MR Imaging of N Euronal Migration Anomaly

Total Page:16

File Type:pdf, Size:1020Kb

MR Imaging of N Euronal Migration Anomaly 대 한 방 사 선 의 학 회 지 1991; 27(3) : 323~328 Journal of Korean Radiological Society. May. 1991 MR Imaging of N euronal Migration Anomaly Hyun Sook Hong, M.D., Eun Wan Choi, M.D., Dae Ho Kim, M.D., Moo Chan Chung, M.D., Kuy Hyang Kwon, M.D., Ki Jung Kim, M.D. Department o[ RadíoJogy. Col1ege o[ Medícine. Soonchunhyang University patients ranged in age from 5 months to 42 years with Introduction a mean of 16 years. The mean age was skewed by 2 patients with schizencephaly who were 35 and 42 Abnormalities of neuronal migration Sl re years old. characterized by anectopic location of neurons in the MR was performed with a 0:2T permanent type cerebral cortex (1-9). This broad group of anomalies (Hidachi PRP 20). Slice thickness was 5mm with a includes agyria. pachygyria. schizencephaly. 2.5mm interslice gap or 7.5mm thickness. Spin echo unilateral megalencephaly. and gray matter axial images were obtained. including Tl weighted hcterotopia. Patients with this anomaly present images (TIWI) with a repetition time (TR) of clinically with a variety of symptoms which are pro­ 400-500ms and echo time (TE) of 25-40ms. in­ portional to the extent of the brain involved. These termediate images of TR/TE 2000/38. and T2 abnormalities have been characterized pathologically weighted images (T2Wl) with a TR/TE of 2000/110. in vivo by sonography and CT scan (2. 3. 10-14. Occasionally. sagittal and coronal images were ob­ 15-21). tained. Gd-DTPA enhanced Tl WI were 려 so obtain­ MR appears to be an imaging technique of choice ed in 6 patients. Migration anomalies were diagnosed in evaluating these anomalies because it is capable on the basis of characteristic morphology of the af­ of exceptionally good differentiation between gray fected brain on MR or CT. and white matter. high contrast resolution. m비 tiplan와 display of the anatomy. and lack of Results overlying bone artifact (1. 22-24). The purpose of this paper is to describe the MR fin­ The clinical and radiologic findings of eleven pa­ dings of neuronal migration anomaly. tients are presented in Table 1. The neuronal migra­ tion anomalies in 11 patients included one with Subjects and Methods lissencephaly. 9 with schizencephaly (2 with open lip type and 7 with closed lip typeJ, and one with isolated Eleven patients with neuronal migration heterotopia. In one patient with lissencephaly. MR anomalies were examined with MR (10 patients) and demonstrated a figure of 8 appearance with a shallow CT (one patient) from May 1989 to September 1990 sylvian fissure caused by lack of opercularization (Fig. because of seizure. mental retardation. developmen­ 1). The cortex was thick and white matter was tal delay. enlarged head. and motor weakness. The decreased in volume. The gray-white matter interface Index Words: Brain. abnormalities. 13. 14. was smooth due to the lack of white matter inter­ digitation. This patient also had persistent wide Brain‘ MR imagings. 13 ‘ 1214 이 논문은 1 990 년 11 월 1 4 일 접수하여 1991 년 3 월 30 일 에 채택되었 음 Received November 14. accepted March 30. 1991 - 323- Journal of Korean Radiological Society 1991; 27(3) 323-328 Table L Summary of Patients Data Case Age (year) Presenting Symptoms MR diagnosis No. I Sex 1. 5/l2/F seizure. large head agyria/pachygyria complex. colpocephaly 2 11M developmental delay. abnormal face & hair schizencephaly. closed lip type. right 3 l lF left motor weakness schizencephaly. closed lip type. right 4. 41F seizure. development & m ental retardation schizencephaly. closed lip type. bilateral 5 101F seizure. m ental retardation. right schizencephaly‘ closed lip type. left motor weakness heterotopia 6 121F seizure. left hand paresis schizencephaly. closed lip type. right 7. 23/F facial palsy due to chronic mastoiditis isolated heterotopia. nodular form incidental finding for migration disorder 8. 241F seizure. right hemiparesis schizencephaly. open lip type. left 9. 241M selzure schizence ph려 y . closed lip type. right heterotopia 10 351M selzure schizencephaly. closed lip type. bilateral 11. 42/M skull fracture by fall down. seizure. left schizencephaly. open lip type. right motor weakness. mental retardation lateral ventricles (colpocephaly). Nine patients with The process ofneuroblast formation begins at ap­ schizencephaly had unilateral (7/9) (Fig. 2 .. Fig. 3b.) proximately 6 gestational weeks (3. 4. 9. 29). First or bilateral clefts (2/9) (Fig. 3a.) that were lined by wave of neuroblast formed in the germinal matrix gray matter. The clefts were commonly seen in the migrates through the white matter along ependymo­ parietal (parasylvian region) and temporal areas glial process that stretches from the ventricular wall Associated anomalies included absent septum through the white matter to the forming cortex. Such pellucidum (3/9) (Fig. 2.) and heterotopias (2/9). peripheral migration along the glial guide is Hydrocephalus was commonly seen associated designated radial migration and is most active dur­ with an open form (Fig. 2.) ing the 3rd to 5th gestational months but continues Heterotopias were seen in 3 patients. one with until approximately 5 months postnatally (1-4. 9. 29) isolated hete rotopia (Fig . 4.) and others with At this point. they differentiate further grow into ax­ associated schizencephaly (Fig. 2 .. 3.). ons and dendrites. and develop synaptic contacts with other neurons. By the 6th month of gestation. Discussion a 6 layered n eocortex is formed (4. 26). Fig. L Lissencephaly. 2000/40 ax­ ial proton density image Large areas of agyria are observed in the both parietooccipital lobes with partial gyral formation in anterior frontal lobes suggesting pachygyria. which shows hourglass configuration of brain and shallow smooth surface. There are also loss of cortical gray-white matter inter­ digitation and colpocephaly. Fig. 4. Isolated gray matter heterotopia. Nodular gray matter indents the left 1 4 frontal hom oflateral ventricle and diverticulum like ventricular pr이 ec­ tion is also seen. Adj~cent insular cortex is somewhat thickened. - 324- Hyun Sook Hong , et al : MR Imaging of Neuronal Migration Anomaly Fig. 2. Open lipped schizencephaly a . Axial proton density MR image (2000/3 8) demonstrates CSF c1 efts extending from the venticle to the sulci, lined with gray matter bands in left precentral region, and mild­ Iy dilated ventricular system . b. Coronal T1 WI image (500/38) well delineates the CSF c1eft, com­ municating cortical sulci with the lateral ventricle, and agenesis of septum pellucidum a b Fig. 3. Two cases of closed lip schizencephaly a. Axial MR image (20001112) shows a band of thick gray matter extending from the ventricle to the cortical surface in postcentral region bilaterally. b. Axial MR image (2000/40) shows unila teral c10sed lip schizencepha­ ly with gray matter heterotopia in right periventricular region. a b Smaller waves of cell migration continue up to 25 for holohemispheric agyria and at other times as a weeks. Any insu1t to the brain during this period more general term encompassing the results in a migration anomalies (2 , 7 , 25-27, 30-32). agyria/pachygyria complex (2 , 15). The common underlying feature of migration Lissencephaly can be divided into 3 types. Type anoma1 ies is an abnormal location of neurons both 1 is characterized by microcephaly and dysmorphic within and outside the cortex. facies usually associated with heritable syndromes ln general, the cortex is thickened by a large such as Miller-Dieker syndrome, Norm an-Roberts disorganized layer of neurons whose migration has syndrome, and the Neu-Laxova syndrome. Type II been prematurely halted. Pathologically, both agyric usually lacks characteris tic facies but exhibits and pachygyric regions ofthe brain have a 41ayered macrocephaly, retina1 dysplasia, congenita1 muscular cortex composed of a molecular layer, outer cellular dystrophy, and/or posterior fossa abnormalities. The layer, a sparse celllayer, and an inner cellular layer. Walker-Wanburg and the cerebro-ocular-muscular The subcorticallayer ofwhite matter is thin because syndrome are associated with type II. Type III is organization of the neurons, which subsequently heritable isolated lissencephaly a nd cerebro­ stimulates axonal growth, has not occurred. cerebellar lissencepha1 y. Type III patients have the The term agyria refers to an absence of cortical best prognosis a nd longest suπival (2 , 3 , 7). Our case gyri, usually focal and holohemispheric. ln fact. most had no associated syndromes and abnormal face , so agyric brains have at least small area of gyral forma­ probably type III. tion (1, 2 , 13, 14, 19, 20). The area of broad f1 at The clinical features are seizure, developmental shallo\V gyri are referred to area of pachygyria. The delay, or mental retardation with the degree of severi­ term lissencephaly is sometimes used as a synonym ty related to the amount of abnormal cortex (25, 27 , - 325- Journal of Korean Radiological Society 1991; 27(3) 323-328 31). MR exquisitely demonstrates the abnormal a r­ of th e ventric1 es. Polymicrogyria or a bsence of sep chitecture. MR shows the cortical convolutions and tum pellucidum is frequently observed. It is impor­ gray-white m atter interface are smoother than nor tant to understa nd that narrow c1efts can be identified m a l a nd the s ubcortical white matter is thinned . The in only one imaging plane and be missed in anothe r insulae are exposed and the middle cerebral a rteries planes. In patients with horizontal c1 efts. the abnor­ course superficially a long a shallow sylvian groove m a li ty would have been missed or misdiagnosed if No sylvian triangle is present (7. 8). A small bra in the coronal images were not obtained. Similarly. ver­ stem is ofte n observed and may ref1 ect lack of tically oriented narrow clefts can be missed if only development of the corticospinal tracts and subcor­ coronaJ images are obtained.
Recommended publications
  • Reorganisation of the Visual Cortex in Callosal Agenesis and Colpocephaly
    Journal of Clinical Neuroscience (2000) 7(1), 13–15 © 2000 Harcourt Publishers Ltd DOI: 10.1054/ jocn.1998.0105, available online at http://www.idealibrary.com on Clinical study Reorganisation of the visual cortex in callosal agenesis and colpocephaly Richard G. Bittar1,2 MB BS, Alain Ptito1 PHD, Serge O. Dumoulin1, Frederick Andermann1 MD FRCP(C), David C. Reutens1 MD FRACP 1Montreal Neurological Institute and Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Canada 2Department of Anatomy and Histology, University of Sydney, Australia Summary Structural defects involving eloquent regions of the cerebral cortex may be accompanied by abnormal localisation of function. Using functional magnetic resonance imaging (fMRI), we studied the organisation of the visual cortex in a patient with callosal agenesis and colpocephaly, whose visual acuity and binocular visual fields were normal. The stimulus used was a moving grating confined to one hemifield, on a background of moving dots. In addition to activation patterns elicited by stimulation of each hemifield in the patient, the activation pattern was compared to that seen in six normal volunteers. fMRI demonstrated large scale reorganisation of visual cortical areas in the left hemisphere, and fewer activation foci were observed in both occipital lobes when compared with normal subjects. © 2000 Harcourt Publishers Ltd Keywords: functional magnetic resonance imaging, vision, colpocephaly, callosal agenesis, reorganisation INTRODUCTION showed interictal slow wave activity throughout the right hemi- sphere and seizures with onset in the right temporo-frontal region. An exciting application of non-invasive functional brain mapping Ictal Tc99m HMPAO single photon emission computed tomography techniques such as functional magnetic resonance imaging (fMRI) (SPECT) revealed a diffuse increase in perfusion within the right is the study of cortical sensory and motor reorganisation following cerebral hemisphere.
    [Show full text]
  • Approach to Brain Malformations
    Approach to Brain Malformations A General Imaging Approach to Brain CSF spaces. This is the basis for development of the Dandy- Malformations Walker malformation; it requires abnormal development of the cerebellum itself and of the overlying leptomeninges. Whenever an infant or child is referred for imaging because of Looking at the midline image also gives an idea of the relative either seizures or delayed development, the possibility of a head size through assessment of the craniofacial ratio. In the brain malformation should be carefully investigated. If the normal neonate, the ratio of the cranial vault to the face on child appears dysmorphic in any way (low-set ears, abnormal midline images is 5:1 or 6:1. By 2 years, it should be 2.5:1, and facies, hypotelorism), the likelihood of an underlying brain by 10 years, it should be about 1.5:1. malformation is even higher, but a normal appearance is no guarantee of a normal brain. In all such cases, imaging should After looking at the midline, evaluate the brain from outside be geared toward showing a structural abnormality. The to inside. Start with the cerebral cortex. Is the thickness imaging sequences should maximize contrast between gray normal (2-3 mm)? If it is too thick, think of pachygyria or matter and white matter, have high spatial resolution, and be polymicrogyria. Is the cortical white matter junction smooth or acquired as volumetric data whenever possible so that images irregular? If it is irregular, think of polymicrogyria or Brain: Pathology-Based Diagnoses can be reformatted in any plane or as a surface rendering.
    [Show full text]
  • Description Treatment
    Description Megalencephaly, also called macrencephaly, is a condition in which an infant or child has an abnormally large, heavy, and usually malfunctioning brain. By definition, the brain weight is greater than average for the age and gender of the child. Head enlargement may be evident at birth or the head may become abnormally large in the early years of life. Megalencephaly is thought to be related to a disturbance in the regulation of cell production in the brain. In normal development, neuron proliferation - the process in which nerve cells divide to form new generations of cells - is regulated so that the correct number of cells is produced in the proper place at the appropriate time. In a megalencephalic brain, too many cells are produced either during development or progressively as part of another disorder, such as one of the neurofibromatoses or leukodystrophies. Symptoms of megalencephaly include delayed development, seizures, and corticospinal (brain cortex and spinal cord) dysfunction. Megalencephaly affects males more often than females. Unilateral megalencephaly or hemimegalencephaly is a rare condition that is characterized by the enlargement of one side of the brain. Children with this disorder may have a large, asymmetrical head accompanied by seizures, partial paralysis, and impaired cognitive development. Megalencephaly is different from macrocephaly (also called megacephaly or megalocephaly), which describes a big head, and which doesn’t necessarily indicate abnormality. Large head size is passed down through the generations in some families. Treatment There is no standard treatment for megalencephaly. Treatment will depend upon the disorder with which the megalencephaly is associated and will address individual symptoms and disabilities.
    [Show full text]
  • Colpocephaly Diagnosed in a Neurologically Normal Adult in the Emergency Department
    CASE REPORT Colpocephaly Diagnosed in a Neurologically Normal Adult in the Emergency Department Christopher Parker, DO University of Illinois College of Medicine, Department of Emergency Medicine, Wesley Eilbert, MD Chicago, Illinois Timothy Meehan, MD Christopher Colbert, DO Section Editor: Rick A. McPheeters, DO Submission history: Submitted July 25, 2019; Revision received September 18, 2019; Accepted September 26, 2019 Electronically published October 21, 2019 Full text available through open access at http://escholarship.org/uc/uciem_cpcem DOI: 10.5811/cpcem.2019.9.44646 Colpocephaly is a form of congenital ventriculomegaly characterized by enlarged occipital horns of the lateral ventricles with associated neurologic abnormalities. The diagnosis of colpocephaly is typically made in infancy. Its diagnosis in adulthood without associated clinical symptoms is exceptionally rare. We report a case of colpocephaly diagnosed incidentally in an adult without neurologic abnormalities in the emergency department. To our knowledge, this is only the ninth reported case in an asymptomatic adult and the first to be described in the emergency medicine literature. [Clin Pract Cases Emerg Med. 2019;3(4):421–424.] INTRODUCTION been treated at four different EDs in the two weeks prior to Colpocephaly is a rare form of congenital presentation for the headaches, but no imaging studies had ventriculomegaly often associated with partial or been performed. The patient had no psychiatric history. His complete agenesis of the corpus callosum. Diagnosis is highest level of education was a high school diploma, and typically made in infancy due to associated neurological he was unemployed. and neurodevelopmental disorders.1,2 Initial discovery On arrival, the patient was afebrile with pulse, blood in adulthood is exceedingly rare.3-9 When identified pressure, and respiratory rate all within the normal range.
    [Show full text]
  • Megalencephaly and Macrocephaly
    277 Megalencephaly and Macrocephaly KellenD.Winden,MD,PhD1 Christopher J. Yuskaitis, MD, PhD1 Annapurna Poduri, MD, MPH2 1 Department of Neurology, Boston Children’s Hospital, Boston, Address for correspondence Annapurna Poduri, Epilepsy Genetics Massachusetts Program, Division of Epilepsy and Clinical Electrophysiology, 2 Epilepsy Genetics Program, Division of Epilepsy and Clinical Department of Neurology, Fegan 9, Boston Children’s Hospital, 300 Electrophysiology, Department of Neurology, Boston Children’s Longwood Avenue, Boston, MA 02115 Hospital, Boston, Massachusetts (e-mail: [email protected]). Semin Neurol 2015;35:277–287. Abstract Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and Keywords behavioral problems; specific disorders have associations with overgrowth or abnor- ► megalencephaly malities in other tissues. The molecular underpinnings of many of these disorders are ► hemimegalencephaly now understood, providing insight into how dysregulation of critical pathways leads to ►
    [Show full text]
  • Bilateral Posterior Periventricular Nodular Heterotopia: a Recognizable Cortical Malformation with a Spectrum of Associated Brain Abnormalities
    ORIGINAL RESEARCH PEDIATRICS Bilateral Posterior Periventricular Nodular Heterotopia: A Recognizable Cortical Malformation with a Spectrum of Associated Brain Abnormalities S.A. Mandelstam, R.J. Leventer, A. Sandow, G. McGillivray, M. van Kogelenberg, R. Guerrini, S. Robertson, S.F. Berkovic, G.D. Jackson, and I.E. Scheffer ABSTRACT BACKGROUND AND PURPOSE: Bilateral posterior PNH is a distinctive complex malformation with imaging features distinguishing it from classic bilateral PNH associated with FLNA mutations. The purpose of this study was to define the imaging features of posterior bilateral periventricular nodular heterotopia and to determine whether associated brain malformations suggest specific subcategories. MATERIALS AND METHODS: We identified a cohort of 50 patients (31 females; mean age, 13 years) with bilateral posterior PNH and systematically reviewed and documented associated MR imaging abnormalities. Patients were negative for mutations of FLNA. RESULTS: Nodules were often noncontiguous (n ϭ 28) and asymmetric (n ϭ 31). All except 1 patient showed associated developmental brain abnormalities involving a spectrum of posterior structures. A range of posterior fossa abnormalities affected the cerebellum, including cerebellar malformations and posterior fossa cysts (n ϭ 38). Corpus callosum abnormalities (n ϭ 40) ranged from mild dysplasia to agenesis. Posterior white matter volume was decreased (n ϭ 22), and colpocephaly was frequent (n ϭ 26). Most (n ϭ 40) had associated cortical abnormalities ranging from minor to major (polymicrogyria), typically located in the cortex overlying the PNH. Abnormal Sylvian fissure morphology was common (n ϭ 27), and hippocampal abnormalities were frequent (n ϭ 37). Four family cases were identified—2 with concordant malformation patterns and 2 with discordant malformation patterns.
    [Show full text]
  • Optic Nerve Hypoplasia Plus: a New Way of Looking at Septo-Optic Dysplasia
    Optic Nerve Hypoplasia Plus: A New Way of Looking at Septo-Optic Dysplasia Item Type text; Electronic Thesis Authors Mohan, Prithvi Mrinalini Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 22:50:06 Item License http://rightsstatements.org/vocab/InC/1.0/ Link to Item http://hdl.handle.net/10150/625105 OPTIC NERVE HYPOPLASIA PLUS: A NEW WAY OF LOOKING AT SEPTO-OPTIC DYSPLASIA By PRITHVI MRINALINI MOHAN ____________________ A Thesis Submitted to The Honors College In Partial Fulfillment of the Bachelors degree With Honors in Physiology THE UNIVERSITY OF ARIZONA M A Y 2 0 1 7 Approved by: ____________________________ Dr. Vinodh Narayanan Center for Rare Childhood Disorders Abstract Septo-optic dysplasia (SOD) is a rare congenital disorder that affects 1/10,000 live births. At its core, SOD is a disorder resulting from improper embryological development of mid-line brain structures. To date, there is no comprehensive understanding of the etiology of SOD. Currently, SOD is diagnosed based on the presence of at least two of the following three factors: (i) optic nerve hypoplasia (ii) improper pituitary gland development and endocrine dysfunction and (iii) mid-line brain defects, including agenesis of the septum pellucidum and/or corpus callosum. A literature review of existing research on the disorder was conducted. The medical history and genetic data of 6 patients diagnosed with SOD were reviewed to find damaging variants.
    [Show full text]
  • Polymicrogyria (PMG) ‘Many–Small–Folds’
    Polymicrogyria Dr Andrew Fry Clinical Senior Lecturer in Medical Genetics Institute of Medical Genetics, Cardiff [email protected] Polymicrogyria (PMG) ‘Many–small–folds’ • PMG is heterogeneous – in aetiology and phenotype • A disorder of post-migrational cortical organisation. PMG often appears thick on MRI with blurring of the grey-white matter boundary Normal PMG On MRI PMG looks thick but the cortex is actually thin – with folded, fused gyri Courtesy of Dr Jeff Golden, Pen State Unv, Philadelphia PMG is often confused with pachygyria (lissencephaly) Thick cortex (10 – 20mm) Axial MRI 4 cortical layers Lissencephaly Polymicrogyria Cerebrum Classical lissencephaly is due Many small gyri – often to under-migration. fused together. Axial MRI image at 7T showing morphological aspects of PMG. Guerrini & Dobyns Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014 Jul; 13(7): 710–726. PMG - aetiology Pregnancy history • Intrauterine hypoxic/ischemic brain injury (e.g. death of twin) • Intrauterine infection (e.g. CMV, Zika virus) TORCH, CMV PCR, [+deafness & cerebral calcification] CT scan • Metabolic (e.g. Zellweger syndrome, glycine encephalopathy) VLCFA, metabolic Ix • Genetic: Family history Familial recurrence (XL, AD, AR) Chromosomal abnormalities (e.g. 1p36 del, 22q11.2 del) Syndromic (e.g. Aicardi syndrome, Kabuki syndrome) Examin - Monogenic (e.g. TUBB2B, TUBA1A, GPR56) Array ation CGH Gene test/Panel/WES/WGS A cohort of 121 PMG patients Aim: To explore the natural history of PMG and identify new genes. Recruited: • 99 unrelated patients • 22 patients from 10 families 87% White British, 53% male ~92% sporadic cases (NB. ascertainment bias) Sporadic PMG • Array CGH, single gene and gene panel testing - then a subset (n=57) had trio-WES.
    [Show full text]
  • Reportable BD Tables Apr2019.Pdf
    April 2019 Georgia Department of Public Health | Division of Health Protection | Maternal and Child Health Epidemiology Unit Reportable Birth Defects with ICD-10-CM Codes Reportable Birth Defects in Georgia with ICD-10-CM Diagnosis Codes Table D.1 Brain Malformations and Neural Tube Defects ICD-10-CM Diagnosis Codes Birth Defect ICD-10-CM 1. Brain Malformations and Neural Tube Defects Q00-Q05, Q07 Anencephaly Q00.0 Craniorachischisis Q00.1 Iniencephaly Q00.2 Frontal encephalocele Q01.0 Nasofrontal encephalocele Q01.1 Occipital encephalocele Q01.2 Encephalocele of other sites Q01.8 Encephalocele, unspecified Q01.9 Microcephaly Q02 Malformations of aqueduct of Sylvius Q03.0 Atresia of foramina of Magendie and Luschka (including Dandy-Walker) Q03.1 Other congenital hydrocephalus (including obstructive hydrocephaly) Q03.8 Congenital hydrocephalus, unspecified Q03.9 Congenital malformations of corpus callosum Q04.0 Arhinencephaly Q04.1 Holoprosencephaly Q04.2 Other reduction deformities of brain Q04.3 Septo-optic dysplasia of brain Q04.4 Congenital cerebral cyst (porencephaly, schizencephaly) Q04.6 Other specified congenital malformations of brain (including ventriculomegaly) Q04.8 Congenital malformation of brain, unspecified Q04.9 Cervical spina bifida with hydrocephalus Q05.0 Thoracic spina bifida with hydrocephalus Q05.1 Lumbar spina bifida with hydrocephalus Q05.2 Sacral spina bifida with hydrocephalus Q05.3 Unspecified spina bifida with hydrocephalus Q05.4 Cervical spina bifida without hydrocephalus Q05.5 Thoracic spina bifida without
    [Show full text]
  • Massachusetts Birth Defects 2002-2003
    Massachusetts Birth Defects 2002-2003 Massachusetts Birth Defects Monitoring Program Bureau of Family Health and Nutrition Massachusetts Department of Public Health January 2008 Massachusetts Birth Defects 2002-2003 Deval L. Patrick, Governor Timothy P. Murray, Lieutenant Governor JudyAnn Bigby, MD, Secretary, Executive Office of Health and Human Services John Auerbach, Commissioner, Massachusetts Department of Public Health Sally Fogerty, Director, Bureau of Family Health and Nutrition Marlene Anderka, Director, Massachusetts Center for Birth Defects Research and Prevention Linda Casey, Administrative Director, Massachusetts Center for Birth Defects Research and Prevention Cathleen Higgins, Birth Defects Surveillance Coordinator Massachusetts Department of Public Health 617-624-5510 January 2008 Acknowledgements This report was prepared by the staff of the Massachusetts Center for Birth Defects Research and Prevention (MCBDRP) including: Marlene Anderka, Linda Baptiste, Elizabeth Bingay, Joe Burgio, Linda Casey, Xiangmei Gu, Cathleen Higgins, Angela Lin, Rebecca Lovering, and Na Wang. Data in this report have been collected through the efforts of the field staff of the MCBDRP including: Roberta Aucoin, Dorothy Cichonski, Daniel Sexton, Marie-Noel Westgate and Susan Winship. We would like to acknowledge the following individuals for their time and commitment to supporting our efforts in improving the MCBDRP. Lewis Holmes, MD, Massachusetts General Hospital Carol Louik, ScD, Slone Epidemiology Center, Boston University Allen Mitchell,
    [Show full text]
  • CONGENITAL ABNORMALITIES of the CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles Ffrench-Constant *I3
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_1.i3 on 1 March 2003. Downloaded from CONGENITAL ABNORMALITIES OF THE CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles ffrench-Constant *i3 J Neurol Neurosurg Psychiatry 2003;74(Suppl I):i3–i8 dvances in genetics and molecular biology have led to a better understanding of the control of central nervous system (CNS) development. It is possible to classify CNS abnormalities Aaccording to the developmental stages at which they occur, as is shown below. The careful assessment of patients with these abnormalities is important in order to provide an accurate prog- nosis and genetic counselling. c NORMAL DEVELOPMENT OF THE CNS Before we review the various abnormalities that can affect the CNS, a brief overview of the normal development of the CNS is appropriate. c Induction—After development of the three cell layers of the early embryo (ectoderm, mesoderm, and endoderm), the underlying mesoderm (the “inducer”) sends signals to a region of the ecto- derm (the “induced tissue”), instructing it to develop into neural tissue. c Neural tube formation—The neural ectoderm folds to form a tube, which runs for most of the length of the embryo. c Regionalisation and specification—Specification of different regions and individual cells within the neural tube occurs in both the rostral/caudal and dorsal/ventral axis. The three basic regions of copyright. the CNS (forebrain, midbrain, and hindbrain) develop at the rostral end of the tube, with the spinal cord more caudally. Within the developing spinal cord specification of the different popu- lations of neural precursors (neural crest, sensory neurones, interneurones, glial cells, and motor neurones) is observed in progressively more ventral locations.
    [Show full text]
  • Chiari Type II Malformation: Past, Present, and Future
    Neurosurg Focus 16 (2):Article 5, 2004, Click here to return to Table of Contents Chiari Type II malformation: past, present, and future KEVIN L. STEVENSON, M.D. Children’s Healthcare of Atlanta, Atlanta, Georgia Object. The Chiari Type II malformation (CM II) is a unique hindbrain herniation found only in patients with myelomeningocele and is the leading cause of death in these individuals younger than 2 years of age. Several theories exist as to its embryological evolution and recently new theories are emerging as to its treatment and possible preven- tion. A thorough understanding of the embryology, anatomy, symptomatology, and surgical treatment is necessary to care optimally for children with myelomeningocele and prevent significant morbidity and mortality. Methods. A review of the literature was used to summarize the clinically pertinent features of the CM II, with par- ticular attention to pitfalls in diagnosis and surgical treatment. Conclusions. Any child with CM II can present as a neurosurgical emergency. Expeditious and knowledgeable eval- uation and prompt surgical decompression of the hindbrain can prevent serious morbidity and mortality in the patient with myelomeningocele, especially those younger than 2 years old. Symptomatic CM II in the older child often pre- sents with more subtle findings but rarely in acute crisis. Understanding of CM II continues to change as innovative techniques are applied to this challenging patient population. KEY WORDS • Chiari Type II malformation • myelomeningocele • pediatric The CM II is uniquely associated with myelomeningo- four distinct forms of the malformation, including the cele and is found only in this population. Originally de- Type II malformation that he found exclusively in patients scribed by Hans Chiari in 1891, symptomatic CM II ac- with myelomeningocele.
    [Show full text]