Geometric Relativity

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Relativity GRADUATE STUDIES IN MATHEMATICS 201 Geometric Relativity Dan A. Lee 10.1090/gsm/201 Geometric Relativity GRADUATE STUDIES IN MATHEMATICS 201 Geometric Relativity Dan A. Lee EDITORIAL COMMITTEE Daniel S. Freed (Chair) Bjorn Poonen Gigliola Staffilani Jeff A. Viaclovsky 2010 Mathematics Subject Classification. Primary 53-01, 53C20, 53C21, 53C24, 53C27, 53C44, 53C50, 53C80, 83C05, 83C57. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-201 Library of Congress Cataloging-in-Publication Data Names: Lee, Dan A., 1978- author. Title: Geometric relativity / Dan A. Lee. Description: Providence, Rhode Island : American Mathematical Society, [2019] | Series: Gradu- ate studies in mathematics ; volume 201 | Includes bibliographical references and index. Identifiers: LCCN 2019019111 | ISBN 9781470450816 (alk. paper) Subjects: LCSH: General relativity (Physics)–Mathematics. | Geometry, Riemannian. | Differ- ential equations, Partial. | AMS: Differential geometry – Instructional exposition (textbooks, tutorial papers, etc.). msc | Differential geometry – Global differential geometry – Global Riemannian geometry, including pinching. msc | Differential geometry – Global differential geometry – Methods of Riemannian geometry, including PDE methods; curvature restrictions. msc | Differential geometry – Global differential geometry – Rigidity results. msc — Differential geometry – Global differential geometry – Spin and Spin. msc | Differential geometry – Global differential geometry – Geometric evolution equations (mean curvature flow, Ricci flow, etc.). msc | Differential geometry – Global differential geometry – Lorentz manifolds, manifolds with indefinite metrics. msc | Differential geometry – Global differential geometry – Applications to physics. msc | Relativity and gravitational theory – General relativity – Einstein’s equations (general structure, canonical formalism, Cauchy problems). msc | Relativity and gravitational theory – General relativity – Black holes. msc Classification: LCC QC173.6 .L44 2019 | DDC 530.1101/516373–dc23 LC record available at https://lccn.loc.gov/2019019111 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions. Send requests for translation rights and licensed reprints to [email protected]. c 2019 by the author. All rights reserved. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at https://www.ams.org/ 10987654321 242322212019 For my parents, Rupert and Gloria Lee Contents Preface ix Part 1. Riemannian geometry Chapter 1. Scalar curvature 3 §1.1. Notation and review of Riemannian geometry 3 §1.2. A survey of scalar curvature results 17 Chapter 2. Minimal hypersurfaces 23 §2.1. Basic definitions and the Gauss-Codazzi equations 23 §2.2. First and second variation of volume 26 §2.3. Minimizing hypersurfaces and positive scalar curvature 38 §2.4. More scalar curvature rigidity theorems 54 Chapter 3. The Riemannian positive mass theorem 63 §3.1. Background 63 §3.2. Special cases of the positive mass theorem 76 §3.3. Reduction to Theorem 1.30 86 §3.4. A few words on Ricci flow 104 Chapter 4. The Riemannian Penrose inequality 107 §4.1. Riemannian apparent horizons 107 §4.2. Inverse mean curvature flow 121 §4.3. Bray’s conformal flow 142 Chapter 5. Spin geometry 159 vii viii Contents §5.1. Background 159 §5.2. The Dirac operator 166 §5.3. Witten’s proof of the positive mass theorem 169 §5.4. Related results 175 Chapter 6. Quasi-local mass 181 §6.1. Bartnik mass and static metrics 181 §6.2. Bartnik minimizers 187 §6.3. Brown-York mass 193 §6.4. Bartnik data with η = 0 199 Part 2. Initial data sets Chapter 7. Introduction to general relativity 207 §7.1. Spacetime geometry 207 §7.2. The Einstein field equations 214 §7.3. The Einstein constraint equations 221 §7.4. Black holes and Penrose incompleteness 228 §7.5. Marginally outer trapped surfaces 240 §7.6. The Penrose inequality 249 Chapter 8. The spacetime positive mass theorem 255 §8.1. Proof for n<8 256 §8.2. Spacetime positive mass rigidity 275 §8.3. Proof for spin manifolds 275 Chapter 9. Density theorems for the constraint equations 285 §9.1. The constraint operator 285 §9.2. The density theorem for vacuum constraints 292 §9.3. The density theorem for DEC (Theorem 8.3) 295 Appendix A. Some facts about second-order linear elliptic operators 301 §A.1. Basics 301 §A.2. Weighted spaces on asymptotically flat manifolds 318 §A.3. Inverse function theorem and Lagrange multipliers 337 Bibliography 343 Index 359 Preface The mathematical study of general relativity is a large and active field. This book is an attempt to introduce students to just one part of this field. Specifically, as the title suggests, this book deals primarily with problems in general relativity that are essentially geometric in character, meaning that they can be attacked using the methods of Riemannian geometry and partial differential equations. However, since there are still so many topics that match this description, we have chosen to further narrow the focus of this book to the following concept. This book is primarily about the positive mass theorem and the various ideas that surround it and have grown from it. It is about understanding the interplay between mass, scalar curvature, minimal surfaces, and related concepts. Many geometric problems in general relativity specialize to problems in pure Riemannian geometry. The most famous of these is the positive mass theorem, first proved by Richard Schoen and Shing-Tung Yau in 1979 [SY79c, SY81a], and later by Edward Witten using an unrelated method [Wit81]. Around two decades later, Gerhard Huisken and Tom Ilma- nen proved a generalization of the positive mass theorem called the Pen- rose inequality [HI01], which was later proved using a different approach by Hubert Bray [Bra01]. The goal of this book is to explain the back- ground context and proofs of all of these theorems, while introducing var- ious related concepts along the way. Unfortunately, there are many topics and results that would fit together nicely with the material in this book, and an argument could certainly be made that they belong in this book, but for one reason or another, we had to leave them out. At the top of the wish list for topics we would have liked to include are: a thorough discussion of the Jang equation as in [SY81b, Eic13, Eic09, AM09], a ix x Preface complete proof of the rigidity of the spacetime positive mass theorem as in [BC96, HL17] (see Section 8.2), compactly supported scalar curvature deformations as in [Cor00, CS06, Cor17] (see Theorems 3.51 and 6.14), and a tour of constant mean curvature foliations and their relationship to center of mass [HY96, QT07, Hua09, EM13]. The main prerequisite for this book is a working understanding of Riemannian geometry (from books such as [Cha06, dC92, Jos11, Lee97, Pet16, Spi79]) and basic knowledge of elliptic linear partial differential equations, especially Sobolev spaces (various parts of [Eva10,GT01,Jos13]). Certain facts from partial differential equations are recalled in the Appendix, with special attention given to the topics which are the least “standard”— most notably the theory of weighted spaces on asymptotically flat manifolds. A modest amount of knowledge of algebraic topology is assumed (at the level of a typical one-year graduate course such as [Hat02,Bre97]) and will typ- ically only be used on a superficial level. No knowledge of physics at all is required. In fact, the book has been structured in such a way that Part 1 contains almost no physics. Although the Riemannian positive mass theo- rem was originally motivated by physical considerations, it is the author’s conviction that it eventually would have been discovered for purely mathe- matical reasons. Part 2 includes a short crash course in general relativity, but again, only the most shallow understanding of physics is involved. Despite the level of prerequisites, this book is still, unfortunately, not self-contained. We will typically skip arguments that rely on a large body of specialized knowledge (e.g., geometric measure theory). More generally, there are many places in the book where we only give sketches of proofs. This is sometimes because the results draw upon a wide variety of facts in geometric analysis, and it is not realistic to include all relevant background material. In other cases, it is because our goal is less to give a complete proof than to give the reader a guide for how to understand those proofs. For example, we avoid the most technical details in the two proofs of the Penrose inequality in Chapter 4, partly because the author has little to offer in terms of improved exposition of those details. The interested reader can and should consult the original papers [HI01, Bra01, BL09]. Since this book is intended to be an introduction to
Recommended publications
  • Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us About the Role of Providence in Nature 247 Bruce L
    Journal of Biblical and Theological Studies JBTSVOLUME 2 | ISSUE 2 Christianity and the Philosophy of Science Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature 247 Bruce L. Gordon [JBTS 2.2 (2017): 247-298] Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature1 BRUCE L. GORDON Bruce L. Gordon is Associate Professor of the History and Philosophy of Science at Houston Baptist University and a Senior Fellow of Discovery Institute’s Center for Science and Culture Abstract: Modern science has revealed a world far more exotic and wonder- provoking than our wildest imaginings could have anticipated. It is the purpose of this essay to introduce the reader to the empirical discoveries and scientific concepts that limn our understanding of how reality is structured and interconnected—from the incomprehensibly large to the inconceivably small—and to draw out the metaphysical implications of this picture. What is unveiled is a universe in which Mind plays an indispensable role: from the uncanny life-giving precision inscribed in its initial conditions, mathematical regularities, and natural constants in the distant past, to its material insubstantiality and absolute dependence on transcendent causation for causal closure and phenomenological coherence in the present, the reality we inhabit is one in which divine action is before all things, in all things, and constitutes the very basis on which all things hold together (Colossians 1:17). §1. Introduction: The Intelligible Cosmos For science to be possible there has to be order present in nature and it has to be discoverable by the human mind.
    [Show full text]
  • Curriculum Vitae Fernando Codá Marques January 16Th, 2019
    Curriculum Vitae Fernando Cod´aMarques January 16th, 2019 Personal information Name: Fernando Cod´aMarques Date of birth: October 8th of 1979 Nationality: Brazilian Address Princeton University Fine Hall, Washington Road Princeton NJ 08544-1000 USA Phone: (609) 258-1769 Fax: (609) 258-1367 Education 2000-2003 Ph.D. in Mathematics Cornell University, C. U., Ithaca/NY USA Thesis Advisor : Jos´eF. Escobar Title : Existence and compactness theorems on conformal deformations of metrics Scholarship from : Conselho Nacional de Desenvolvimento Cient´ıficoe Tecnol´ogico(CNPq) 1998-1999 Mathematics M.S. IMPA, Rio de Janeiro/RJ Brazil Scholarship from : Conselho Nacional de Desenvolvimento Cient´ıficoe Tecnol´ogico(CNPq) 1996-1999 Mathematics B.S. UFAL - Universidade Federal de Alagoas Macei´o,Alagoas - Brazil Employment history 2003-2007 Assistant Professor, IMPA 2007-2010 Associate Professor, IMPA 2010-2014 Professor, IMPA 2014- Professor, Princeton University Visiting Positions 2018 Distinguished Visitor Professor, IAS, Princeton - Special Program 2018-2019: \Variational Methods in Geometry" 2017 Dean's Distinguished Visiting Professor, Fields Institute, Toronto, Canada 2013-2014 Ecole´ Polytechnique, Ecole´ Normale Sup´erieureand Universit´eParis-Est Marne la Vall´ee,Paris, France 2012 Institut Henri Poincar´e,Paris, France (1 month) 2011 Stanford University, USA (2 months) 2011 Institut Fourier, Grenoble, France (1 month) 2010 Stanford University, USA (3 months) 2009 Stanford University, USA (1 month) 2008 Member of the Institute for Advanced
    [Show full text]
  • October 2013
    LONDONLONDON MATHEMATICALMATHEMATICAL SOCIETYSOCIETY NEWSLETTER No. 429 October 2013 Society MeetingsSociety 2013 ELECTIONS voting the deadline for receipt of Meetings TO COUNCIL AND votes is 7 November 2013. and Events Members may like to note that and Events NOMINATING the LMS Election blog, moderated 2013 by the Scrutineers, can be found at: COMMITTEE http://discussions.lms.ac.uk/ Thursday 31 October The LMS 2013 elections will open on elections2013/. Good Practice Scheme 10th October 2013. LMS members Workshop, London will be contacted directly by the Future elections page 15 Electoral Reform Society (ERS), who Members are invited to make sug- Friday 15 November will send out the election material. gestions for nominees for future LMS Graduate Student In advance of this an email will be elections to Council. These should Meeting, London sent by the Society to all members be addressed to Dr Penny Davies 1 page 4 who are registered for electronic who is the Chair of the Nominat- communication informing them ing Committee (nominations@lms. Friday 15 November that they can expect to shortly re- ac.uk). Members may also make LMS AGM, London ceive some election correspondence direct nominations: details will be page 5 from the ERS. published in the April 2014 News- Monday 16 December Those not registered to receive letter or are available from Duncan SW & South Wales email correspondence will receive Turton at the LMS (duncan.turton@ Regional Meeting, all communications in paper for- lms.ac.uk). Swansea mat, both from the Society and 18-21 December from the ERS. Members should ANNUAL GENERAL LMS Prospects in check their post/email regularly in MEETING Mathematics, Durham October for communications re- page 11 garding the elections.
    [Show full text]
  • Mechanical Aspire
    Newsletter Volume 6, Issue 11, November 2016 Mechanical Aspire Achievements in Sports, Projects, Industry, Research and Education All About Nobel Prize- Part 35 The Breakthrough Prize Inspired by Nobel Prize, there have been many other prizes similar to that, both in amount and in purpose. One such prize is the Breakthrough Prize. The Breakthrough Prize is backed by Facebook chief executive Mark Zuckerberg and Google co-founder Sergey Brin, among others. The Breakthrough Prize was founded by Brin and Anne Wojcicki, who runs genetic testing firm 23andMe, Chinese businessman Jack Ma, and Russian entrepreneur Yuri Milner and his wife Julia. The Breakthrough Prizes honor important, primarily recent, achievements in the categories of Fundamental Physics, Life Sciences and Mathematics . The prizes were founded in 2012 by Sergey Brin and Anne Wojcicki, Mark Zuckerberg and Priscilla Chan, Yuri and Julia Milner, and Jack Ma and Cathy Zhang. Committees of previous laureates choose the winners from candidates nominated in a process that’s online and open to the public. Laureates receive $3 million each in prize money. They attend a televised award ceremony designed to celebrate their achievements and inspire the next generation of scientists. As part of the ceremony schedule, they also engage in a program of lectures and discussions. Those that go on to make fresh discoveries remain eligible for future Breakthrough Prizes. The Trophy The Breakthrough Prize trophy was created by Olafur Eliasson. “The whole idea for me started out with, ‘Where do these great ideas come from? What type of intuition started the trajectory that eventually becomes what we celebrate today?’” Like much of Eliasson's work, the sculpture explores the common ground between art and science.
    [Show full text]
  • Opening Ceremony
    Opening ceremony Sir John Ball, President of the International Mathematical Union Your Majesty, Señor Ruiz Gallardón, Señora Cabrera, Señora Aguirre, Professor Manuel de León, Distinguished guests, Ladies and gentlemen, ¡Bienvenidos al ICM dos mil seis! Welcome to ICM 2006, the 25th International Congress of Mathematicians, and the first ICM to be held in Spain. We offer our heartfelt thanks to the Spanish nation, so rich in history and culture, for its invitation to Madrid. We greatly appreciate that His Majesty King Juan Carlos is honouring mathematics by His presence here today. While celebrating this feast of mathematics, with the many talking-points that it will provide, it is worth reflecting on the ways in which our community functions. Mathematics is a profession of high standards and integrity. We freely discuss our work with others without fear of it being stolen, and research is communicated openly prior to formal publication. Editorial procedures are fair and proper, and work gains its reputation through merit and not by how it is promoted. These are the norms operated by the vast majority of mathematicians. The exceptions are rare, and they are noticed. Mathematics has a strong record of service, freely given. We see this in the time and care spent in the refereeing of papers and other forms of peer review. We see it in the running of mathematical societies and journals, in the provision of free mathematical software and teaching resources, and in the various projects world-wide to improve electronic access to the mathematical literature, old and new. We see it in the nurturing of students beyond the call of duty.
    [Show full text]
  • Mathematics Calendar
    Mathematics Calendar Please submit conference information for the Mathematics Calendar through the Mathematics Calendar submission form at http:// www.ams.org/cgi-bin/mathcal-submit.pl. The most comprehensive and up-to-date Mathematics Calendar information is available on the AMS website at http://www.ams.org/mathcal/. June 2014 Information: http://www.tesol.org/attend-and-learn/ online-courses-seminars/esl-for-the-secondary- 1–7 Modern Time-Frequency Analysis, Strobl, Austria. (Apr. 2013, mathematics-teacher. p. 429) * 2–30 Algorithmic Randomness, Institute for Mathematical Sciences, 2–5 WSCG 2014 - 22nd International Conference on Computer National University of Singapore, Singapore. Graphics, Visualization and Computer Vision 2014, Primavera Description: Activities 1. Informal Collaboration: June 2–8, 2014. 2. Hotel and Congress Centrum, Plzen (close to Prague), Czech Repub- Ninth International Conference on Computability, Complexity and lic. (Jan. 2014, p. 90) Randomness (CCR 2014): June 9–13, 2014. The conference series 2–6 AIM Workshop: Descriptive inner model theory, American “Computability, Complexity and Randomness” is centered on devel- Institute of Mathematics, Palo Alto, California. (Mar. 2014, p. 312) opments in Algorithmic Randomness, and the conference CCR 2014 2–6 Computational Nonlinear Algebra, Institute for Computational will be part of the IMS programme. The CCR has previously been held and Experimental Research in Mathematics, (ICERM), Brown Univer- in Cordoba 2004, in Buenos Aires 2007, in Nanjing 2008, in Luminy sity, Providence, Rhode Island. (Nov. 2013, p. 1398) 2009, in Notre Dame 2010, in Cape Town 2011, in Cambridge 2012, and in Moscow 2013; it will be held in Heidelberg 2015. 3. Informal 2–6 Conference on Ulam’s type stability, Rytro, Poland.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • William M. Goldman June 24, 2021 CURRICULUM VITÆ
    William M. Goldman June 24, 2021 CURRICULUM VITÆ Professional Preparation: Princeton Univ. A. B. 1977 Univ. Cal. Berkeley Ph.D. 1980 Univ. Colorado NSF Postdoc. 1980{1981 M.I.T. C.L.E. Moore Inst. 1981{1983 Appointments: I.C.E.R.M. Member Sep. 2019 M.S.R.I. Member Oct.{Dec. 2019 Brown Univ. Distinguished Visiting Prof. Sep.{Dec. 2017 M.S.R.I. Member Jan.{May 2015 Institute for Advanced Study Member Spring 2008 Princeton University Visitor Spring 2008 M.S.R.I. Member Nov.{Dec. 2007 Univ. Maryland Assoc. Chair for Grad. Studies 1995{1998 Univ. Maryland Professor 1990{present Oxford Univ. Visiting Professor Spring 1989 Univ. Maryland Assoc. Professor 1986{1990 M.I.T. Assoc. Professor 1986 M.S.R.I. Member 1983{1984 Univ. Maryland Visiting Asst. Professor Fall 1983 M.I.T. Asst. Professor 1983 { 1986 1 2 W. GOLDMAN Publications (1) (with D. Fried and M. Hirsch) Affine manifolds and solvable groups, Bull. Amer. Math. Soc. 3 (1980), 1045{1047. (2) (with M. Hirsch) Flat bundles with solvable holonomy, Proc. Amer. Math. Soc. 82 (1981), 491{494. (3) (with M. Hirsch) Flat bundles with solvable holonomy II: Ob- struction theory, Proc. Amer. Math. Soc. 83 (1981), 175{178. (4) Two examples of affine manifolds, Pac. J. Math.94 (1981), 327{ 330. (5) (with M. Hirsch) A generalization of Bieberbach's theorem, Inv. Math. , 65 (1981), 1{11. (6) (with D. Fried and M. Hirsch) Affine manifolds with nilpotent holonomy, Comm. Math. Helv. 56 (1981), 487{523. (7) Characteristic classes and representations of discrete subgroups of Lie groups, Bull.
    [Show full text]
  • Meetings & Conferences of The
    Meetings & Conferences of the AMS IMPORTANT INFORMATION REGARDING MEETINGS PROGRAMS: AMS Sectional Meeting programs do not appear in the print version of the Notices. However, comprehensive and continually updated meeting and program information with links to the abstract for each talk can be found on the AMS website. See http://www.ams.org/meetings/. Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL and in an electronic issue of the Notices as noted below for each meeting. abstract submission form found at http://www.ams.org/ Knoxville, Tennessee cgi-bin/abstracts/abstract.pl. University of Tennessee, Knoxville Algebraic Methods in Graph Theory and Combinator- ics (Code: SS 7A), Felix Lazebnik, University of Delaware, March 21–23, 2014 Andrew Woldar, Villanova University, and Bangteng Xu, Friday – Sunday Eastern Kentucky University. Arithmetic of Algebraic Curves (Code: SS 9A), Lubjana Meeting #1097 Beshaj, Oakland University, Caleb Shor, Western New Eng- Southeastern Section land University, and Andreas Malmendier, Colby College. Associate secretary: Brian D. Boe Commutative Ring Theory (in honor of the retirement Announcement issue of Notices: January 2014 of David E. Dobbs) (Code: SS 1A), David Anderson, Uni- Program first available on AMS website: February 6, 2014 versity of Tennessee, Knoxville, and Jay Shapiro, George Program issue of electronic Notices: March 2014 Mason University. Issue of Abstracts: Volume 35, Issue 2 Completely Integrable Systems and Dispersive Nonlinear Deadlines Equations (Code: SS 12A), Robert Buckingham, University of Cincinnati, and Peter Perry, University of Kentucky. For organizers: Expired Complex Analysis, Probability, and Metric Geometry For abstracts: January 28, 2014 (Code: SS 11A), Matthew Badger, Stony Brook University, Jim Gill, St.
    [Show full text]
  • Marcel Grossmann Awards
    MG15 MARCEL GROSSMANN AWARDS ROME 2018 ICRANet and ICRA MG XV MARCEL GROSSMANN AWARDS ROME 2018 and TEST The 15th Marcel Grossmann Meeting – MG XV 2nd July 2018, Rome (Italy) Aula Magna – University “Sapienza” of Rome Institutional Awards Goes to: PLANCK SCIENTIFIC COLLABORATION (ESA) “for obtaining important constraints on the models of inflationary stage of the Universe and level of primordial non-Gaussianity; measuring with unprecedented sensitivity gravitational lensing of Cosmic Microwave Background fluctuations by large-scale structure of the Universe and corresponding B- polarization of CMB, the imprint on the CMB of hot gas in galaxy clusters; getting unique information about the time of reionization of our Universe and distribution and properties of the dust and magnetic fields in our Galaxy” - presented to Jean-Loup Puget, the Principal Investigator of the High Frequency Instrument (HFI) HANSEN EXPERIMENTAL PHYSICS LABORATORY AT STANFORD UNIVERSITY “to HEPL for having developed interdepartmental activities at Stanford University at the frontier of fundamental physics, astrophysics and technology” - presented to Research Professor Leo Hollberg, HEPL Assistant Director Individual Awards Goes to LYMAN PAGE “for his collaboration with David Wilkinson in realizing the NASA Explorer WMAP mission and as founding director of the Atacama Cosmology Telescope” Goes to RASHID ALIEVICH SUNYAEV “for the development of theoretical tools in the scrutinising, through the CMB, of the first observable electromagnetic appearance of our Universe” Goes to SHING-TUNG YAU “for the proof of the positivity of total mass in the theory of general relativity and perfecting as well the concept of quasi-local mass, for his proof of the Calabi conjecture, for his continuous inspiring role in the study of black holes physics” Each recipient is presented with a silver casting of the TEST sculpture by the artist A.
    [Show full text]
  • Physics Newsletter 2019
    Harvard University Department of Physics Newsletter FALL 2019 A Microscopic Look At Quantum Materials it takes many physicists to solve quantum many-body problems CONTENTS Letter from the Chair ............................................................................................................1 Letter from the Chair ON THE COVER: An experiment-theory collaboration PHYSICS DEPARTMENT HIGHLIGHTS at Harvard investigates possible Letters from our Readers.. ..................................................................................................2 Dear friends of Harvard Physics, While Prof. Prentiss has been in our department since 1991 (she was theories for how quantum spins (red the second female physicist to be awarded tenure at Harvard), our and blue spheres) in a periodic The sixth issue of our annual Faculty Promotion ............................................................................................................... 3 next article features a faculty member who joined our department potential landscape interact with one Physics Newsletter is here! In Memoriam ........................................................................................................................ 4 only two years ago, Professor Roxanne Guenette (pp. 22-26). another to give rise to intriguing and Please peruse it to find out about potentially useful emergent Current Progress in Mathematical Physics: the comings and goings in our On page 27, Clare Ploucha offers a brief introduction to the Harvard phenomena. This is an artist’s
    [Show full text]
  • Chapter 1 Chapter 2 Chapter 3
    Notes CHAPTER 1 1. Herbert Westren Turnbull, The Great Mathematicians in The World of Mathematics. James R. Newrnan, ed. New York: Sirnon & Schuster, 1956. 2. Will Durant, The Story of Philosophy. New York: Sirnon & Schuster, 1961, p. 41. 3. lbid., p. 44. 4. G. E. L. Owen, "Aristotle," Dictionary of Scientific Biography. New York: Char1es Scribner's Sons, Vol. 1, 1970, p. 250. 5. Durant, op. cit., p. 44. 6. Owen, op. cit., p. 251. 7. Durant, op. cit., p. 53. CHAPTER 2 1. Williarn H. Stahl, '' Aristarchus of Samos,'' Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 1, 1970, p. 246. 2. Jbid., p. 247. 3. G. J. Toorner, "Ptolerny," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 11, 1975, p. 187. CHAPTER 3 1. Stephen F. Mason, A History of the Sciences. New York: Abelard-Schurnan Ltd., 1962, p. 127. 2. Edward Rosen, "Nicolaus Copernicus," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 3, 1971, pp. 401-402. 3. Mason, op. cit., p. 128. 4. Rosen, op. cit., p. 403. 391 392 NOTES 5. David Pingree, "Tycho Brahe," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 2, 1970, p. 401. 6. lbid.. p. 402. 7. Jbid., pp. 402-403. 8. lbid., p. 413. 9. Owen Gingerich, "Johannes Kepler," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 7, 1970, p. 289. 10. lbid.• p. 290. 11. Mason, op. cit., p. 135. 12. Jbid .. p. 136. 13. Gingerich, op. cit., p. 305. CHAPTER 4 1.
    [Show full text]