big Data. Traditional databases, in particular, relational databases, are not suitable for Big Data management. As a consequence, some approaches that allow the definition and manipulation of large relational data sets stored in NoSQL databases through an SQL interface have been proposed, focusing on scalability and availability. This paper presents a comparative analysis of these approaches based on an architectural classification that organizes them according to their system architectures. Our motivation is that wrapping is a relevant strategy for relational-based applications that intend to move relational data to NoSQL databases (usually maintained in the cloud). We also claim that this research area has some open issues, given that most approaches deal with only a subset of SQL operations or give support to specific target NoSQL databases. Our intention with this survey is, therefore, to contribute to the state-of-art in this research area and also provide a basis for choosing or even designing a relational-to-NoSQL data wrapping solution. Keywords: big data; data interoperability; NoSQL databases; relational-to-NoSQL mapping 1. -
*** Check Constraints - 10G
*** Check Constraints - 10g *** Create table and poulated with a column called FLAG that can only have a value of 1 or 2 SQL> CREATE TABLE check_const (id NUMBER, flag NUMBER CONSTRAINT check_flag CHECK (flag IN (1,2))); Table created. SQL> INSERT INTO check_const SELECT rownum, mod(rownum,2)+1 FROM dual CONNECT BY level <=10000; 10000 rows created. SQL> COMMIT; Commit complete. SQL> exec dbms_stats.gather_table_stats(ownname=>NULL, tabname=>'CHECK_CONST', estimate_percent=> NULL, method_opt=> 'FOR ALL COLUMNS SIZE 1'); PL/SQL procedure successfully completed. *** Now perform a search for a value of 3. There can be no such value as the Check constraint only permits values 1 or 2 ... *** The exection plan appears to suggest a FTS is being performed (remember, there are no indexes on the flag column) *** But the statistics clearly show no LIOs were performed, none SQL> SELECT * FROM check_const WHERE flag = 3; no rows selected Execution Plan ---------------------------------------------------------- Plan hash value: 1514750852 ---------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ---------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | 6 | 0 (0)| | |* 1 | FILTER | | | | | | |* 2 | TABLE ACCESS FULL| CHECK_CONST | 1 | 6 | 6 (0)| 00:00:01 | ---------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- -
LIST of NOSQL DATABASES [Currently 150]
Your Ultimate Guide to the Non - Relational Universe! [the best selected nosql link Archive in the web] ...never miss a conceptual article again... News Feed covering all changes here! NoSQL DEFINITION: Next Generation Databases mostly addressing some of the points: being non-relational, distributed, open-source and horizontally scalable. The original intention has been modern web-scale databases. The movement began early 2009 and is growing rapidly. Often more characteristics apply such as: schema-free, easy replication support, simple API, eventually consistent / BASE (not ACID), a huge amount of data and more. So the misleading term "nosql" (the community now translates it mostly with "not only sql") should be seen as an alias to something like the definition above. [based on 7 sources, 14 constructive feedback emails (thanks!) and 1 disliking comment . Agree / Disagree? Tell me so! By the way: this is a strong definition and it is out there here since 2009!] LIST OF NOSQL DATABASES [currently 150] Core NoSQL Systems: [Mostly originated out of a Web 2.0 need] Wide Column Store / Column Families Hadoop / HBase API: Java / any writer, Protocol: any write call, Query Method: MapReduce Java / any exec, Replication: HDFS Replication, Written in: Java, Concurrency: ?, Misc: Links: 3 Books [1, 2, 3] Cassandra massively scalable, partitioned row store, masterless architecture, linear scale performance, no single points of failure, read/write support across multiple data centers & cloud availability zones. API / Query Method: CQL and Thrift, replication: peer-to-peer, written in: Java, Concurrency: tunable consistency, Misc: built-in data compression, MapReduce support, primary/secondary indexes, security features.