Wheeler, Tiomno E a Fısica Brasileira

Total Page:16

File Type:pdf, Size:1020Kb

Wheeler, Tiomno E a Fısica Brasileira 426 Jos´e Maria Filardo Bassalo e Olival Freire Junior Wheeler, Tiomno e a F´ısica Brasileira (Wheeler, Tiomno, and Brazilian Physics) Jos´e Maria Filardo Bassalo∗ Departamento de F´ısica da UFPA, 66075-900, Bel´em, Par´a, Brasil Olival Freire Junior† Instituto de F´ısica da UFBA, 40210-340, Salvador, BA, Brasil Recebido em 01 Outubro, 2003. Aceito em 31 de outubro, 2003. Este artigo examina as relac¸˜oes do f´ısico norte-americano John Archibald Wheeler com o f´ısico brasileiro Jayme Tiomno. A imagem de Tiomno como um dos f´ısicos te´oricos mais brilhantes de sua gerac¸˜ao emerge amplifi- cada; mas fica claro, tamb´em, que os preju´ızos causados pelo regime militar (1964-1985) ao desenvolvimento da ciˆencia brasileira foram ainda maiores do que os que usualmente se reconhece. This paper analyzes the relationships between the American physicist, John Archibald Wheeler, and the Brazil- ian physicist Jayme Tiomno. It enlarges Tiomno’s image as one of the most gifted theoretical physicist of his generation and it reveals that the losses of the Brazilian science, due to the military government (1964-1985), were more meaningful than what one usually admits. 1 Introduc¸ao˜ reconhecemos. I always think of Tiomno as one of the most unappreciated of physicists. His work on muon decay and capture in 1947-1949 was pathbreaking and would 2 Wheeler: uma vida entre still merit recognition by some suitable award. J. A. Wheeler, 1998. part´ıculas, campos e informac¸ao˜ Wheeler nasceu em Jacksonville, Fl´orida, no dia 9 de julho Neste artigo, examinaremos as relac¸˜oes do f´ısico norte- de 1911. Ao entrar na Universidade Johns Hopkins, em americano John Archibald Wheeler com o f´ısico brasileiro 1927, seu interesse inicial foi em Engenharia em virtude de Jayme Tiomno, e com a F´ısica brasileira, tendo como pano suas leituras em livros sobre Ciˆencia e Tecnologia. Contudo, de fundo uma apresentac¸˜ao das principais id´eias e conceitos ao folhear livros de Engenharia na Biblioteca dessa Univer- f´ısicos formulados por Wheeler ao longo de sua carreira sidade deparou-se com exemplares da Zeitschrift fur¨ Physik de pesquisador. Tomamos como ponto de partida a auto- que tratavam da recente Mecˆanica Quˆantica e sua aplicac¸˜ao biografia de Wheeler, a qual nos fornece um panorama de ao comportamento de el´etrons atˆomicos. As discuss˜oes que sua trajet´oria intelectual,[1] marcada por uma permanente teve com seus professores norte-americanos, o de Qu´ımica inconformidade com as id´eias j´a estabelecidas na ciˆencia, H. M. Smallwood, e os de F´ısica John C. Hubbard e seu al´em de um interessante quadro da F´ısica e de seu contexto, assistente R. Bowling Brown, sobre o que estudara daquela ao longo de um vasto per´ıodo entre 1930 e 1990. O livro Mecˆanica fizeram-lhe decidir ser um f´ısico. Assim, passou revela tamb´em um fragmento da hist´oria da f´ısica brasileira, para o Departamento de F´ısica da Universidade Johns Hop- com um expressivo depoimento a prop´osito da carreira kins e, em 1933, recebeu o t´ıtulo de Doutor em F´ısica, tendo cient´ıfica de Tiomno. A consulta aos arquivos pessoais de of´ısico austr´ıaco Karl Ferdinand Herzfeld como orientador. Wheeler permite ampliar significativamente a informac¸˜ao Entre 1933 e 1935, trabalhou com o f´ısico norte-americano sobre as relac¸˜oes entre Wheeler e a F´ısica brasileira, e sug- Gregory Breit na Universidade de Nova York e com o f´ısico ere uma interessante reflex˜ao tanto sobre a pujanc¸a intelec- dinamarquˆes Niels Henrik David Bohr [Prˆemio Nobel de tual quanto sobre as vicissitudes caracter´ısticas da nossa F´ısica (PNF), 1922] em Copenhague, na Dinamarca. Em ciˆencia.[2] A imagem de Tiomno como um dos f´ısicos 1935, assumiu o cargo de Professor Assistente na Univer- te´oricos mais brilhantes de sua gerac¸˜ao emerge amplificada sidade de Carolina do Norte ao aceitar o convite do f´ısico desse estudo; mas fica claro, tamb´em, que os preju´ızos cau- norte-americano Arthur E. Ruark. Transferiu-se para a Uni- sados pelo regime militar ao desenvolvimento da ciˆencia versidade de Princeton, em 1938, na qual ficou at´e 1976, brasileira foram ainda maiores do que os que usualmente depois de ser Joseph Henry Professor nosultimos ´ dez anos. ∗[email protected][email protected] Revista Brasileira de Ensino de F´ısica, Vol. 25, no. 4, Dezembro, 2003 427 Neste ano, mudou-se para Austin, no Texas, aceitando a pro- raios c´osmicos eram constitu´ıdos de dois tipos de part´ıculas: posta do f´ısico indiano-norte-americano Ennackel Chandy os m´esons prim´arios (hoje, p´ıons) e os m´esons secund´arios George Sudarshan para ser professor na Universidade do (hoje, m´uons). Imediatamente Wheeler interessou-se pelos Texas, em Austin. Nesta, assumiu em 1979 a Cadeira de m´uons, principalmente pelo seu decaimento e pela sua cap- F´ısica Ashbel Smith e, em 1981, tornou-se Blumberg Profes- tura por n´ucleos atˆomicos. Por outro lado, Tiomno assistira sor. Aposentou-se em 1986. Registre-se que, em 1968, ele no Brasil, ainda em 1947, a uma conferˆencia que Lattes pro- ganhou o Premioˆ Fermi,daComiss˜ao de Energia Atˆomica ferira sobre aquela famosa descoberta da qual participara. Americana, em 1982, foi agraciado com a Niels Bohr Inter- Como Wheeler, Tiomno logo se interessou pelos m´uons. national Gold Medal, e em 1997, recebeu o Premioˆ Wolf. Nessa ocasi˜ao, veio-lhe a id´eia de que os m´uons tamb´em Em sua recente autobiografia, Wheeler divide sua car- poderiam sofrer uma forc¸a do tipo-Fermi. Registre-se que, reira cient´ıfica em trˆes fases, assim por ele denominadas: em 1934, o f´ısico italiano Enrico Fermi (PNF, 1938) havia Everything Is Particles (“Tudo EPart´´ ıculas”); Everything proposto que o decaimento beta (transformac¸˜ao do nˆeutron Is Fields (“Tudo E´ Campos”); Everything Is Information em pr´oton, com a emiss˜ao de el´etron e neutrino) era devido (“Tudo E´ Informac¸˜ao”). Na primeira delas, que vai desde a uma nova forc¸a na Natureza, a forc¸a (interac¸˜ao) fraca. ocomec¸o de sua carreira cient´ıfica at´e 1952, ele desen- Com a bolsa de estudos Buenos Aires Convention, con- volveu a tese de que todas as part´ıculas at´eent˜ao conheci- cedida pelo United States Office of Education, dos Esta- das poderiam ser constitu´ıdas a partir da junc¸˜ao do el´etron dos Unidos da Am´erica, Tiomno foi para a Universidade de edesuaantipart´ıcula, o p´ositron, junc¸˜ao essa que seria me- Princeton, em 1948, realizar estudos de p´os-graduac¸˜ao com diada pelo f´oton, segundo preconizava a Teoria Quˆantica da Wheeler. Ao buscar Princeton para concluir sua formac¸˜ao Radiac¸˜ao, formulada pelo f´ısico inglˆes Paul Adrien Maurice em F´ısica Te´orica, Tiomno seguia uma trilha aberta por Dirac (PNF, 1933), em 1927. Esse bi-el´etron, como ele o de- Schenberg, que ali estivera em 1940, com uma bolsa da nominou, que tamb´em fora concebido, de maneira indepen- Fundac¸˜ao Guggenheim, e Leite Lopes, que ali se doutorara dente, por Ruark e pelo f´ısico russo Lev Davidovich Lan- sob a orientac¸˜ao do f´ısico austro-su´ıc¸o Wolfgang Pauli Ju- dau (PNF, 1962), foi pela primeira vez observado pelo f´ısico nior (PNF, 1945). Wheeler era ent˜ao um dos mais presti- norte-americano Martin Deutsch, no Massachusetts Institute giados f´ısicos te´oricos norte-americanos.[7] Conforme de- of Technology (MIT), em 1951, ee ´ hoje conhecido como poimento da f´ısica brasileira Elisa Frota-Pessoa, mulher positrˆonio.[3] Para evitar que o seu bi-el´etron fosse inst´avel, de Tiomno, Wheeler costuma afirmar que os trˆes estu- Wheeler foi levado a admitir uma ac¸˜aoadistˆ ` ancia, em um dantes com os quais trabalhou mais arduamente foram Feyn- mundo sem f´otons e formado somente de part´ıculas. Es- man, Tiomno e o f´ısico norte-americano Robert Eugene sas id´eias foram desenvolvidas com a colaborac¸˜ao do ent˜ao Marshak.[8] Inicialmente, comec¸aram a trabalhar em Rela- jovem e talentoso f´ısico norte-americano Richard Phillips tividade Geral. Contudo, como ambos j´ahaviampensado Feynman (PNF, 1965),[4] na primeira metade da d´ecada de no decaimento dos m´uons, passaram ent˜ao a analisar esse 1940, e foram publicadas na Physical Review 59, p. 683, tipo de decaimento. Assim, juntos, desenvolveram a tese de em 1941, e na Reviews of Modern Physics (RMP) 17,p. atribuir spin 1/2 ao m´uon, inicialmente apresentada no Cen- 157, em 1945, e 21, p. 425, em 1949. Nesses trabal- tennial Meeting of the American Association for Advance- hos, a Eletrodinˆamicae ´ formalizada, por interm´edio de um ment of Science, realizado em Washington, DC, no dia 15 Princ´ıpio de M´ınima Ac¸˜ao, em termos de part´ıculas agindo de setembro de 1948, e desenvolvida nos artigos publicados adistˆancia sem a necessidade do campo eletromagn´etico no Reviews of Modern Physics 21, pgs. 144 e 153, em 1949. (f´oton) intermediante.[5] Segundo Wheeler, essa tese foi sugerida por Tiomno, sob a forma de um triˆangulo, cujos v´ertices eram constitu´ıdos dos n´ucleons [pr´oton (p) enˆeutron (n)], do el´etron (e−) e 3 Wheeler e a F´ısica Brasileira de seu companheiro neutrino (hoje, νe),dom´uon (µ) ede seu prov´avel companheiro, a part´ıcula leve e neutra ν0 (hoje, Foi nessa primeira fase que se iniciou a relac¸˜ao de Wheeler νµ) .
Recommended publications
  • Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us About the Role of Providence in Nature 247 Bruce L
    Journal of Biblical and Theological Studies JBTSVOLUME 2 | ISSUE 2 Christianity and the Philosophy of Science Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature 247 Bruce L. Gordon [JBTS 2.2 (2017): 247-298] Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature1 BRUCE L. GORDON Bruce L. Gordon is Associate Professor of the History and Philosophy of Science at Houston Baptist University and a Senior Fellow of Discovery Institute’s Center for Science and Culture Abstract: Modern science has revealed a world far more exotic and wonder- provoking than our wildest imaginings could have anticipated. It is the purpose of this essay to introduce the reader to the empirical discoveries and scientific concepts that limn our understanding of how reality is structured and interconnected—from the incomprehensibly large to the inconceivably small—and to draw out the metaphysical implications of this picture. What is unveiled is a universe in which Mind plays an indispensable role: from the uncanny life-giving precision inscribed in its initial conditions, mathematical regularities, and natural constants in the distant past, to its material insubstantiality and absolute dependence on transcendent causation for causal closure and phenomenological coherence in the present, the reality we inhabit is one in which divine action is before all things, in all things, and constitutes the very basis on which all things hold together (Colossians 1:17). §1. Introduction: The Intelligible Cosmos For science to be possible there has to be order present in nature and it has to be discoverable by the human mind.
    [Show full text]
  • The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 4, October 2016, Pages 513–554 http://dx.doi.org/10.1090/bull/1544 Article electronically published on August 2, 2016 THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE: 100 YEARS OF DEVELOPMENT OF MATHEMATICAL THEORY, DETECTORS, NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI In memory of Sergio Dain Abstract. On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein’s prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detec- tion of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole bina- ries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science.
    [Show full text]
  • Marcel Grossmann Awards
    MG15 MARCEL GROSSMANN AWARDS ROME 2018 ICRANet and ICRA MG XV MARCEL GROSSMANN AWARDS ROME 2018 and TEST The 15th Marcel Grossmann Meeting – MG XV 2nd July 2018, Rome (Italy) Aula Magna – University “Sapienza” of Rome Institutional Awards Goes to: PLANCK SCIENTIFIC COLLABORATION (ESA) “for obtaining important constraints on the models of inflationary stage of the Universe and level of primordial non-Gaussianity; measuring with unprecedented sensitivity gravitational lensing of Cosmic Microwave Background fluctuations by large-scale structure of the Universe and corresponding B- polarization of CMB, the imprint on the CMB of hot gas in galaxy clusters; getting unique information about the time of reionization of our Universe and distribution and properties of the dust and magnetic fields in our Galaxy” - presented to Jean-Loup Puget, the Principal Investigator of the High Frequency Instrument (HFI) HANSEN EXPERIMENTAL PHYSICS LABORATORY AT STANFORD UNIVERSITY “to HEPL for having developed interdepartmental activities at Stanford University at the frontier of fundamental physics, astrophysics and technology” - presented to Research Professor Leo Hollberg, HEPL Assistant Director Individual Awards Goes to LYMAN PAGE “for his collaboration with David Wilkinson in realizing the NASA Explorer WMAP mission and as founding director of the Atacama Cosmology Telescope” Goes to RASHID ALIEVICH SUNYAEV “for the development of theoretical tools in the scrutinising, through the CMB, of the first observable electromagnetic appearance of our Universe” Goes to SHING-TUNG YAU “for the proof of the positivity of total mass in the theory of general relativity and perfecting as well the concept of quasi-local mass, for his proof of the Calabi conjecture, for his continuous inspiring role in the study of black holes physics” Each recipient is presented with a silver casting of the TEST sculpture by the artist A.
    [Show full text]
  • Physics Newsletter 2019
    Harvard University Department of Physics Newsletter FALL 2019 A Microscopic Look At Quantum Materials it takes many physicists to solve quantum many-body problems CONTENTS Letter from the Chair ............................................................................................................1 Letter from the Chair ON THE COVER: An experiment-theory collaboration PHYSICS DEPARTMENT HIGHLIGHTS at Harvard investigates possible Letters from our Readers.. ..................................................................................................2 Dear friends of Harvard Physics, While Prof. Prentiss has been in our department since 1991 (she was theories for how quantum spins (red the second female physicist to be awarded tenure at Harvard), our and blue spheres) in a periodic The sixth issue of our annual Faculty Promotion ............................................................................................................... 3 next article features a faculty member who joined our department potential landscape interact with one Physics Newsletter is here! In Memoriam ........................................................................................................................ 4 only two years ago, Professor Roxanne Guenette (pp. 22-26). another to give rise to intriguing and Please peruse it to find out about potentially useful emergent Current Progress in Mathematical Physics: the comings and goings in our On page 27, Clare Ploucha offers a brief introduction to the Harvard phenomena. This is an artist’s
    [Show full text]
  • Chapter 1 Chapter 2 Chapter 3
    Notes CHAPTER 1 1. Herbert Westren Turnbull, The Great Mathematicians in The World of Mathematics. James R. Newrnan, ed. New York: Sirnon & Schuster, 1956. 2. Will Durant, The Story of Philosophy. New York: Sirnon & Schuster, 1961, p. 41. 3. lbid., p. 44. 4. G. E. L. Owen, "Aristotle," Dictionary of Scientific Biography. New York: Char1es Scribner's Sons, Vol. 1, 1970, p. 250. 5. Durant, op. cit., p. 44. 6. Owen, op. cit., p. 251. 7. Durant, op. cit., p. 53. CHAPTER 2 1. Williarn H. Stahl, '' Aristarchus of Samos,'' Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 1, 1970, p. 246. 2. Jbid., p. 247. 3. G. J. Toorner, "Ptolerny," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 11, 1975, p. 187. CHAPTER 3 1. Stephen F. Mason, A History of the Sciences. New York: Abelard-Schurnan Ltd., 1962, p. 127. 2. Edward Rosen, "Nicolaus Copernicus," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 3, 1971, pp. 401-402. 3. Mason, op. cit., p. 128. 4. Rosen, op. cit., p. 403. 391 392 NOTES 5. David Pingree, "Tycho Brahe," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 2, 1970, p. 401. 6. lbid.. p. 402. 7. Jbid., pp. 402-403. 8. lbid., p. 413. 9. Owen Gingerich, "Johannes Kepler," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 7, 1970, p. 289. 10. lbid.• p. 290. 11. Mason, op. cit., p. 135. 12. Jbid .. p. 136. 13. Gingerich, op. cit., p. 305. CHAPTER 4 1.
    [Show full text]
  • Muonium Gravity Seminar Wichita-6-17
    Antimatter Gravity MICE-U.S. Plans withDaniel Muons M. Kaplan US Spokesperson, MICE Collaboration Daniel M. Kaplan Physics Seminar WichitaMuTAC State Review Univ. June Fermilab16, 2017 16–17 March, 2006 Outline • Dramatis Personae • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Required R&D • Conclusions Our story’s a bit complicated, so please bear with me! ...and stop me if you have a question! D. M. Kaplan, IIT An#ma&er Gravity Seminar 2/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae Baryons & antibaryons : p== uud & p uud ΛΛ==uds & uds ... Mesons : K00== ds & K ds B00== db & B db B+ == ub & B− ub ... ∓ ∓ ∓ Leptons : e , µ , τ , ν’s D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae “Imperfect mirror” Baryons & antibaryons : Antip== uud & p uud ΛΛ==uds & uds ... Mesons : Anti K00== ds & K ds B00== db & B db Anti B+ == ub & B− ub ... Antimatter Leptons : e∓, µ∓, τ∓, ν’s • And, don’t forget: antimatter and matter annihilate on contact D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Outline • Dramatis Personae ➡ • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Muonium Gravity Experiment • Required R&D • Conclusions D. M. Kaplan, IIT An#ma&er Gravity Seminar 4/41 Our story begins with..
    [Show full text]
  • Works of Love
    reader.ad section 9/21/05 12:38 PM Page 2 AMAZING LIGHT: Visions for Discovery AN INTERNATIONAL SYMPOSIUM IN HONOR OF THE 90TH BIRTHDAY YEAR OF CHARLES TOWNES October 6-8, 2005 — University of California, Berkeley Amazing Light Symposium and Gala Celebration c/o Metanexus Institute 3624 Market Street, Suite 301, Philadelphia, PA 19104 215.789.2200, [email protected] www.foundationalquestions.net/townes Saturday, October 8, 2005 We explore. What path to explore is important, as well as what we notice along the path. And there are always unturned stones along even well-trod paths. Discovery awaits those who spot and take the trouble to turn the stones. -- Charles H. Townes Table of Contents Table of Contents.............................................................................................................. 3 Welcome Letter................................................................................................................. 5 Conference Supporters and Organizers ............................................................................ 7 Sponsors.......................................................................................................................... 13 Program Agenda ............................................................................................................. 29 Amazing Light Young Scholars Competition................................................................. 37 Amazing Light Laser Challenge Website Competition.................................................. 41 Foundational
    [Show full text]
  • Os Físicos Brasileiros E Os Prêmios Nobel De Física (PNF) De 1957, 1979, 1980, 1984 E 1988
    SEARA DA CIÊNCIA CURIOSIDADES DA FÍSICA José Maria Bassalo Os Físicos Brasileiros e os Prêmios Nobel de Física (PNF) de 1957, 1979, 1980, 1984 e 1988. O PNF de 1957 foi concedido aos físicos sino-norte-americanos Chen Ning Yang (n.1922) e Tsung- Dao Lee (n.1926) pela descoberta da quebra da paridade nas interações fracas. O PNF de 1979, foi outorgado aos físicos, os norte-americanos Steven Weinberg (n.1933) e Sheldon Lee Glashow (n.1932) e o paquistanês Abdus Salam (1926-1996) pelo desenvolvimento da Teoria Eletrofraca que unificou as interações eletromagnética e fraca. O PNF de 1980 foi atribuído aos físicos norte- americanos James Watson Cronin (n.1931) e Val Logsdon Fitch (n.1923) pela descoberta da violação da simetria carga-paridade (CP). O PNF de 1984 foi recebido pelo físico italiano Carlo Rubbia (n.1934) e pelo engenheiro e físico holandês Simon van der Meer (n.1925) pela descoberta das partículas mediadoras da interação fraca. E o PNF de 1988, foi partilhado pelos físicos norte-americanos Leon Max Lederman (n.1922), Melvin Schwartz (1932-2006) e Jack Steinberger (n.1921) (de origem alemã) por desenvolverem o método de feixes de neutrinos e pela conseqüente descoberta do neutrino do múon ( ). Neste verbete, vou destacar os trabalhos de físicos estrangeiros e brasileiros que se relacionaram, diretamente ou indiretamente, com esses Prêmios. Em verbetes desta série, vimos como ocorreu a descoberta e a explicação do fenômeno físico chamado de radioatividade. Como essa explicação é importante para entender o significado do PNF/1957, façamos um pequeno resumo dessa explicação, principalmente a da “radioatividade beta ( )”.
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]
  • Adobe Acrobat PDF Document
    BIOGRAPHICAL SKETCH of HUGH EVERETT, III. Eugene Shikhovtsev ul. Dzerjinskogo 11-16, Kostroma, 156005, Russia [email protected] ©2003 Eugene B. Shikhovtsev and Kenneth W. Ford. All rights reserved. Sources used for this biographical sketch include papers of Hugh Everett, III stored in the Niels Bohr Library of the American Institute of Physics; Graduate Alumni Files in Seeley G. Mudd Manuscript Library, Princeton University; personal correspondence of the author; and information found on the Internet. The author is deeply indebted to Kenneth Ford for great assistance in polishing (often rewriting!) the English and for valuable editorial remarks and additions. If you want to get an interesting perspective do not think of Hugh as a traditional 20th century physicist but more of a Renaissance man with interests and skills in many different areas. He was smart and lots of things interested him and he brought the same general conceptual methodology to solve them. The subject matter was not so important as the solution ideas. Donald Reisler [1] Someone once noted that Hugh Everett should have been declared a “national resource,” and given all the time and resources he needed to develop new theories. Joseph George Caldwell [1a] This material may be freely used for personal or educational purposes provided acknowledgement is given to Eugene B. Shikhovtsev, author ([email protected]), and Kenneth W. Ford, editor ([email protected]). To request permission for other uses, contact the author or editor. CONTENTS 1 Family and Childhood Einstein letter (1943) Catholic University of America in Washington (1950-1953). Chemical engineering. Princeton University (1953-1956).
    [Show full text]
  • On Photon Spheres and 2+1 Dimensional General Relativity
    EBERHARD KARLS UNIVERSITAT¨ TUBINGEN¨ MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTAT¨ BACHELORARBEIT DER MATHEMATIK On photon spheres and 2+1 dimensional General Relativity von Oliver Schon¨ betreut durch JProf. Dr. Carla CEDERBAUM Tubingen,¨ 3. Oktober 2017 Eigenstandigkeitserkl¨ arung¨ Ich erklare¨ hiermit, dass ich meine Bachelorarbeit selbststandig¨ und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe und dass ich alle Stellen, die ich wortlich¨ oder sinngemaߨ aus Veroffentlichungen¨ entnommen habe, als solche kenntlich gemacht habe. Tubingen,¨ den 3. Oktober 2017 Oliver Schon¨ Contents Abstract4 1 Mathematical setup5 1.1 Manifolds and tensors.............................5 1.2 Spacetime, connection and the Christoffel symbols.............9 1.3 Geodesics................................... 13 1.4 Curvature and Einstein equations....................... 15 1.5 Asymptotic flatness and mass......................... 18 1.6 Submanifolds................................. 22 1.7 Conformal geometry............................. 24 1.8 The Schwarzschild solution.......................... 25 2 Photon surfaces and spheres 27 2.1 Basic definitions and properties........................ 27 2.2 Photon sphere in Schwarzschild....................... 31 2.2.1 A physical approach......................... 31 2.2.2 A mathematical approach...................... 33 2.3 Uniqueness of photon spheres........................ 36 3 Schwarzschild in (2+1) dimensions 41 3.1 Pseudo-Schwarzschild spacetime....................... 41 3.2 Submanifolds in Pseudo-Schwarzschild................... 48 3.3 Construction with Pseudo-Schwarzschild.................. 52 Bibliography 57 3 Abstract In a recent paper C. Cederbaum and G. Galloway established a uniqueness result of photon spheres in four dimensional static vacuum asymptotically flat spacetimes by adapting Bunting and Masood-ul Alam’s proof of static black hole uniqueness. In this work, we1 present all concepts necessary to understand this proof as well as give a of the proof itself.
    [Show full text]
  • The Federal Government: a Nobel Profession
    The Federal Government: A Nobel Profession A Report on Pathbreaking Nobel Laureates in Government 1901 - 2002 INTRODUCTION The Nobel Prize is synonymous with greatness. A list of Nobel Prize winners offers a quick register of the world’s best and brightest, whose accomplishments in literature, economics, medicine, science and peace have enriched the lives of millions. Over the past century, 270 Americans have received the Nobel Prize for innovation and ingenuity. Approximately one-fourth of these distinguished individuals are, or were, federal employees. Their Nobel contributions have resulted in the eradication of polio, the mapping of the human genome, the harnessing of atomic energy, the achievement of peace between nations, and advances in medicine that not only prolong our lives, but “This report should serve improve their quality. as an inspiration and a During Public Employees Recognition Week (May 4-10, 2003), in an effort to recognize and honor the reminder to us all of the ideas and accomplishments of federal workers past and present, the Partnership for Public Service offers innovation and nobility of this report highlighting 50 American Nobel laureates the work civil servants do whose award-winning achievements occurred while they served in government or whose public service every day and its far- work had an impact on their career achievements. They were honored for their contributions in the fields reaching impact.” of Physiology or Medicine, Economic Sciences, and Physics and Chemistry. Also included are five Americans whose work merited the Peace Prize. Despite this legacy of accomplishment, too few Americans see the federal government as an incubator for innovation and discovery.
    [Show full text]