Salt Tolerant Plants Info Sheet for East Central Florida * Asterisk Indicates Native Plant

Total Page:16

File Type:pdf, Size:1020Kb

Salt Tolerant Plants Info Sheet for East Central Florida * Asterisk Indicates Native Plant Salt Tolerant Plants Info Sheet for east central Florida * asterisk indicates native plant TREES Tabebuia Tabebuia spp. High Salt Tolerance Texas Wild Olive Cordia boissieri Common Name Botanical Name Weeping Podocarpus Podocarpus gracilior Acacia, Sweet Acacia farnesiana Yaupon Holly Ilex vomitoria Autograph Tree/Pitch Apple Clusia rosa Yellow Elder Tecoma stans Black Olive Bucida buceras Yellow Jacaranda/Poinciana Peltophorum dubium Buttonwood Conocarpus erectus Wax Myrtle* Myrica cerifera Cassia Cassia spp. Gumbo Limbo Bursera simaurubra BAMBOO Jerusalem Thorn Parkinsonia aculeata Moderate Salt Tolerance Lignum Vitae Guaiacum sanctum Common Name Botanical Name Live Oak* Quercus virginiana Arrow Bamboo Pseudosasa japonica Magnolia* Magnolia grandiflora Common Timber Bambusa vulgaris Mahoe Thespesia populnea Hawaiian Stripe Bambusa vulgaris Mahogany Swietenia mahagoni Wamin Bambusa vulgaris Norfolk Island Pine Araucari heterophylla Oleander Nerium oleander Orange Geiger Tree Cordia sebestena PALMS Paradise Tree Simaruba glauca High Salt Tolerance Plumeria/Frangipani Plumeria spp. Common Name Botanical Name Red Bay* Persea borbonia Australian Fan Pam Livistonia australis Screw Pine/Pandanus Pandanus utilis (and spp.) Bismarkia Bismarkia nobilis Sea Grape** Coccoloba uvifera Bottle Palm Hyophorbe lafenicaulis Sea Hibiscus Hibiscus tiliaceus Buccaneer Palm* Pseudophoenix sargentii Silk Floss Chorisia speciosa Cabbage Palm/Sabal* Sabal palmetto Silver Buttonwood Conocarpus sericeus Cardboard Palm Zamia furfuracea Sweet Acacia Acacia farnesiana Canary Island Date Palm Phoenix canariensis Tropical Almond Terminalia catappa Chinese Fan Palm Livistonia chinensis Thornless Acacia Acacia choriophylla Christmas Palm Adonidia merrillii Cliff Date Palm Phoenix rupicola TREES Coconut Palm Cocos nucifera Moderate Salt Tolerance Dwarf Royal Palm Veitchia spp. African Tulip Tree Spathodea campanulata Dwarf Sabal Palm Sabal minor Bald Cypress* Taxodium distichum European Fan Palm Chamaerops humilis Bottlebrush Callistemon spp. Gingerbread Palm Hyphaene spp. Camphor Tree Cinnamomum camphora Indian Date Palm Phoenix sylvestris Chaste Tree Vitex agnus-castus Hyphaene Palm Hyphaene spp. Dahoon Holly Ilex cassine Needle Palm Rhapidophyllum hystrix Drake Elm Ulmus parvifolia Old Man Palm Coccothrinax crinita East Palatka Holly* Ilex attenuata Paurotis/Everglade Palm* Acoelorraphe wrightii Eucalyptus Eucalyptus spp. Pindo/Jelly Palm Butia capitata Ficus (all varieties) Ficus spp. Puerto-Rican Hat Sabal causarium Italian Cypress Cupressus sempervirens Pygmy Date Palm Phoenix roebellini Ligustrum Ligustrum lucidum Royal Palm Roystonea spp. Olive Tree Olea europeana Saw Cabbage/Palmetto* Seranoa repens Orchid Tree Bauhinia spp Seashore Palm Allagoptera arenaria Plumeria/Frangipani Plumeria spp. Senegal Date Palm Phoenix reclinata Podocarpus Podocarpus macrophylla Silver Palm Coccothrinax spp Pond Cypress* Taxodium ascendens Spindle Palm Hyophorbe verschaffeltii Rattlebox /Scarlet Wisteria Sesbania punicea Thatch Palm Thrinax spp. Red Cedar* Juniperus silicicola True Date Palm Phoenix dactylifera Royal Poinciana Delonix regia Washingtonia Palm Washingtonia robusta Shaving Brush Tree Pseudobombax ellipticum Wax Palm Copernicia alba Slash Pine* Pinus elliottii Weeping Fan Palm Livistonia decipiens Sugarberry* Celtis laevigata Sunshine Tree Erythrina variegata 2 PALMS Moderate Salt Tolerance SHRUBS Areca Palm Chysalidocarpus lutescens High Salt Tolerance Arikury Palm Syagrus schizophylla Common Name Botanical Name Asian Fan Palm Livistona saribus Bahama Cassia Cassia bahamiensis Dwarf Sugar Palm Arenga engleri Brazilian Red Cloak Megaskepasma erythrochlamys Fishtail Palm Caryota mitis Cocoplum* Chrysobalanus icaco Lady Palm Rhapis excesla Dwarf Oleander Nerium oleander Madagascar Palm Pachypodium lamerei Eleagnus/Silverthorn Eleagnus pungens Majesty Palm Ravenea rivularis Firecraker Plant Russelia equisetiformis Queen Palm Syagrus romanoffzianua Hibiscus Hibiscus rosa-sinensis Triangle Palm Neodypsis decaryl Indian Hawthorn Raphiolepis indica Jamaican Caper Capparis cynophallophora CYCADS Jatropha Jatropha hastata High Salt Tolerance Juniper Juniperus spp. Common Name Botanical Name Mahoe/Sea Hibiscus Hibiscus tiliaceus King Sago Cycas revoluta Muhly Grass* Muhlenbergia capillaris Mexican cycad/Chamal Dioon edule Natal Plum Carissa macrocarpa Mexican Zamia/Cardboard Zamia furfuracea Necklace Pod* Sophora tomentosa Scaevola/Inkberry* Scaevola plumieri Sand Cord Grass* Spartina bakeri CYCADS Sea Grape* Coccoloba uvifera Moderate Salt Tolerance Sea Oats* Uniola paniculata African Cycad Encephalartos gratus Simpson’s Stopper* Myrcianthes fragrans Coontie/Florida Zamia Zamia pumila Song of India (dracaena) Dracaena reflexa Mexican cycad/Spiny Dioon Dioon spinulosum Spineless Yucca Yucca elephantipes Queen Sago Cycas circinalis Vitex Vitex trifolia Zululand Cycad Encephalartos ferox Wax Myrtle* Myrica cerifera Yaupon Holly* Ilex vomitoria VINES Yellow Oleander Thevetia peruviana High Salt Tolerance Yucca Yucca spp. Common Name Botanical Name . Allamanda Allamanda spp. SHRUBS Bougainvillea Bougainvillea spp. Moderate Salt Tolerance Cape Honeysuckle Tecomaria capensis Allamanda shrub Allamanda nerifolia Carolina Jasmine Gelsemium sempervirens Aralia Aralia spp. Confederate Jasmine Trachelospermum Arboricola Schefflera arboricola jasminoides Beautyberry* Callicarpa americana Night-blooming Cereus Hylocereus undatus Bird of Paradise Strelitzia reginae Passionvine, Corky-Stemmed* Passiflora suberosa Bottlebrush Callistemon spp Pothos Epipremnum aureum Bush Daisy Euryops pectinatus Purple Allamanda Cryptostegia grandiflora Butterfly Bush Buddleia officinalis Candle Bush/Candleabra Cassia alata VINES Chenille Plant Acalypha hispida Moderate Salt Tolerance Copperleaf Acalypha wilkesiana Chalice Vine Solandra guttata Crape Jasmine Tabernaemontana divaricata Creeping Fig Ficus repens Croton Codiaeum variegatum Coral Honeysuckle Lonicera sempivirens Crown of Thorns Euphorbia milii Dipladenia Dipladenia sanderi Desert Rose Adenium obesum English Ivy Hedera helix Downy Jasmine Jasminum multiflorum Japanese Honeysuckle Lonicera japonica Dracaena Dracaena spp. Mandevilla Mandevilla splendins Dwarf Poinciana Caesalpinia pulcherrima Mexican Flame Vine Senecio confuses False Aralia Dizgotheca elegantissima Morning Glory Ipomoea spp. Fiddlewood* Citharexylum fruticosum Passion Vine Passiflora spp. Firebush Hamelia patens Philodendron Philodendron spp. Florida Privet Forestiera segregata Queen’s Wreath Petrea volubilis Glossy Abelia Abelia grandiflora Red Honeysuckle Lonicera sempervirens Golden Dewdrop Duranta repens Star Jasmine Jasminum nitidum Gold Mound Duranta Duranta erecta Ixora Ixora spp. 3 Jade Plant Crassula argentea Holly Fern Cyrtomium falcatum Juniper (most varieties) Juniperus spp. Kalanchoe Kalancho blossfeldiana Kalanchoe Kalanchoe spp. Leatherleaf Fern Rumohra adiantiformis Ligustrum Ligustrum spp. Liriope Liriope muscari Night Blooming Jasmine Cestrum nocturnum Oyster Plant Rhoeo spathacea Pentas Pentas lanceolata Purple Queen Setcreasea pallida Pineapple Guava Feijoa sellowiana Society Garlic Tulbaghia violacea Pittosporum Pittosporum tobira Sun Rose Aptenia cordifolia Plumbago Plumbago auriculata Wandering Jew Zebrina pendula Podocarpus Podocarpus spp. Ponytail “Palm” Beaucarnea recurvata HERBACEOUS PERENNIALS Pyracantha Pyracantha coccinea High Salt Tolerance Purple Allamanda Cryptostegia Common Name Botanical Name madagascariensis Rattlebox Sesbania punicea Agave Agave spp. Schefflera Brassaia actinophylla Aloe Aloe spp. Shell Ginger Alpinia nutans Blanket Flower/Gaillardia Gaillardia pulchella Snake Plant Sansevieria trifasciata Blue Sage Salvia farinacea Star Jasmine Jasmine nitidum Century Plant Agave americana Surinam Cherry Eugenia unifora Daylily Hemerocallis spp. Texas Sage Leucophyllum texanum Desert Rose Echeveria rosea Thryallis Galphimia gracillis Lantana Lantana spp. Viburnum Viburnum spp. Leather Fern Acrostichum daneifolium Wild Coffee* Psychotria Liriope/Lilyturf Liriope spicata Yellow Elder Tecoma stans New Zealand Flax Phormium tenax Yesterday Today & Tomorrow Brunfelsia pauciflora Pampas Grass Cortaderia selloana Portulaca Portulaca grandiflora Rosemary Ceratiola ericoides GROUNDCOVERS Sansevieria Sansevieria spp. High Salt Tolerance Sea Oats Uniola paniculata Common Name Botanical Name Sea Purslane Sesuvium portulacastrum Asiatic Jasmine Trachelospermum asiaticum Snake Plant Sansevieria trifasciata Baby Sun Rose Aptenia cordifolia Spider Lily Hymenocallis latifolia Blue Daze Evolvus glomeratus Dune/Beach Sunflower Helianthus debilis HERBACEOUS PERENNIALS Firecraker Plant Russelia equisetiformis Moderate Salt Tolerance Gaillardia Gailardia pulchella Bird of Paradise, White Strelitzia nicolai Gazania Daisy Gazania spp Cast Iron Plant Aspidistra elatior Ice Plant Lampranthus spp Costus Costus spp. Juniper Juniper spp. Dianella/Blue Flax Lily Dianella ensifolia Lantana Lantana spp. Fakahachee Grass Tripsacum dactyloides Mondo Grass Ophiopogon japonicus Hawaiian Ti Cordyline spp. Purslane Portulaca grandiflora Jade Plant Crassula argentea Sea Ox-Eye Daisy Borrichia frutescens Lantana, dwarf Lantana ovatifolia x reclinata Sea Purslane Sesuvium portulacastrum Kalanchoe Kalanchoe spp. Silver Falls/Emerald Falls Dichondra argentea/repens Papyrus Cyperus papyrus Sunshine Mimosa Mimosa strigillosa Pine Cone Ginger Zingiber zerumbet Vinca Vinca rosea Rain Lily Habranthus Wedelia Wedelia trilobata Sawgrass Cladium jamaicensis Shell Ginger Alpinia
Recommended publications
  • Identification of Medicinal Plants Within the Apocynaceae Family Using ITS2 and Psba-Trnh Barcodes
    Available online at www.sciencedirect.com Chinese Journal of Natural Medicines 2020, 18(8): 594-605 doi: 10.1016/S1875-5364(20)30071-6 •Special topic• Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes LV Ya-Na1, 2Δ, YANG Chun-Yong1, 2Δ, SHI Lin-Chun3, 4, ZHANG Zhong-Lian1, 2, XU An-Shun1, 2, ZHANG Li-Xia1, 2, 4, LI Xue-Lan1, 2, 4, LI Hai-Tao1, 2, 4* 1 Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical Col- lege, Jinghong 666100, China; 2 Key Laborartory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China; 3 Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Re- public of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical Col- lege, Beijing, 100193, China; 4 Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant De- velopment, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China Available online 20 Aug., 2020 [ABSTRACT] To ensure the safety of medications, it is vital to accurately authenticate species of the Apocynaceae family, which is rich in poisonous medicinal plants. We identified Apocynaceae species by using nuclear internal transcribed spacer 2 (ITS2) and psbA- trnH based on experimental data. The identification ability of ITS2 and psbA-trnH was assessed using specific genetic divergence, BLAST1, and neighbor-joining trees. For DNA barcoding, ITS2 and psbA-trnH regions of 122 plant samples of 31 species from 19 genera in the Apocynaceae family were amplified.
    [Show full text]
  • 197-1572431971.Pdf
    Innovare Journal of Critical Reviews Academic Sciences ISSN- 2394-5125 Vol 2, Issue 2, 2015 Review Article EPIPREMNUM AUREUM (JADE POTHOS): A MULTIPURPOSE PLANT WITH ITS MEDICINAL AND PHARMACOLOGICAL PROPERTIES ANJU MESHRAM, NIDHI SRIVASTAVA* Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India Email: [email protected] Received: 13 Dec 2014 Revised and Accepted: 10 Jan 2015 ABSTRACT Plants belonging to the Arum family (Araceae) are commonly known as aroids as they contain crystals of calcium oxalate and toxic proteins which can cause intense irritation of the skin and mucous membranes, and poisoning if the raw plant tissue is eaten. Aroids range from tiny floating aquatic plants to forest climbers. Many are cultivated for their ornamental flowers or foliage and others for their food value. Present article critically reviews the growth conditions of Epipremnum aureum (Linden and Andre) Bunting with special emphasis on their ethnomedicinal uses and pharmacological activities, beneficial to both human and the environment. In this article, we review the origin, distribution, brief morphological characters, medicinal and pharmacological properties of Epipremnum aureum, commonly known as ornamental plant having indoor air pollution removing capacity. There are very few reports to the medicinal properties of E. aureum. In our investigation, it has been found that each part of this plant possesses antibacterial, anti-termite and antioxidant properties. However, apart from these it can also turn out to be anti-malarial, anti- cancerous, anti-tuberculosis, anti-arthritis and wound healing etc which are a severe international problem. In the present study, details about the pharmacological actions of medicinal plant E. aureum (Linden and Andre) Bunting and Epipremnum pinnatum (L.) Engl.
    [Show full text]
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Phytophthora Ramorum Sudden Oak Death Pathogen
    NAME OF SPECIES: Phytophthora ramorum Sudden Oak Death pathogen Synonyms: Common Name: Sudden Oak Death pathogen A. CURRENT STATUS AND DISTRIBUTION I. In Wisconsin? 1. YES NO X 2. Abundance: 3. Geographic Range: 4. Habitat Invaded: 5. Historical Status and Rate of Spread in Wisconsin: 6. Proportion of potential range occupied: II. Invasive in Similar Climate YES NO X Zones United States: In 14 coastal California Counties and in Curry County, Oregon. In nursery in Washington. Canada: Nursery in British Columbia. Europe: Germany, the Netherlands, the United Kingdom, Poland, Spain, France, Belgium, and Sweden. III. Invasive in Similar Habitat YES X NO Types IV. Habitat Affected 1. Habitat affected: this disease thrives in cool, wet climates including areas in coastal California within the fog belt or in low- lying forested areas along stream beds and other bodies of water. Oaks associated with understory species that are susceptible to foliar infections are at higher risk of becoming infected. 2. Host plants: Forty-five hosts are regulated for this disease. These hosts have been found naturally infected by P. ramorum and have had Koch’s postulates completed, reviewed and accepted. Approximately fifty-nine species are associated with Phytophthora ramorum. These species are found naturally infected; P. ramorum has been cultured or detected with PCR but Koch’s postulates have not been completed or documented and reviewed. Northern red oak (Quercus rubra) is considered an associated host. See end of document for complete list of plant hosts. National Risk Model and Map shows susceptible forest types in the mid-Atlantic region of the United States.
    [Show full text]
  • Pollinator Gardening
    HOME & GARDEN INFORMATION http://www.clemson.edu/extension/hgic HGIC 1727 1-888-656-9988 CENTER Pollinator Gardening In 2007, the U.S. Senate designated a week in June as National Pollinator Week to increase the general public’s awareness of the importance of pollinators to food production. What is pollination? Pollination is the movement of pollen from the male flower part (anther) to the female flower part (stigma) on the same plant or between two plants of the same species. Proper pollination is critical for the development of many fruits and crops. These are the parts of a flower. Walker Massey, Clemson University A Monarch butterfly, bumble bee & honey bee on a Sunflower Approximately one third of the food that ends up on (Helianthus annuus). Millie Davenport, ©2015 HGIC, Clemson Extension a plate is there because of pollinators. When pollination is mentioned, most people think of Planting a pollinator garden will encourage the honey bees but there are so many other insects that presence of native pollinators. Like all living things, help get the job done such as native bees, beetles, pollinators need food, shelter, and water. Start by flies, wasps and butterflies. selecting a sunny area in the landscape and evaluating the area for existing nest sites, nectar Of these, bees are a very important group for sources and habitat. Then add plant species to the pollination because they deliberately harvest pollen area that will increase nectar and pollen sources for to feed their offspring; they visit similar flower pollinator insects through the spring, summer and species per foraging trip and accidentally transfer fall months.
    [Show full text]
  • Passiflora Incarnata Family: the Passionflower Family, Passifloraceae
    Of interest this week at Beal... Purple Passionflower Passiflora incarnata Family: the Passionflower family, Passifloraceae. Also called May-Pop, and Wild apricot W. J. Beal The purple passionflower, Passiflora incarnata,is an herbaceous vine, native to the Botanical Garden southeast quadrant of North America. It, and its fruit often are called maypops. It is the fruits of passionflowers that provide the most popular of the food uses for the plant, used in drinks and ice creams. But it is the flower, captivating by its complex beauty, and its history as an icon of Christian myth that generate the most interest. There are many passionflower species (Passiflora spp.) and all of them are native to the new world tropics, or near-tropics. Depending on which taxonomy you choose, there are between 400 and 600 species in this genus. The purple passionflower is found farther outside the tropics than any other passionflower. It has been found at least as far north as Missouri in the West and New Jersey in the eastern United States. Although the intricate and striking flowers are beautiful and fragrant, their connection to passion is not over love or romance. Passion, in this context, refers to the Passion of Christ. Spanish Christian missionaries, saw the numerological aspects of the flower as a sign from God that their mission in the New World was God’s will. When the Vatican received the first drawings of the flowers, the clerics reviewing them thought the illustrations were so fanciful as to not be real. It was not until much later, after many missionaries were interviewed, that these unmistakable flowers were accepted as a possibly real organism.
    [Show full text]
  • Full Article
    Volume 20: 29–33 ELOPEA Publication date: 16 February 2017 T dx.doi.org/10.7751/telopea11338 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Lectotypification of Mimosa pubescens Vent. (Fabaceae, Mimosoideae) Phillip G Kodela and Peter G Wilson National Herbarium of New South Wales, The Royal Botanic Gardens & Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia. [email protected]; [email protected] Abstract A lectotype is here designated for Mimosa pubescens Vent., the basionym of the Australian species Acacia pubescens (Vent.) R.Br. Introduction Acacia pubescens (Vent.) R.Br. has a restricted distribution in the greater Sydney region of New South Wales (see Tame 1992, Tindale and Kodela 2001, Kodela and Harden 2002, Kodela 2016, OEH 2016), and is listed as a Vulnerable species (OEH 2016). The basionym of Acacia pubescens, Mimosa pubescens, was originally published by Étienne Ventenat in the first volume of his work Jardin de la Malmaison (Ventenat 1803) that celebrated the collection of interesting plants from around the world in cultivation at the home of the Empress Josephine. Lack (2004: 35) notes that the number of Australian plants described in this work was “remarkably high” considering that the continent was, at that time, still largely unknown. The detailed descriptions were accompanied by fine illustrations by the famous botanical artist Redouté. At the time of compilation of the Acacia treatment in the Flora of Australia, no type specimen had been located (Tindale and Kodela 2001) and it was later suggested that the species could have been lectotypified on the plate in the protologue (Fig.
    [Show full text]
  • American Materia Medica, Therapeutics and Pharmacognosy
    American Materia Medica, Therapeutics and Pharmacognosy Developing the Latest Acquired Knowledge of Drugs, and Especially of the Direct Action of Single Drugs Upon Exact Conditions of Disease, with Especial Reference of the Therapeutics of the Plant Drugs of the Americas. By FINLEY ELLINGWOOD, M.D. 1919 Late Professor of Materia Medica and Therapeutics in Bennett Medical College, Chicago; Professor of Chemistry in Bennett Medical College 1884-1898; Author, and Editor of Ellingwood's Therapeutist; Member National Eclectic Medical Association; American Medical Editors' Association. Abridged to include only the botanical entries, and arranged in alphabetical order by latin names Southwest School of Botanical Medicine P.O. Box 4565, Bisbee, AZ 85603 www.swsbm.com ABIES. Abies canadensis Synonym—Hemlock spruce. CONSTITUENTS— Tannic acid, resin, volatile oil. Canada pitch, or gum hemlock, is the prepared concrete juice of the pinus canadensis. The juice exudes from the tree, and is collected by boiling the bark in water, or boiling the hemlock knots, which are rich in resin. It is composed of one or more resins, and a minute quantity of volatile oil. Canada pitch of commerce is in reddish-brown, brittle masses, of a faint odor, and slight taste. Oil of hemlock is obtained by distilling the branches with water. It is a volatile liquid, having a terebinthinate odor and taste. PREPARATIONS— Canada Pitch Plaster Tincture of the fresh hemlock boughs Tincture of the fresh inner bark. Specific Medicine Pinus. Dose, from five to sixty minims. The hemlock spruce produces three medicines; the gum, used in the form of a plaster as a rubifacient in rheumatism and kindred complaints; the volatile oil—oil of hemlock—or a tincture of the fresh boughs, used as a diuretic in diseases of the urinary organs, and wherever a terebinthinate remedy is indicated; and a tincture of the fresh inner bark, an astringent with specific properties, used locally, and internally in catarrh.
    [Show full text]
  • Butterfly Plant List
    Butterfly Plant List Butterflies and moths (Lepidoptera) go through what is known as a * This list of plants is seperated by host (larval/caterpilar stage) "complete" lifecycle. This means they go through metamorphosis, and nectar (Adult feeding stage) plants. Note that plants under the where there is a period between immature and adult stages where host stage are consumed by the caterpillars as they mature and the insect forms a protective case/cocoon or pupae in order to form their chrysalis. Most caterpilars and mothswill form their transform into its adult/reproductive stage. In butterflies this case cocoon on the host plant. is called a Chrysilas and can come in various shapes, textures, and colors. Host Plants/Larval Stage Perennials/Annuals Vines Common Name Scientific Common Name Scientific Aster Asteracea spp. Dutchman's pipe Aristolochia durior Beard Tongue Penstamon spp. Passion vine Passiflora spp. Bleeding Heart Dicentra spp. Wisteria Wisteria sinensis Butterfly Weed Asclepias tuberosa Dill Anethum graveolens Shrubs Common Fennel Foeniculum vulgare Common Name Scientific Common Foxglove Digitalis purpurea Cape Plumbago Plumbago auriculata Joe-Pye Weed Eupatorium purpureum Hibiscus Hibiscus spp. Garden Nasturtium Tropaeolum majus Mallow Malva spp. Parsley Petroselinum crispum Rose Rosa spp. Snapdragon Antirrhinum majus Senna Cassia spp. Speedwell Veronica spp. Spicebush Lindera benzoin Spider Flower Cleome hasslerana Spirea Spirea spp. Sunflower Helianthus spp. Viburnum Viburnum spp. Swamp Milkweed Asclepias incarnata Trees Trees Common Name Scientific Common Name Scientific Birch Betula spp. Pine Pinus spp. Cherry and Plum Prunus spp. Sassafrass Sassafrass albidum Citrus Citrus spp. Sweet Bay Magnolia virginiana Dogwood Cornus spp. Sycamore Platanus spp. Hawthorn Crataegus spp.
    [Show full text]
  • Bioactive Components and Pharmacological Effects of Canna Indica- an Overview
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/297715332 Bioactive components and pharmacological effects of Canna indica- An overview Article · January 2015 CITATIONS READS 104 3,551 1 author: Ali Esmail Al-Snafi University of Thi-Qar - College of Medicine 333 PUBLICATIONS 9,751 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Medicinal plants with cardiovascular effects View project Medicinal plant with reproductive and endocrine effects View project All content following this page was uploaded by Ali Esmail Al-Snafi on 14 February 2017. The user has requested enhancement of the downloaded file. International Journal of Pharmacology & Toxicology / 5(2), 2015, 71-75. e - ISSN - 2249-7668 Print ISSN - 2249-7676 International Journal of Pharmacology & Toxicology www.ijpt.org BIOACTIVE COMPONENTS AND PHARMACOLOGICAL EFFECTS OF CANNA INDICA- AN OVERVIEW Ali Esmail Al-Snafi Department of Pharmacology, College of Medicine, Thiqar University, Nasiriyah, PO Box 42, Iraq. ABSTRACT Canna indica L. is a tropical herb belonging to the family Cannaceae. It has been widely used in traditional medicine for the treatment of many complains. The phytochemical analysis of Canna indica showed that it contained various phytochemicals including alkaloids, carbohydrates, proteins, flavonoids, terpenoids, cardiac glycosides, oils, steroids, tannins, saponins, anthocyanin pigments, phlobatinins and many other chemical compounds. The pharmacological studies showed that this plant exerted antibacterial, antiviral anthelmintic, molluscicidal, anti-inflammatory, analgesic immunmodulatory, antioxidant, cytotoxic, hemostatic, hepatoprotective, anti diarrheal and other effects. This review deals with highlight the chemical constituents and the pharmacological effects of Canna indica.
    [Show full text]
  • Somatic Embryogenesis and Genetic Fidelity Study of Micropropagated Medicinal Species, Canna Indica
    Horticulturae 2015, 1, 3-13; doi:10.3390/horticulturae1010003 OPEN ACCESS horticulturae ISSN 2311-7524 www.mdpi.com/journal/horticulturae Article Somatic Embryogenesis and Genetic Fidelity Study of Micropropagated Medicinal Species, Canna indica Tanmayee Mishra 1, Arvind Kumar Goyal 2 and Arnab Sen 1,* 1 Molecular Cytogenetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, West Bengal, India; E-Mail: [email protected] 2 Bamboo Technology, Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +91-353-269-9118; Fax: +91-353-269-9001. Academic Editors: Douglas D. Archbold and Kazumi Nakabayashi Received: 23 February 2015 / Accepted: 30 April 2015 / Published: 8 May 2015 Abstract: Canna indica Linn. (Cannaceae), is used both as medicine and food. Traditionally, various parts of C. indica are exploited to treat blood pressure, dropsy, fever, inflammatory diseases etc. However, till date there is no reliable micropropagation protocol for C. indica. We present here a regeneration technique of C. indica with banana micropropagation medium (BM). BM supplemented with 3% sucrose, 0.7% agar, −1 and 0.17% NH4NO3 and different plant growth regulators like BAP (2 mg·L ) and NAA (0.5 mg·L−1) was found to be effective in inducing callus in C. indica. BM with BAP (2 mg·L−1) was ideal for somatic embryogenesis and plantlet regeneration. After a period of 3 months, regenerated plantlets were successfully transferred to the field conditions. Appearance of somaclonal variation among the regenerated plants is a common problem which could be assessed by DNA fingerprinting.
    [Show full text]
  • Risk Assessment Robinia Pseudoacacia L
    Risk assessment Robinia pseudoacacia L. Naamloos-2 1 15-03-13 08:10 © Naturalis Biodiversity Center, Leiden March 2013 Naamloos-2 2 15-03-13 08:10 Risk assessment Robinia pseudoacacia L. E. Boer March 2012 Naamloos-2 1 15-03-13 08:10 Naamloos-2 2 15-03-13 08:10 Table of contents 1. Introduction — 5 2. Robinia pseudoacacia: description, ecology and history — 6 2.1. Description — 6 2.2. Ecology — 6 3. Risk assessment — 8 3.1. Entry — 8 3.2. Establishment — 8 3.3. Spread — 8 3.4. Endangered areas — 9 3.5. Impact — 10 3.5.1. Ecological impact — 10 3.5.2. Economic impact — 10 3.5.3. Social impact — 11 4. Risk management — 12 4.1. Prevention of deliberate planting — 12 4.2. Prevention of dispersal — 12 4.3. Eradication and control — 12 4.4. Conclusions — 13 5. References — 14 Annex 1 Risk assessment scores using the ISEIA protocol — 16 This report was commissioned by the Invasive Alien Species Team of the Netherlands Food and Consumer Product Safety Authority. Table of contents 3 Naamloos-2 3 15-03-13 08:10 4 Risk assessment Robinia pseudoacacia L. Naamloos-2 4 15-03-13 08:10 1. Introduction Exotic, invasive plant species have a negative impact on biodiversity, economy and/or public health. For this reason the Invasive Alien Species Team of the Netherlands Food and Consumer Product Safety Authority has requested a risk assessment for Robinia pseudoacacia. The current risk assessment will focus on the situation in the Netherlands and discuss the following subjects: • Probability of entry • Probability of establishment in the Netherlands • Probability of spread • Identification of endangered areas based on the results of the three previous subjects • Impact of Robinia pseudoacacia in respect to ecological, economical and public health aspects • Management options to eradicate the species • Management options to control further spread and reduce impact.
    [Show full text]