Center for Cancer Research ANNUAL REPORT 2019-2020 Daniel Haber Photo by Scott Eisen in Cancer Research and Symposium Presented by the Our Research Program

Total Page:16

File Type:pdf, Size:1020Kb

Center for Cancer Research ANNUAL REPORT 2019-2020 Daniel Haber Photo by Scott Eisen in Cancer Research and Symposium Presented by the Our Research Program CENTER FOR CANCER RESEARCH CANCER CENTER FOR ANNUAL REPORT 2019-2020 CENTER for CANCER RESEARCH Annual Report 2019-2020 Massachusetts General Hospital Cancer Center Cancer Hospital General Massachusetts CENTER FOR CANCER RESEARCH Charlestown Laboratories Building 149, 13th Street Charlestown, MA 02129 Jackson Laboratories Jackson Building 55 Fruit Street Boston, MA 02114 Simches Laboratories CPZN 4200 185 Cambridge Street Boston, MA 02114 www.massgeneral.org/cancerresearch/ Microfluidic device for the generation of droplets containing mixed cell populations for long term culture. Image courtesy of Rohan Thakur, Stott Laboratory Ex vivo culture of circulating tumor cells from a breast cancer patient. Image courtesy of Haber/Maheswaran Laboratory EGF stimulation rapidly triggers actin/ERM- (green) and pAkt (red) rich macropinocytic cups on the surface of Nf2-/- cells. Image courtesy of Christine Chiasson-MacKenzie, PhD, McClatchey Laboratory Report design by Catalano Design; Cover background photo by Lee Hopkins, OLP Creative Hopkins, OLP Creative Lee by photo Design; Cover background Catalano Report design by CONTENTS Message from the Director ................................................................................................................................... ii Kurt J. Isselbacher – In Memoriam ..................................................................................................................... iv Scientific Advisory Board ...................................................................................................................................... vi Jonathan Kraft Prize / The Annual MGH Award in Cancer Research ................................................................. vii Center for Cancer Research Faculty .................................................................................................................... viii Reports from the Principal Investigators ............................................................................................................ 1 Reports from the Principal Investigators Martin Aryee ....................................................... 2 Li Lan ................................................................. 52 Liron Bar-Peled .................................................. 4 David M. Langenau ............................................. 54 Nabeel Bardeesy ................................................ 6 Michael S. Lawrence .......................................... 56 Cyril Benes ......................................................... 8 Shyamala Maheswaran ...................................... 58 Bradley Bernstein .............................................. 10 Robert Manguso ................................................. 60 Priscilla K. Brastianos ....................................... 12 Marcela V. Maus ................................................. 62 Ryan Corcoran ................................................... 14 Andrea I. McClatchey .......................................... 64 Shawn Demehri .................................................. 16 David T. Miyamoto .............................................. 66 Nicholas Dyson ................................................... 18 Raul Mostoslavsky .............................................. 68 Andrew Elia ........................................................ 20 Mo Motamedi ..................................................... 70 Leif Ellisen ......................................................... 22 Christopher J. Ott ............................................... 72 David E. Fisher ................................................... 24 Shiv Pillai ............................................................ 74 Gad Getz ............................................................. 26 Luca Pinello ........................................................ 76 Timothy A. Graubert ........................................... 28 Esther Rheinbay ................................................. 78 Wilhelm Haas ..................................................... 30 Miguel N. Rivera ................................................. 80 Daniel A. Haber .................................................. 32 Dennis Sgroi ....................................................... 82 Nir Hacohen ....................................................... 34 Toshihiro Shioda ................................................. 84 Aaron Hata ......................................................... 36 David Spriggs ..................................................... 86 Konrad Hochedlinger ......................................... 38 Shannon Stott ..................................................... 88 Hanno Hock ........................................................ 40 Mario L. Suvà ...................................................... 90 Jonathan G. Hoggatt .......................................... 42 David A. Sweetser ............................................... 92 A. John Iafrate .................................................... 44 David T. Ting ....................................................... 94 Othon Iliopoulos ................................................. 46 Shobha Vasudevan ............................................. 96 Russell W. Jenkins ............................................. 48 Alexandra-Chloé Villani ..................................... 98 J. Keith Joung .................................................... 50 Lee Zou .............................................................. 100 Table of Contents i Message from the Director The Center for Cancer • defining the role of Merlin/ERM proteins in Research (CCR) is the macropinocytosis and receptor signaling major hub for basic • revealing new types of human dendritic cells and translational contributing to immune responses research within the • defining the role of the histone deacetylase SIRT6 in Massachusetts General orchestrating the Warburg effect Hospital Cancer Center. • identifying mutations caused by the APOBEC The CCR includes enzyme at DNA stem-loops, as drivers of recurrent 50 primary and affiliated mutagenesis faculty members, with multidepartmental Harvard Medical School • using an RNA-based digital circulating tumor appointments, including the Departments of Medicine, cell signature to predict drug response and early dissemination in prostate cancer Pathology, Radiation Oncology, Surgery, Dermatology and Pediatrics. These scientists are pursuing every aspect • linking changes in histone methylation to the of cancer research, from exploring cancer genetics, initiation of gene amplification in cancer cells genomics, epigenetics and proteomics to developmental • targeting RET fusions that mediate resistance to biology, cell signaling, molecular therapeutics, EGFR inhibition in lung cancer immunology, metabolism, cell cycle regulation, and • defining the scale of transcriptome-wide off-target microRNA biology. We occupy over 80,000 square feet hits using CRISPR-guided DNA base editing of laboratory space in three Mass General research • creating novel CAR-T cells secreting bispecific facilities, (Charlestown Navy Yard, Simches Research antibodies to target brain tumors Building and the Jackson Building), and our laboratories include more than 500 postdoctoral fellows, graduate This year, we are delighted to introduce four new students and technicians. We host seminar series, an CCR faculty members: Esther Rheinbay, PhD (from annual symposium, and a two-day retreat which provide the Broad Institute); Liron Bar-Peled, PhD (from the opportunities for our investigators to discuss new ideas Scripps Research Institute); Russell Jenkins, MD, PhD and spark productive collaborations. (from the Dana-Farber Cancer Institute); and Robert Manguso, PhD (from the Broad Institute). These young Some of the CCR research highlights from the past year include: investigators have already made important contributions in their respective fields and will further expand and • identifying T cell markers associated with positive strengthen our bioinformatics/computational biology, response to checkpoint immunotherapy in cell biology and cancer immunology programs. melanoma • targeting ATR response to DNA replication block in Cancer immunology and immunotherapy was the main Myelodysplastic Syndrome theme of the 2019 Jonathan Kraft Prize for Excellence ii MGH Center for Cancer Research ANNUAL REPORT 2019-2020 Daniel Haber photo by Scott Eisen in Cancer Research and Symposium presented by the our research program. During the past year Andrea Mass General Center for Cancer Research. The Prize, McClatchey, PhD was appointed as the inaugural which honors an extraordinary scientist who has made incumbent of the Poitras Family Endowed Chair in seminal contributions to cancer research, was presented Oncology and David Sweetser, MD is the inaugural to Carl June, MD from the University of Pennsylvania incumbent of the Leslie Meyer and Lewis Ball Holmes for his breakthrough contributions to the field of CAR-T Chair in Genetics and Teratology. cell therapy. He exemplifies the innovative scientist Our goal for the next year is to further advance our and thoughtful mentor that this award was intended to understanding of fundamental biological processes recognize, when established in 2014 by Robert Kraft to disrupted in cancer. We will continue our focus on honor his son Jonathan’s commitment to cancer research. developing new diagnostic and therapeutic tools that can Our investigators have successfully competed
Recommended publications
  • ANNUAL REVIEW 1 October 2005–30 September
    WELLCOME TRUST ANNUAL REVIEW 1 October 2005–30 September 2006 ANNUAL REVIEW 2006 The Wellcome Trust is the largest charity in the UK and the second largest medical research charity in the world. It funds innovative biomedical research, in the UK and internationally, spending around £500 million each year to support the brightest scientists with the best ideas. The Wellcome Trust supports public debate about biomedical research and its impact on health and wellbeing. www.wellcome.ac.uk THE WELLCOME TRUST The Wellcome Trust is the largest charity in the UK and the second largest medical research charity in the world. 123 CONTENTS BOARD OF GOVERNORS 2 Director’s statement William Castell 4 Advancing knowledge Chairman 16 Using knowledge Martin Bobrow Deputy Chairman 24 Engaging society Adrian Bird 30 Developing people Leszek Borysiewicz 36 Facilitating research Patricia Hodgson 40 Developing our organisation Richard Hynes 41 Wellcome Trust 2005/06 Ronald Plasterk 42 Financial summary 2005/06 Alastair Ross Goobey 44 Funding developments 2005/06 Peter Smith 46 Streams funding 2005/06 Jean Thomas 48 Technology Transfer Edward Walker-Arnott 49 Wellcome Trust Genome Campus As at January 2007 50 Public Engagement 51 Library and information resources 52 Advisory committees Images 1 Surface of the gut. 3 Zebrafish. 5 Cells in a developing This Annual Review covers the 2 Young children in 4 A scene from Y fruit fly. Wellcome Trust’s financial year, from Kenya. Touring’s Every Breath. 6 Data management at the Sanger Institute. 1 October 2005 to 30 September 2006. CONTENTS 1 45 6 EXECUTIVE BOARD MAKING A DIFFERENCE Developing people: To foster a Mark Walport The Wellcome Trust’s mission is research community and individual Director to foster and promote research with researchers who can contribute to the advancement and use of knowledge Ted Bianco the aim of improving human and Director of Technology Transfer animal health.
    [Show full text]
  • RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY
    RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press ISSN: 1790-5125 www.wseas.org ISBN: 978-960-474-141-0 RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press www.wseas.org Copyright © 2009, by WSEAS Press All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press. All papers of the present volume were peer reviewed
    [Show full text]
  • Applied Category Theory for Genomics – an Initiative
    Applied Category Theory for Genomics { An Initiative Yanying Wu1,2 1Centre for Neural Circuits and Behaviour, University of Oxford, UK 2Department of Physiology, Anatomy and Genetics, University of Oxford, UK 06 Sept, 2020 Abstract The ultimate secret of all lives on earth is hidden in their genomes { a totality of DNA sequences. We currently know the whole genome sequence of many organisms, while our understanding of the genome architecture on a systematic level remains rudimentary. Applied category theory opens a promising way to integrate the humongous amount of heterogeneous informations in genomics, to advance our knowledge regarding genome organization, and to provide us with a deep and holistic view of our own genomes. In this work we explain why applied category theory carries such a hope, and we move on to show how it could actually do so, albeit in baby steps. The manuscript intends to be readable to both mathematicians and biologists, therefore no prior knowledge is required from either side. arXiv:2009.02822v1 [q-bio.GN] 6 Sep 2020 1 Introduction DNA, the genetic material of all living beings on this planet, holds the secret of life. The complete set of DNA sequences in an organism constitutes its genome { the blueprint and instruction manual of that organism, be it a human or fly [1]. Therefore, genomics, which studies the contents and meaning of genomes, has been standing in the central stage of scientific research since its birth. The twentieth century witnessed three milestones of genomics research [1]. It began with the discovery of Mendel's laws of inheritance [2], sparked a climax in the middle with the reveal of DNA double helix structure [3], and ended with the accomplishment of a first draft of complete human genome sequences [4].
    [Show full text]
  • Download Ji Calendar Educator Guide
    xxx Contents The Jewish Day ............................................................................................................................... 6 A. What is a day? ..................................................................................................................... 6 B. Jewish Days As ‘Natural’ Days ........................................................................................... 7 C. When does a Jewish day start and end? ........................................................................... 8 D. The values we can learn from the Jewish day ................................................................... 9 Appendix: Additional Information About the Jewish Day ..................................................... 10 The Jewish Week .......................................................................................................................... 13 A. An Accompaniment to Shabbat ....................................................................................... 13 B. The Days of the Week are all Connected to Shabbat ...................................................... 14 C. The Days of the Week are all Connected to the First Week of Creation ........................ 17 D. The Structure of the Jewish Week .................................................................................... 18 E. Deeper Lessons About the Jewish Week ......................................................................... 18 F. Did You Know? .................................................................................................................
    [Show full text]
  • March 2021 Adar / Nisan 5781
    March 2021 Adar / Nisan 5781 www.ti-stl.org Congregation Temple Israel is an inclusive community that supports your unique Jewish journey. TEMPLE NEWS SHABBAT WORSHIP SCHEDULE HIAS REFUGEE SHABBAT SERVICES WORSHIP SERVICE SCHEDULE Friday, March 5 @ 6:30 PM Throughout the month of March, Shabbat services will Temple Israel will be a proud participant in HIAS’ Refugee be available online only. Join us and watch services Shabbat, during which Jews in the United States and around the remotely on our website or on our Facebook page, where world will take action for refugees and asylum seekers. you can connect with other viewers in the comments section. Founded as the Hebrew Immigrant Aid Society in 1881 to assist Jews fleeing persecution in Russia and Eastern Europe, HIAS’s work is rooted in Jewish values and the belief that anyone fleeing WATCH SERVICES ONLINE hatred, bigotry and xenophobia, regardless of their faith or Services on our website: ethnicity, should be provided with a safe refuge. www.ti-stl.org/Watch Services on our Facebook page: Over the Shabbat of March 5-6, 2021, the Jewish community www.facebook.com/TempleIsraelStLouis will dedicate sacred time and space to refugees and asylum seekers. Now in its third year with hundreds of congregations and thousands of individuals participating, this Refugee Shabbat SERVICE SCHEDULE & PARSHA will be an opportunity to once again raise awareness in our 6:00 pm Weekly Pre-Oneg on Zoom communities, to recognize the work that has been done, and to (Link shared in our eNews each week.) reaffirm our commitment to welcoming refugees and asylum seekers.
    [Show full text]
  • Vol 9 No 1 Spring
    A PUBLICATION OF THE AMERICAN SOCIETY FOR MATRIX BIOLOGY SPRING 2010, VOLUME 9, NO. 1 President’s Letter Expanding the Society’s Value to You and Your Role in the Society Since its inception in 2001, the principal function of the ASMB has been to organize the OFFICERS biennial meeting. The value of this meeting to our members cannot be understated. The ASMB meeting has emerged as the matrix-centric President: meeting in North America, and it provides an William Parks (2010) open venue for students, postdocs, fellows, and junior faculty to present their work and to inter- act with established investigators. Speaking for Vice Pres/President Elect myself, I very much look forward to the ASMB Jean Schwarzbauer (2010) meeting, not only because I get to see many Bill Parks friends, but also to hear a lot of incredibly good science. This year’s meeting will be no excep- Past President: tion and promises to be truly outstanding. I applaud Jean Schwarzbauer and the Renato Iozzo (2010) rest of the Program Committee for putting together an exciting meeting loaded with interesting topics and great speakers (please check out the program here). By organizing the meeting, ASMB provides value to you, the membership, but I Secretary/Treasurer think we–the Society–should always be looking to do more; that is, to provide more Joanne Murphy-Ullrich (2011) bang for your dues buck. For this year’s meeting, we have expanded the Travel Awards that will be given to trainees in recognition of outstanding research, and we recently established merit-based Minority Scholarships that will be awarded to eli- Council Members gible students and postdocs.
    [Show full text]
  • High-Throughput Mutagenesis Reveals Functional Determinants for DNA Targeting by Activation-Induced Deaminase Kiran S
    9964–9975 Nucleic Acids Research, 2014, Vol. 42, No. 15 Published online 26 July 2014 doi: 10.1093/nar/gku689 High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase Kiran S. Gajula1, Peter J. Huwe2,†, Charlie Y. Mo3,†, Daniel J. Crawford1, James T. Stivers4, Ravi Radhakrishnan2 and Rahul M. Kohli1,3,* 1Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, 2Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA, 3Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA and 4Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Received June 7, 2014; Revised July 16, 2014; Accepted July 16, 2014 ABSTRACT tional scanning and may find general utility for high- throughput analysis of protein function. Antibody maturation is a critical immune process governed by the enzyme activation-induced deam- inase (AID), a member of the AID/APOBEC DNA INTRODUCTION deaminase family. AID/APOBEC deaminases prefer- Enzyme families often share a central well-structured cat- entially target cytosine within distinct preferred se- alytic core, with different specificities among family mem- quence motifs in DNA, with specificity largely con- bers encoded by variable regions surrounding the active ferred by a small 9–11 residue protein loop that dif- site core (1,2). This mechanism for fulfilling the need for fers among family members. Here, we aimed to deter- specialization while maintaining core function is evident in / mine the key functional characteristics of this protein the family of AID APOBEC cytosine deaminase enzymes, loop in AID and to thereby inform our understanding which play an important role in adaptive and innate immu- nity.
    [Show full text]
  • Longitudinal Peripheral Blood Transcriptional Analysis of COVID-19 Patients
    medRxiv preprint doi: https://doi.org/10.1101/2020.05.05.20091355; this version posted May 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Longitudinal peripheral blood transcriptional analysis of COVID-19 patients 2 captures disease progression and reveals potential biomarkers 3 Qihong Yan1,5,†, Pingchao Li1,†, Xianmiao Ye1,†, Xiaohan Huang1,5,†, Xiaoneng Mo2, 4 Qian Wang1, Yudi Zhang1, Kun Luo1, Zhaoming Chen1, Jia Luo1, Xuefeng Niu3, Ying 5 Feng3, Tianxing Ji3, Bo Feng3, Jinlin Wang2, Feng Li2, Fuchun Zhang2, Fang Li2, 6 Jianhua Wang1, Liqiang Feng1, Zhilong Chen4,*, Chunliang Lei2,*, Linbing Qu1,*, Ling 7 Chen1,2,3,4,* 8 1Guangzhou Regenerative Medicine and Health-Guangdong Laboratory 9 (GRMH-GDL), Guangdong Laboratory of Computational Biomedicine, Guangzhou 10 Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 11 China 12 2Guangzhou Institute of Infectious Disease, Guangzhou Eighth People’s Hospital, 13 Guangzhou Medical University, Guangzhou, China 14 3State Key Laboratory of Respiratory Disease, National Clinical Research Center for 15 Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated 16 Hospital of Guangzhou Medical University, Guangzhou, China 17 4School of Medicine, Huaqiao University, Xiamen, China 18 5University of Chinese Academy of Science, Beijing, China 19 †These authors contributed equally to this work. 20 *To whom correspondence should be addressed: Ling Chen ([email protected]), 21 Linbing Qu ([email protected]), Chunliang Lei ([email protected]), Zhilong 22 Chen ([email protected]) NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • Passover Guide & March 2021
    VIRTUAL SEDERS MARCH 27 5:00PM MARCH 28 5:00PM PAGE 3 PASSOVER GUIDE & MARCH 2021 ADAR / NISSAN1 5781 BULLETIN A MESSAGE FOR PASSOVER A Message for Passover Every year we remind the participants at the Passover table that the recounting of the experience is a “Haggadah,” a telling, and not a “Kriyah,” a reading. What’s the difference? A reading is simply going by the script of what’s on the page. A telling, on the other hand, requires both creativity, and the art, making the story pop. While the words on the page of the Haggadah have been the basis for the Passover Seder for thousands of years, they are merely jumping off points for rituals, conversations, and teaching the Passover narrative to our children and to each other. Taking part in a fulfilling Seder isn’t about reading every word on the page, but rather making the words that you do read come to life. Look no further than the famous Haggadah section of the Four Children to remind us of our responsibility to make the Seder interesting for every kind of participant. The Haggadah offers us four different types of Seder guests, the wise one, the rebellious one, the simple one, and the one who doesn’t know how to ask. We are given guidelines for how to explain the meaning of Passover to each of them. The four children remind us that each type of person at the table requires a different type of experience, and it’s the leader’s job to make the narrative relevant for each of them.
    [Show full text]
  • Profile of Gary Ruvkun
    PROFILE Profile of Gary Ruvkun wash in the faint glow of a fluo- Brush with Molecular Biology rescent lamp, a pair of serpentine The story of Ruvkun’s metamorphosis Anematode worms lie on a Petri from a keen undergraduate into a leading plate, their see-through bodies light in his field of study begins at Har- magnified 100-fold by one of several vard University, where he enrolled in microscopes arrayed in a darkened bay in a Ph.D. program in 1976 upon returning National Academy of Sciences member to the United States. Like many other Gary Ruvkun’s laboratory at Massachu- scientific institutions across the world in setts General Hospital. While one of the the mid-1970s, Harvard was astir with the worms wiggles its way around the plate, promise of recombinant DNA technol- the other shows no signs of life, ogy, and Ruvkun wasted no time em- its midsection ruptured and its innards bracing its tools. “My undergraduate strewn asunder. A filter slides into place, education had not prepared me at all for and the worms are bathed in a dull recombinant DNA, but I immersed my- green haze. The wiggling worm has a bea- self into its culture at Harvard, much of con of nerve cells in its head, the ganglia which was James Watson’s creation from lit up by a genetic trick that has rescued a decade earlier,” Ruvkun says. Propelled the worm from death; its neighbor wears Gary Ruvkun. by a desire to be a part of the culture of no such beacon. The worms were deprived basic molecular biology, all while per- of a tiny RNA molecule, called a micro- forming science with the potential to im- RNA, which helps shepherd them through not 5-year-old children.
    [Show full text]
  • 2008 Harvard / Paul F
    The 2008 Harvard / Paul F. Glenn Symposium on Aging June 23, 2008 Paul F. Glenn Laboratories for the Biological Mechanisms of Aging Welcome to the 3rd Annual Harvard/Paul F. Glenn Symposium on Aging. Each year, the Paul F. Glenn Laboratories host the Harvard Symposium on Aging with a mission to educate the wider research community about advancements in this fast-paced field and to stimulate collaborative research in this area. We have been fortunate to have many of the leaders in the aging field speak at these symposia. As a result, attendees come not only from the Harvard research community but from across the nation and from overseas for this one day event. We are glad you could join us here today. The reasons for accelerating research molecular biology of aging are clear. First and foremost, the number of aged individuals in developed countries is growing rapidly, which is going to place an unprecedented burden on the families and the economies of those nations. Because chronic illness in the elderly is a major medical cost, enormous savings would be achieved if mortality and morbidity could be compressed within a shorter duration of time at the end of life. A study by the RAND Corporation in 2006 concluded that advances in medicine arising from aging research would be 10-100 times more cost-effective than any other medical breakthrough. Advances in aging research have shown that it is possible to extend the healthy lifespan of laboratory animals through genetic and pharmacological means. Many leaders in the aging field predict that significant strides will be made in understanding how human health and lifespan are regulated, leading to novel medicines to forestall and treat diseases of aging such as diabetes, cancer, Alzheimer’s and heart disease.
    [Show full text]
  • Strategic Plan 2011-2016
    Strategic Plan 2011-2016 Wellcome Trust Sanger Institute Strategic Plan 2011-2016 Mission The Wellcome Trust Sanger Institute uses genome sequences to advance understanding of the biology of humans and pathogens in order to improve human health. -i- Wellcome Trust Sanger Institute Strategic Plan 2011-2016 - ii - Wellcome Trust Sanger Institute Strategic Plan 2011-2016 CONTENTS Foreword ....................................................................................................................................1 Overview .....................................................................................................................................2 1. History and philosophy ............................................................................................................ 5 2. Organisation of the science ..................................................................................................... 5 3. Developments in the scientific portfolio ................................................................................... 7 4. Summary of the Scientific Programmes 2011 – 2016 .............................................................. 8 4.1 Cancer Genetics and Genomics ................................................................................ 8 4.2 Human Genetics ...................................................................................................... 10 4.3 Pathogen Variation .................................................................................................. 13 4.4 Malaria
    [Show full text]