Gardenergardener®
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pollinator Gardening
HOME & GARDEN INFORMATION http://www.clemson.edu/extension/hgic HGIC 1727 1-888-656-9988 CENTER Pollinator Gardening In 2007, the U.S. Senate designated a week in June as National Pollinator Week to increase the general public’s awareness of the importance of pollinators to food production. What is pollination? Pollination is the movement of pollen from the male flower part (anther) to the female flower part (stigma) on the same plant or between two plants of the same species. Proper pollination is critical for the development of many fruits and crops. These are the parts of a flower. Walker Massey, Clemson University A Monarch butterfly, bumble bee & honey bee on a Sunflower Approximately one third of the food that ends up on (Helianthus annuus). Millie Davenport, ©2015 HGIC, Clemson Extension a plate is there because of pollinators. When pollination is mentioned, most people think of Planting a pollinator garden will encourage the honey bees but there are so many other insects that presence of native pollinators. Like all living things, help get the job done such as native bees, beetles, pollinators need food, shelter, and water. Start by flies, wasps and butterflies. selecting a sunny area in the landscape and evaluating the area for existing nest sites, nectar Of these, bees are a very important group for sources and habitat. Then add plant species to the pollination because they deliberately harvest pollen area that will increase nectar and pollen sources for to feed their offspring; they visit similar flower pollinator insects through the spring, summer and species per foraging trip and accidentally transfer fall months. -
Poisonous Plants of the Southern United States
Poisonous Plants of the Southern United States Poisonous Plants of the Southern United States Common Name Genus and Species Page atamasco lily Zephyranthes atamasco 21 bitter sneezeweed Helenium amarum 20 black cherry Prunus serotina 6 black locust Robinia pseudoacacia 14 black nightshade Solanum nigrum 16 bladderpod Glottidium vesicarium 11 bracken fern Pteridium aquilinum 5 buttercup Ranunculus abortivus 9 castor bean Ricinus communis 17 cherry laurel Prunus caroliniana 6 chinaberry Melia azederach 14 choke cherry Prunus virginiana 6 coffee senna Cassia occidentalis 12 common buttonbush Cephalanthus occidentalis 25 common cocklebur Xanthium pensylvanicum 15 common sneezeweed Helenium autumnale 19 common yarrow Achillea millefolium 23 eastern baccharis Baccharis halimifolia 18 fetterbush Leucothoe axillaris 24 fetterbush Leucothoe racemosa 24 fetterbush Leucothoe recurva 24 great laurel Rhododendron maxima 9 hairy vetch Vicia villosa 27 hemp dogbane Apocynum cannabinum 23 horsenettle Solanum carolinense 15 jimsonweed Datura stramonium 8 johnsongrass Sorghum halepense 7 lantana Lantana camara 10 maleberry Lyonia ligustrina 24 Mexican pricklepoppy Argemone mexicana 27 milkweed Asclepias tuberosa 22 mountain laurel Kalmia latifolia 6 mustard Brassica sp . 25 oleander Nerium oleander 10 perilla mint Perilla frutescens 28 poison hemlock Conium maculatum 17 poison ivy Rhus radicans 20 poison oak Rhus toxicodendron 20 poison sumac Rhus vernix 21 pokeberry Phytolacca americana 8 rattlebox Daubentonia punicea 11 red buckeye Aesculus pavia 16 redroot pigweed Amaranthus retroflexus 18 rosebay Rhododendron calawbiense 9 sesbania Sesbania exaltata 12 scotch broom Cytisus scoparius 13 sheep laurel Kalmia angustifolia 6 showy crotalaria Crotalaria spectabilis 5 sicklepod Cassia obtusifolia 12 spotted water hemlock Cicuta maculata 17 St. John's wort Hypericum perforatum 26 stagger grass Amianthum muscaetoxicum 22 sweet clover Melilotus sp . -
Dreimasterblumen
Dreimasterblumen Dreimasterblumen (Tradescantia), auch Gottesaugen genannt, sind eine Pflanzengattung in der Familie der Dreimasterblumen Commelinagewächse (Commelinaceae). Viele Tradescantia-Arten sind als Zimmerpflanzen geeignet, mit unterschiedlich gefärbten Blättern. Einige Arten vertragen lichtarme Standorte. Inhaltsverzeichnis Beschreibung Verbreitung Systematik Botanische Geschichte Einzelne Arten Literatur Tradescantia virginiana Einzelnachweise Systematik Weblinks Monokotyledonen Commeliniden Ordnung: Commelinaartige Beschreibung (Commelinales) Familie: Commelinagewächse (Commelinaceae) Unterfamilie: Commelinoideae Gattung: Dreimasterblumen Wissenschaftlicher Name Tradescantia L. Blüte von Tradescantia ohiensis Es sind mehrjährige krautige Pflanzen, einige Arten sind sukkulent. Wie bei Einkeimblättrigen Pflanzen üblich sind die Blüten dreizählig. Die Blüten sind radiär. Die beiden Blütenhüllblattkreise sind deutlich verschiedengestaltig, sie haben also Kelch- und Kronblätter. Die Blütenhüllblätter sind meist frei oder nur an der Basis ein wenig verwachsen. Sie bilden dreikammerige Kapselfrüchte mit ein bis zwei Samen pro Kammer. Bei Pflanzung in Ziergärten sollte man beachten, dass sich einige Arten unkrautartig vermehren und es sehr schwierig ist, diese Gewächse zu kontrollieren. Verbreitung Ihre ursprüngliche Heimat ist die Neotropis. Manche Arten verwildern als Neophyten. Systematik Die Erstbeschreibung durch Carl von Linné in Species Plantarum wurde 1753 veröffentlicht.[1] Die Gattung Tradescantia umfasst die folgenden Arten -
Native Plants for Your Backyard
U.S. Fish & Wildlife Service Native Plants for Your Backyard Native plants of the Southeastern United States are more diverse in number and kind than in most other countries, prized for their beauty worldwide. Our native plants are an integral part of a healthy ecosystem, providing the energy that sustains our forests and wildlife, including important pollinators and migratory birds. By “growing native” you can help support native wildlife. This helps sustain the natural connections that have developed between plants and animals over thousands of years. Consider turning your lawn into a native garden. You’ll help the local environment and often use less water and spend less time and money maintaining your yard if the plants are properly planted. The plants listed are appealing to many species of wildlife and will look attractive in your yard. To maximize your success with these plants, match the right plants with the right site conditions (soil, pH, sun, and moisture). Check out the resources on the back of this factsheet for assistance or contact your local extension office for soil testing and more information about these plants. Shrubs Trees Vines Wildflowers Grasses American beautyberry Serviceberry Trumpet creeper Bee balm Big bluestem Callicarpa americana Amelanchier arborea Campsis radicans Monarda didyma Andropogon gerardii Sweetshrub Redbud Carolina jasmine Fire pink Little bluestem Calycanthus floridus Cercis canadensis Gelsemium sempervirens Silene virginica Schizachyrium scoparium Blueberry Red buckeye Crossvine Cardinal flower -
Sand Hill Lakes Mitigation Bank
Appendix: Pedestrian Surveys Qualitative Field Assessment Form Page 1 of 2 Date: 10/25/2006 Time: 9:30 am Data Collector: David Clayton Location: Pedestrian Transect # M1 near photo point 15 Management Unit: 10 Nuisance Species: Bahia grass at gate entrance Fuel Load: Oak Trees have been thinned, area due to be burned this winter 2008/2009, fuel load high Wildlife Observations: Blue jay, tufted titmouse, deer and raccoon tracks T& E Species: Large population of Gulf Coast Lupine in sand hill and Smooth Barked St. John’s Wort around pond Community Description: Sandhill upland adjacent to a solution pond. Sandhill with good diversity and excellent groundcover. Marsh with excellent zonation consisting of an outer ring of myrtle leaved holly, and some black, then a dense zone of smooth barked St. John’s wort, followed by maidencane, then open water and submerged aquatics. Scientific Name Common Name Tree Shrub Vine Herb Agalinis setacea Threadleaf false X foxgloves Amphicarpum Blue maidencane X muhlenbergianum Andropogon glomeratus Busy blue stem X Aristida stricta var. Wiregrass X beyrichiana Baptisia lanceolata Gopher weed X Baulduina angustifolia Coastal plain X honeycombhead Centella asiatica Centella X Cephalanthus occidentalis Button bush X Chrysoma pauciflosculosa Woody Goldenrod X Cliftonia monoplylla Black ti ti X Crysopsis scabrella Goldenaster X Cyrilla racemiflora Titi X Dalea pinatta Summer farewell X Dicanthelium scoparium Panic grass X Dicanthelium spp. Panic grass X Eleocharis sp. Eleocharis X Eriogonum tomentosum Wild Buckwheat X Eupatorium capillifolium Dog fennel X Eupatorium mohrii Eupatorium X Euthamia caroliniana Flat-topped goldenrod X Gaylussacia dumosa Dwarf huckleberry X Gelsemium sempervirens Florida Jasmine X Hypericum crux-andreae St. -
Diversity and Evolution of Monocots
Commelinids 4 main groups: Diversity and Evolution • Acorales - sister to all monocots • Alismatids of Monocots – inc. Aroids - jack in the pulpit • Lilioids (lilies, orchids, yams) – non-monophyletic . spiderworts, bananas, pineapples . – petaloid • Commelinids – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Commelinids Commelinales + Zingiberales • theme: reduction of flower, loss of nectar, loss of zoophily, evolution of • 2 closely related tropical orders bracts • primarily nectar bearing but with losses • bracted inflorescences grass pickeral weed pickeral weed spiderwort heliconia nectar pollen only bracts rapatead bromeliad Commelinaceae - spiderwort Commelinaceae - spiderwort Family of small herbs with succulent stems, stems jointed; leaves sheathing. Family does not produce Inflorescence often bracted nectar, but showy flowers for insect pollen gathering. Rhoeo - Moses in a cradle Commelina erecta - Erect dayflower Tradescantia ohiensis - spiderwort Tradescantia ohiensis - spiderwort Commelinaceae - spiderwort Commelinaceae - spiderwort Flowers actinomorphic or • species rich in pantropics, CA 3 CO 3 A 6 G (3) zygomorphic especially Africa • floral diversity is enormous Commelina communis - day flower Tradescantia ohiensis - spiderwort Pontederiaceae - pickerel weed Pontederiaceae - pickerel weed Aquatic family of emergents or floaters. Pickerel weed has glossy heart-shaped leaves, Water hyacinth (Eichhornia) from superficially like Sagittaria but without net venation. -
National List of Vascular Plant Species That Occur in Wetlands 1996
National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt. -
Experimental Neuropharmacology of Gelsemium Sempervirens: Recent Advances and Debated Issues
Journal of Ayurveda and Integrative Medicine xxx (2017) 1e6 Contents lists available at ScienceDirect Journal of Ayurveda and Integrative Medicine journal homepage: http://elsevier.com/locate/jaim Short Review Experimental neuropharmacology of Gelsemium sempervirens: Recent advances and debated issues * Paolo Bellavite , Clara Bonafini, Marta Marzotto Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy article info abstract Article history: Gelsemium sempervirens L. (Gelsemium) is traditionally used for its anxiolytic-like properties and its ac- Received 23 December 2016 tion mechanism in laboratory models are under scrutiny. Evidence from rodent models was reported Received in revised form suggesting the existence of a high sensitivity of central nervous system to anxiolytic power of Gelsemium 19 January 2017 extracts and Homeopathic dilutions. In vitro investigation of extremely low doses of this plant extract Accepted 27 January 2017 showed a modulation of gene expression of human neurocytes. These studies were criticized in a few Available online xxx commentaries, generated a debate in literature and were followed by further experimental studies from various laboratories. Toxic doses of Gelsemium cause neurological signs characterized by marked Keywords: Gelsemium sempervirens weakness and convulsions, while ultra-low doses or high Homeopathic dilutions counteract seizures Anxiety induced by lithium and pilocarpine, decrease anxiety after stress and increases the anti-stress allo- Neurocytes pregnanolone hormone, through glycine receptors. Low (non-Homeopathic) doses of this plant or its Animal models alkaloids decrease neuropathic pain and c-Fos expression in mice brain and oxidative stress. Due to the Homeopathic medicine complexity of the matter, several aspects deserve interpretation and the main controversial topics, with a Behavior focus on the issues of high dilution pharmacology, are discussed and clarified. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
Chapter Four: Landscaping with Native Plants a Gardener’S Guide for Missouri Landscaping with Native Plants a Gardener’S Guide for Missouri
Chapter Four: Landscaping with Native Plants A Gardener’s Guide for Missouri Landscaping with Native Plants A Gardener’s Guide for Missouri Introduction Gardening with native plants is becoming the norm rather than the exception in Missouri. The benefits of native landscaping are fueling a gardening movement that says “no” to pesticides and fertilizers and “yes” to biodiversity and creating more sustainable landscapes. Novice and professional gardeners are turning to native landscaping to reduce mainte- nance and promote plant and wildlife conservation. This manual will show you how to use native plants to cre- ate and maintain diverse and beauti- ful spaces. It describes new ways to garden lightly on the earth. Chapter Four: Landscaping with Native Plants provides tools garden- ers need to create and maintain suc- cessful native plant gardens. The information included here provides practical tips and details to ensure successful low-maintenance land- scapes. The previous three chap- ters include Reconstructing Tallgrass Prairies, Rain Gardening, and Native landscapes in the Whitmire Wildflower Garden, Shaw Nature Reserve. Control and Identification of Invasive Species. use of native plants in residential gar- den design, farming, parks, roadsides, and prairie restoration. Miller called his History of Native work “The Prairie Spirit in Landscape Landscaping Design”. One of the earliest practitioners of An early proponent of native landscap- Miller’s ideas was Ossian C. Simonds, ing was Wilhelm Miller who was a landscape architect who worked in appointed head of the University of the Chicago region. In a lecture pre- Illinois extension program in 1912. He sented in 1922, Simonds said, “Nature published a number of papers on the Introduction 3 teaches what to plant. -
The Vascular Flora of the Red Hills Forever Wild Tract, Monroe County, Alabama
The Vascular Flora of the Red Hills Forever Wild Tract, Monroe County, Alabama T. Wayne Barger1* and Brian D. Holt1 1Alabama State Lands Division, Natural Heritage Section, Department of Conservation and Natural Resources, Montgomery, AL 36130 *Correspondence: wayne [email protected] Abstract provides public lands for recreational use along with con- servation of vital habitat. Since its inception, the Forever The Red Hills Forever Wild Tract (RHFWT) is a 1785 ha Wild Program, managed by the Alabama Department of property that was acquired in two purchases by the State of Conservation and Natural Resources (AL-DCNR), has pur- Alabama Forever Wild Program in February and Septem- chased approximately 97 500 ha (241 000 acres) of land for ber 2010. The RHFWT is characterized by undulating general recreation, nature preserves, additions to wildlife terrain with steep slopes, loblolly pine plantations, and management areas and state parks. For each Forever Wild mixed hardwood floodplain forests. The property lies tract purchased, a management plan providing guidelines 125 km southwest of Montgomery, AL and is managed by and recommendations for the tract must be in place within the Alabama Department of Conservation and Natural a year of acquisition. The 1785 ha (4412 acre) Red Hills Resources with an emphasis on recreational use and habi- Forever Wild Tract (RHFWT) was acquired in two sepa- tat management. An intensive floristic study of this area rate purchases in February and September 2010, in part was conducted from January 2011 through June 2015. A to provide protected habitat for the federally listed Red total of 533 taxa (527 species) from 323 genera and 120 Hills Salamander (Phaeognathus hubrichti Highton). -
Alliaria Petiolata
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 7-2015 Alliaria petiolata (M.Bieb.) Cavara & Grande [Brassicaceae], an Invasive Herb in the Southern Ozark Plateaus: A Comparison of Species Composition and Richness, Soil Properties, and Earthworm Composition and Biomass in Invaded Versus Non-Invaded Sites Jennifer D. Ogle University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Botany Commons, Natural Resources and Conservation Commons, Plant Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Ogle, Jennifer D., "Alliaria petiolata (M.Bieb.) Cavara & Grande [Brassicaceae], an Invasive Herb in the Southern Ozark Plateaus: A Comparison of Species Composition and Richness, Soil Properties, and Earthworm Composition and Biomass in Invaded Versus Non-Invaded Sites" (2015). Theses and Dissertations. 1185. http://scholarworks.uark.edu/etd/1185 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Alliaria petiolata (M.Bieb.) Cavara & Grande [Brassicaceae], an Invasive Herb in the Southern Ozark Plateaus: A Comparison of Species Composition and Richness, Soil Properties, and Earthworm Composition and Biomass in Invaded Versus Non-Invaded Sites Alliaria petiolata (M.Bieb.) Cavara & Grande [Brassicaceae], an Invasive Herb in the Southern Ozark Plateaus: A Comparison of Species Composition and Richness, Soil Properties, and Earthworm Composition and Biomass in Invaded Versus Non-Invaded Sites A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology by Jennifer D.