Hemimegalencephaly and Normalintellectual

Total Page:16

File Type:pdf, Size:1020Kb

Hemimegalencephaly and Normalintellectual 7207Journal of Neurology, Neurosurgery, and Psychiatry 1992;55:720-722 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.55.8.720 on 1 August 1992. Downloaded from SHORT REPORT Hemimegalencephaly and normal intellectual development Lucia Fusco, Stefano Ferracuti, Giuseppe Fariello, Mario Manfredi, Federico Vigevano Abstract disability. His parents (who were unrelated) Hemimegalencephaly is a rare congenital and sister and brother were in good health. Bambino Gesu malformation characterised by over- When he was 14 years 5 months old, brief Children's Hospital, repetitive jerks developed National Medical growth of one hemisphere. Although it is episodes of sudden Research Institute, commonly thought to be associated with in the left arm; these attacks occurred mostly Rome neurological deficits, developmental after awakening and recurred daily. A month Section of delay, and intractable epilepsy, the clinical later he was admitted to hospital because one Neurophysiology can such episode was followed by a tonic-clonic L Fusco expression of hemimegalencephaly, vary widely. This patient was neurologi- seizure. A CT scan obtained on admission (fig F Vigevano a pathological right hemi- Department of cally and neuropsychologically normal A) demonstrated Radiology apart from rare partial seizures. sphere, which appeared increased in size, with G Fariello high lucency of the white matter. This was La Sapienza (J Neurol Neurosurg Psychiatry 1992;55:720-722) interpreted as oedema of the right lobe and University, Rome, despite his normal neurological condition the Italy Hemimegalencephaly is a congenital cerebral patient was treated with high doses ofmannitol Department of He was discharged on a Psychiatry and abnormality consisting of unilateral hyper- and corticosteroids. Medical Psychology trophy of the brain. Most patients with hemi- regimen of phenobarbitone. S Ferracuti megalencephaly present with contralateral Three months later he was referred to us for Department of hemiparesis, mental retardation, and refrac- further investigation. On admission, his neuro- Neuroscience Unlike most reported logical status was normal. Neither somatic M Manfredi tory partial epilepsy. cases, our patient was otherwise neurologically hemihypertrophy nor skin lesions were evident. Correspondence to: the normal Dr Vigevano, Section of normal. Biochemical findings were within Neurophysiology, Bambino range. Analyses of CSF were normal. Sensory Gesu Children's Hospital, National Medical Research conduction in the left ulnar and sural nerves, Institute. Piazza S Onofrio 4, Case report visual evoked potentials and somatosensory 00165 Rome, Italy The personal and neurological history of this evoked potentials to right limb stimulation Received 8 July 1991 and in to revised form 19 year old patient was normal; pregnancy and were all normal, but the evoked potentials 2 September 1991. He had a normal left limb stimulation were abnormal. Cortical birth were uncomplicated. http://jnnp.bmj.com/ Accepted 10 September left common 1991 psychomotor development and no learning response to stimulation of the on September 24, 2021 by guest. Protected copyright. Note the diffusely hypodense right white matter. B) Coronal SE 19941100 MRI shows a Figure A) Axial CT scan shows an enlarged right hemisphere. appear moderate enlargement of right hemisphere, increase in white matter, with prolonged T2 relaxation time; at this frontal level cortical gyri and suki normal. C) Axial IR 1615130 MRI through basal ganglia shows abnormal gyral pattern in posterior temporal region. Note that in B) and C) the straightening of right frontal horn of lateral ventricle which is characteristic of hemimegalencephaly. (In all figures the right side of the brain is on the left of the figure). Hemimegalencephaly and normal intellectual development 721 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.55.8.720 on 1 August 1992. Downloaded from peroneal nerve was absent and response to crogyria or polymicrogyria. Barkovich and stimulation of the left median nerve was Chuang did not attempt to correlate the delayed and decreased in amplitude. Transcor- anatomical appearances of their patients with tical magnetic stimulation showed normal the clinical features. Our patient had over- pyramidal conduction on both sides. EEGs growth of one hemisphere, in which the white showed fast beta rhythms in the right frontal matter was increased and had prolonged T2 and central regions, with frequent spike and relaxation time on MRI. Unlike Barkovich's spike-and-wave complexes in wakefulness and patients, the cerebral cortex conformed to an sleep. Seizures recorded on video and EEG altogether different pattern: the frontal, anter- were characterised clinically by brief, arrhyth- ior temporal and parietal lobes had normal gyri mic muscle jerks in the left arm, accompanied and sulci. The marked abnormalities affected electrically by right frontal spike-and-wave only a small area ofthe posterior, temporal and complexes that became bilateral. parietal lobes. In our opinion, the preservation The results of neuropsychological tests were of normal cortex largely explains the patient's normal; the patient had an IQ of 115. MRI normal neuropsychological status. We (figs B and C) demonstrated overgrowth of the observed that the neuromental development in right hemisphere, which was 1 2 times larger hemimegalencephaly is notably worse in than the left. The right hemispheric white patients with more pronounced agyria or matter was increased and had a prolonged T2 pachygyria7 and probably correlates with the relaxation time. The cortical gyri and sulci in cortical pattern of malformation. Routine the frontal, anterior temporal, and occipital neurophysiological studies, including magnetic regions appeared normal. In the posterior transcranial stimulation and visual evoked temporal and parietal regions the grey matter potentials, confirmed the integrity of the cen- was slightly increased in size, with multiple tral and occipital regions. Abnormal right macrogyri. The grey-white matter junction was somatosensory evoked potentials to contra- distinct in this area only. lateral limbs corroborated anomalies in the Although phenobarbitone and carbamaze- parietal cortex. The normal neuropsychologi- pine failed to control the seizures, they dis- cal testing results also demonstrated the integ- appeared with valproate and have not recurred. rity of higher symbolic functions. It is unclear The patient's current neurological examina- why the abnormal MRI white matter signal tion confirms the absence of abnormalities. He was not expressed clinically. is now working as an office machine techni- Stable left lateralisation (contralateral to the cian. Recent EEGs show less paroxysmal hemimegalencephaly) and arm localisaton activity: this now occurs only during hyper- characterised our patient's seizures. They ventilation and sleep. The fast beta rhythm is manifested with single arrhythmic jerks of still present in the central and parietal regions. variable frequency and amplitude involving A second battery of neuropsychological tests, different muscle groups. This seizure pattern given four years after the first, showed a verbal differs from the partial motor seizures of IQ of 1 3 and a performance IQ of 1 4; rolandic origin, which are rhythmic, localised visuospatial and superior cognitive functions in one muscle group alone or successively were normal. involve more groups according to the somato- topic distribution of the cerebral cortex. It is, http://jnnp.bmj.com/ however, typical of focal cortical myoclonus, Discussion earlier reported in association with contra- Hemimegalencephaly is a dysplastic lesion lateral focal pericentral lesions (tumour or characterised by an overgrowth of one hemi- cicatrix) or contralateral atrophy, as seen in sphere. The cerebral cortex of the megalence- infantile hemiplegia.8 More recently, Kuz- phalic hemisphere is generally abnormal and niecky et al,9 have described focal cortical commonly has large pachygyric areas, at times myoclonus in three patients, who had focal associated with polymicrogyria. The white dysplastic lesions, such as central macrogyria. on September 24, 2021 by guest. Protected copyright. matter is also abnormal. The neuroimaging Apart from the epileptiform abnormalities, features of hemimegalencephaly have been the EEGs of our patient were characterised by adequately described.`3 Mental retardation right central and parietal beta activity of low and contralateral hemiparesis are generally voltage. Patients with neuronal migration associated with early epilepsy that is highly anomalies typically exhibit fast background resistant and at times mandates surgery; the rhythms'0 consisting of continuous alpha and treatment usually chosen is hemispherec- beta activity. In bilateral malformations such as tomy.45 Nevertheless patients with slight men- lissencephaly the activity is widely distributed tal retardation and non-refractory epilepsy over the two hemispheres; in focal dysplastic with minimal neurological signs and without lesions it is lateralised or localised. epilepsy have been observed.6 The clinical expression of hemimegalencephaly thus varies 1 Kalifa GL, Chiron C, Sellier N, et al. Hemimegalencephaly: widely. A similarly wide variation also appears MR imaging in five children. Radiology 1987;165:29-33. likely in the anatomical lesions.7 2 Osborn RE, Byrd SE, Naidich TP, Bohan TP, Friedman H. MR imaging of neuronal migrational disorders. Am J In describing
Recommended publications
  • Paternal Factors and Schizophrenia Risk: De Novo Mutations and Imprinting
    Paternal Factors and Schizophrenia Risk: De Novo Mutations and Imprinting by Dolores Malaspina Downloaded from https://academic.oup.com/schizophreniabulletin/article/27/3/379/1835092 by guest on 23 September 2021 Abstract (Impagnatiello et al. 1998; Kao et al. 1998), but there is no consensus that any particular gene plays a meaning- There is a strong genetic component for schizophrenia ful role in the etiology of schizophrenia (Hyman 2000). risk, but it is unclear how the illness is maintained in Some of the obstacles in genetic research in schiz- the population given the significantly reduced fertility ophrenia are those of any complex disorder, and include of those with the disorder. One possibility is that new incomplete penetrance, polygenic interaction (epista- mutations occur in schizophrenia vulnerability genes. sis), diagnostic instability, and variable expressivity. If so, then those with schizophrenia may have older Schizophrenia also does not show a clear Mendelian fathers, because advancing paternal age is the major inheritance pattern, although segregation analyses have source of new mutations in humans. This review variably supported dominant, recessive, additive, sex- describes several neurodevelopmental disorders that linked, and oligogenic inheritance (Book 1953; Slater have been associated with de novo mutations in the 1958; Garrone 1962; Elston and Campbell 1970; Slater paternal germ line and reviews data linking increased and Cowie 1971; Karlsson 1972; Stewart et al. 1980; schizophrenia risk with older fathers. Several genetic Risch 1990a, 1990fc; reviewed by Kendler and Diehl mechanisms that could explain this association are 1993). Furthermore, both nonallelic (Kaufmann et al. proposed, including paternal germ line mutations, 1998) and etiologic heterogeneity (Malaspina et al.
    [Show full text]
  • Bhagwan Moorjani, MD, FAAP, FAAN • Requires Knowledge of Normal CNS Developmental (I.E
    1/16/2012 Neuroimaging in Childhood • Neuroimaging issues are distinct from Pediatric Neuroimaging in adults Neurometabolic-degenerative disorder • Sedation/anesthesia and Epilepsy • Motion artifacts Bhagwan Moorjani, MD, FAAP, FAAN • Requires knowledge of normal CNS developmental (i.e. myelin maturation) • Contrast media • Parental anxiety Diagnostic Approach Neuroimaging in Epilepsy • Age of onset • Peak incidence in childhood • Static vs Progressive • Occurs as a co-morbid condition in many – Look for treatable causes pediatric disorders (birth injury, – Do not overlook abuse, Manchausen if all is negative dysmorphism, chromosomal anomalies, • Phenotype presence (syndromic, HC, NCS, developmental delays/regression) systemic involvement) • Predominant symptom (epilepsy, DD, • Many neurologic disorders in children weakness/motor, psychomotor regression, have the same chief complaint cognitive/dementia) 1 1/16/2012 Congenital Malformation • Characterized by their anatomic features • Broad categories: based on embryogenesis – Stage 1: Dorsal Induction: Formation and closure of the neural tube. (Weeks 3-4) – Stage 2: Ventral Induction: Formation of the brain segments and face. (Weeks 5-10) – Stage 3: Migration and Histogenesis: (Months 2-5) – Stage 4: Myelination: (5-15 months; matures by 3 years) Dandy Walker Malformation Dandy walker • Criteria: – high position of tentorium – dysgenesis/agenesis of vermis – cystic dilatation of fourth ventricle • commonly associated features: – hypoplasia of cerebellum – scalloping of inner table of occipital bone • associated abnormalities: – hydrocephalus 75% – dysgenesis of corpus callosum 25% – heterotropia 10% 2 1/16/2012 Etiology of Epilepsy: Developmental and Genetic Classification of Gray Matter Heterotropia Cortical Dysplasia 1. Secondary to abnormal neuronal and • displaced masses of nerve cells • Subependymal glial proliferation/apoptosis (gray matter) heterotropia (most • most common: small nest common) 2.
    [Show full text]
  • Description Treatment
    Description Megalencephaly, also called macrencephaly, is a condition in which an infant or child has an abnormally large, heavy, and usually malfunctioning brain. By definition, the brain weight is greater than average for the age and gender of the child. Head enlargement may be evident at birth or the head may become abnormally large in the early years of life. Megalencephaly is thought to be related to a disturbance in the regulation of cell production in the brain. In normal development, neuron proliferation - the process in which nerve cells divide to form new generations of cells - is regulated so that the correct number of cells is produced in the proper place at the appropriate time. In a megalencephalic brain, too many cells are produced either during development or progressively as part of another disorder, such as one of the neurofibromatoses or leukodystrophies. Symptoms of megalencephaly include delayed development, seizures, and corticospinal (brain cortex and spinal cord) dysfunction. Megalencephaly affects males more often than females. Unilateral megalencephaly or hemimegalencephaly is a rare condition that is characterized by the enlargement of one side of the brain. Children with this disorder may have a large, asymmetrical head accompanied by seizures, partial paralysis, and impaired cognitive development. Megalencephaly is different from macrocephaly (also called megacephaly or megalocephaly), which describes a big head, and which doesn’t necessarily indicate abnormality. Large head size is passed down through the generations in some families. Treatment There is no standard treatment for megalencephaly. Treatment will depend upon the disorder with which the megalencephaly is associated and will address individual symptoms and disabilities.
    [Show full text]
  • Mutation in Genes FBN1, AKT1, and LMNA: Marfan Syndrome, Proteus Syndrome, and Progeria Share Common Systemic Involvement
    Review Mutation in Genes FBN1, AKT1, and LMNA: Marfan Syndrome, Proteus Syndrome, and Progeria Share Common Systemic Involvement Tonmoy Biswas.1 Abstract Genetic mutations are becoming more deleterious day by day. Mutations of Genes named FBN1, AKT1, LMNA result specific protein malfunction that in turn commonly cause Marfan syndrome, Proteus syndrome, and Progeria, respectively. Articles about these conditions have been reviewed in PubMed and Google scholar with a view to finding relevant clinical features. Precise keywords have been used in search for systemic involvement of FBN1, AKT1, and LMNA gene mutations. It has been found that Marfan syndrome, Proteus syndrome, and Progeria commonly affected musculo-skeletal system, cardiovascular system, eye, and nervous system. Not only all of them shared identical systemic involvement, but also caused several very specific anomalies in various parts of the body. In spite of having some individual signs and symptoms, the mutual manifestations were worth mentio- ning. Moreover, all the features of the mutations of all three responsible genes had been co-related and systemically mentioned in this review. There can be some mutual properties of the genes FBN1, AKT1, and LMNA or in their corresponding proteins that result in the same presentations. This study may progress vision of knowledge regarding risk factors, patho-physiology, and management of these conditions, and relation to other mutations. Keywords: Genetic mutation; Marfan syndrome; Proteus syndrome; Progeria; Gene FBN1; Gene AKT1; Gene LMNA; Musculo-skeletal system; Cardiovascular system; Eye; Nervous system (Source: MeSH, NLM). Introduction Records in human mutation databases are increasing day by 5 About the author: Tonmoy The haploid human genome consists of 3 billion nucleotides day.
    [Show full text]
  • Megalencephaly and Macrocephaly
    277 Megalencephaly and Macrocephaly KellenD.Winden,MD,PhD1 Christopher J. Yuskaitis, MD, PhD1 Annapurna Poduri, MD, MPH2 1 Department of Neurology, Boston Children’s Hospital, Boston, Address for correspondence Annapurna Poduri, Epilepsy Genetics Massachusetts Program, Division of Epilepsy and Clinical Electrophysiology, 2 Epilepsy Genetics Program, Division of Epilepsy and Clinical Department of Neurology, Fegan 9, Boston Children’s Hospital, 300 Electrophysiology, Department of Neurology, Boston Children’s Longwood Avenue, Boston, MA 02115 Hospital, Boston, Massachusetts (e-mail: [email protected]). Semin Neurol 2015;35:277–287. Abstract Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and Keywords behavioral problems; specific disorders have associations with overgrowth or abnor- ► megalencephaly malities in other tissues. The molecular underpinnings of many of these disorders are ► hemimegalencephaly now understood, providing insight into how dysregulation of critical pathways leads to ►
    [Show full text]
  • Polymicrogyria (PMG) ‘Many–Small–Folds’
    Polymicrogyria Dr Andrew Fry Clinical Senior Lecturer in Medical Genetics Institute of Medical Genetics, Cardiff [email protected] Polymicrogyria (PMG) ‘Many–small–folds’ • PMG is heterogeneous – in aetiology and phenotype • A disorder of post-migrational cortical organisation. PMG often appears thick on MRI with blurring of the grey-white matter boundary Normal PMG On MRI PMG looks thick but the cortex is actually thin – with folded, fused gyri Courtesy of Dr Jeff Golden, Pen State Unv, Philadelphia PMG is often confused with pachygyria (lissencephaly) Thick cortex (10 – 20mm) Axial MRI 4 cortical layers Lissencephaly Polymicrogyria Cerebrum Classical lissencephaly is due Many small gyri – often to under-migration. fused together. Axial MRI image at 7T showing morphological aspects of PMG. Guerrini & Dobyns Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014 Jul; 13(7): 710–726. PMG - aetiology Pregnancy history • Intrauterine hypoxic/ischemic brain injury (e.g. death of twin) • Intrauterine infection (e.g. CMV, Zika virus) TORCH, CMV PCR, [+deafness & cerebral calcification] CT scan • Metabolic (e.g. Zellweger syndrome, glycine encephalopathy) VLCFA, metabolic Ix • Genetic: Family history Familial recurrence (XL, AD, AR) Chromosomal abnormalities (e.g. 1p36 del, 22q11.2 del) Syndromic (e.g. Aicardi syndrome, Kabuki syndrome) Examin - Monogenic (e.g. TUBB2B, TUBA1A, GPR56) Array ation CGH Gene test/Panel/WES/WGS A cohort of 121 PMG patients Aim: To explore the natural history of PMG and identify new genes. Recruited: • 99 unrelated patients • 22 patients from 10 families 87% White British, 53% male ~92% sporadic cases (NB. ascertainment bias) Sporadic PMG • Array CGH, single gene and gene panel testing - then a subset (n=57) had trio-WES.
    [Show full text]
  • Level Estimates of Maternal Smoking and Nicotine Replacement Therapy During Pregnancy
    Using primary care data to assess population- level estimates of maternal smoking and nicotine replacement therapy during pregnancy Nafeesa Nooruddin Dhalwani BSc MSc Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy November 2014 ABSTRACT Background: Smoking in pregnancy is the most significant preventable cause of poor health outcomes for women and their babies and, therefore, is a major public health concern. In the UK there is a wide range of interventions and support for pregnant women who want to quit. One of these is nicotine replacement therapy (NRT) which has been widely available for retail purchase and prescribing to pregnant women since 2005. However, measures of NRT prescribing in pregnant women are scarce. These measures are vital to assess its usefulness in smoking cessation during pregnancy at a population level. Furthermore, evidence of NRT safety in pregnancy for the mother and child’s health so far is nebulous, with existing studies being small or using retrospectively reported exposures. Aims and Objectives: The main aim of this work was to assess population- level estimates of maternal smoking and NRT prescribing in pregnancy and the safety of NRT for both the mother and the child in the UK. Currently, the only population-level data on UK maternal smoking are from repeated cross-sectional surveys or routinely collected maternity data during pregnancy or at delivery. These obtain information at one point in time, and there are no population-level data on NRT use available. As a novel approach, therefore, this thesis used the routinely collected primary care data that are currently available for approximately 6% of the UK population and provide longitudinal/prospectively recorded information throughout pregnancy.
    [Show full text]
  • CONGENITAL ABNORMALITIES of the CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles Ffrench-Constant *I3
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_1.i3 on 1 March 2003. Downloaded from CONGENITAL ABNORMALITIES OF THE CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles ffrench-Constant *i3 J Neurol Neurosurg Psychiatry 2003;74(Suppl I):i3–i8 dvances in genetics and molecular biology have led to a better understanding of the control of central nervous system (CNS) development. It is possible to classify CNS abnormalities Aaccording to the developmental stages at which they occur, as is shown below. The careful assessment of patients with these abnormalities is important in order to provide an accurate prog- nosis and genetic counselling. c NORMAL DEVELOPMENT OF THE CNS Before we review the various abnormalities that can affect the CNS, a brief overview of the normal development of the CNS is appropriate. c Induction—After development of the three cell layers of the early embryo (ectoderm, mesoderm, and endoderm), the underlying mesoderm (the “inducer”) sends signals to a region of the ecto- derm (the “induced tissue”), instructing it to develop into neural tissue. c Neural tube formation—The neural ectoderm folds to form a tube, which runs for most of the length of the embryo. c Regionalisation and specification—Specification of different regions and individual cells within the neural tube occurs in both the rostral/caudal and dorsal/ventral axis. The three basic regions of copyright. the CNS (forebrain, midbrain, and hindbrain) develop at the rostral end of the tube, with the spinal cord more caudally. Within the developing spinal cord specification of the different popu- lations of neural precursors (neural crest, sensory neurones, interneurones, glial cells, and motor neurones) is observed in progressively more ventral locations.
    [Show full text]
  • Classification of Congenital Abnormalities of the CNS
    315 Classification of Congenital Abnormalities of the CNS M. S. van der Knaap1 A classification of congenital cerebral, cerebellar, and spinal malformations is pre­ J . Valk2 sented with a view to its practical application in neuroradiology. The classification is based on the MR appearance of the morphologic abnormalities, arranged according to the embryologic time the derangement occurred. The normal embryology of the brain is briefly reviewed, and comments are made to explain the classification. MR images illustrating each subset of abnormalities are presented. During the last few years, MR imaging has proved to be a diagnostic tool of major importance in children with congenital malformations of the eNS [1]. The excellent gray fwhite-matter differentiation and multi planar imaging capabilities of MR allow a systematic analysis of the condition of the brain in infants and children. This is of interest for estimating prognosis and for genetic counseling. A classification is needed to serve as a guide to the great diversity of morphologic abnormalities and to make the acquired data useful. Such a system facilitates encoding, storage, and computer processing of data. We present a practical classification of congenital cerebral , cerebellar, and spinal malformations. Our classification is based on the morphologic abnormalities shown by MR and on the time at which the derangement of neural development occurred. A classification based on etiology is not as valuable because the various presumed causes rarely lead to a specific pattern of malformations. The abnor­ malities reflect the time the noxious agent interfered with neural development, rather than the nature of the noxious agent. The vulnerability of the various structures to adverse agents is greatest during the period of most active growth and development.
    [Show full text]
  • Unilateral Megalencephaly. Correlates
    523 Unilateral Megalencephaly: Correlation of MR Imaging and Pathologic Characteristics A. James Barkovich 1 Unilateral megalencephaly is a rare and poorly understood malformation resulting in Sylvester H. Chuang2 the enlargement of all or part of a cerebral hemisphere. The clinical and radiologic features of 12 patients with unilateral megalencephaly are presented; pathologic cor­ relation was available in four. All patients had seizures and developmental delay. Two were in congestive heart failure as a result of arteriovenous shunting through the abnormal hemisphere. The affected hemispheres showed a wide spectrum of involve­ ment. Anomalies of neuronal migration were present, and there was a roughly inverse correlation between the severity of hemispheric involvement and the magnitude of enlargement. This correlation is explained via a proposed mechanism of a mild hemi­ spheric insult in the middle-to-late second trimester. One patient had an extremely anomalous hemisphere that did not have characteristics of a neuronal migration anomaly and may have been a hamartomatous malformation. Our correlation of the clinical, radiologic, and pathologic features of unilateral mega­ lencephaly, together with a theory of pathogenesis, should help elucidate this rare malformation. AJNR 11:523-531, May{June 1990 Unilateral megalencephaly is a rare anomaly of the brain in which all or part of one hemisphere is enlarged in the absence of somatic hemihypertrophy [1- 8). We recently reviewed the imaging studies of 12 patients with this anomaly; histologic material was available in four of these. In this report, we describe the clinical , radiologic, and pathologic features of this anomaly and relate the pathologic anatomy to a proposed theory of pathogenesis.
    [Show full text]
  • Supratentorial Brain Malformations
    Supratentorial Brain Malformations Edward Yang, MD PhD Department of Radiology Boston Children’s Hospital 1 May 2015/ SPR 2015 Disclosures: Consultant, Corticometrics LLC Objectives 1) Review major steps in the morphogenesis of the supratentorial brain. 2) Categorize patterns of malformation that result from failure in these steps. 3) Discuss particular imaging features that assist in recognition of these malformations. 4) Reference some of the genetic bases for these malformations to be discussed in greater detail later in the session. Overview I. Schematic overview of brain development II. Abnormalities of hemispheric cleavage III. Commissural (Callosal) abnormalities IV. Migrational abnormalities - Gray matter heterotopia - Pachygyria/Lissencephaly - Focal cortical dysplasia - Transpial migration - Polymicrogyria V. Global abnormalities in size (proliferation) VI. Fetal Life and Myelination Considerations I. Schematic Overview of Brain Development Embryology Top Mid-sagittal Top Mid-sagittal Closed Neural Tube (4 weeks) Corpus Callosum Callosum Formation Genu ! Splenium Cerebral Hemisphere (11-20 weeks) Hemispheric Cleavage (4-6 weeks) Neuronal Migration Ventricular/Subventricular Zones Ventricle ! Cortex (8-24 weeks) Neuronal Precursor Generation (Proliferation) (6-16 weeks) Embryology From ten Donkelaar Clinical Neuroembryology 2010 4mo 6mo 8mo term II. Abnormalities of Hemispheric Cleavage Holoprosencephaly (HPE) Top Mid-sagittal Imaging features: Incomplete hemispheric separation + 1)1) No septum pellucidum in any HPEs Closed Neural
    [Show full text]
  • MR Imaging of N Euronal Migration Anomaly
    대 한 방 사 선 의 학 회 지 1991; 27(3) : 323~328 Journal of Korean Radiological Society. May. 1991 MR Imaging of N euronal Migration Anomaly Hyun Sook Hong, M.D., Eun Wan Choi, M.D., Dae Ho Kim, M.D., Moo Chan Chung, M.D., Kuy Hyang Kwon, M.D., Ki Jung Kim, M.D. Department o[ RadíoJogy. Col1ege o[ Medícine. Soonchunhyang University patients ranged in age from 5 months to 42 years with Introduction a mean of 16 years. The mean age was skewed by 2 patients with schizencephaly who were 35 and 42 Abnormalities of neuronal migration Sl re years old. characterized by anectopic location of neurons in the MR was performed with a 0:2T permanent type cerebral cortex (1-9). This broad group of anomalies (Hidachi PRP 20). Slice thickness was 5mm with a includes agyria. pachygyria. schizencephaly. 2.5mm interslice gap or 7.5mm thickness. Spin echo unilateral megalencephaly. and gray matter axial images were obtained. including Tl weighted hcterotopia. Patients with this anomaly present images (TIWI) with a repetition time (TR) of clinically with a variety of symptoms which are pro­ 400-500ms and echo time (TE) of 25-40ms. in­ portional to the extent of the brain involved. These termediate images of TR/TE 2000/38. and T2 abnormalities have been characterized pathologically weighted images (T2Wl) with a TR/TE of 2000/110. in vivo by sonography and CT scan (2. 3. 10-14. Occasionally. sagittal and coronal images were ob­ 15-21). tained. Gd-DTPA enhanced Tl WI were 려 so obtain­ MR appears to be an imaging technique of choice ed in 6 patients.
    [Show full text]