A Primer on Evaluation and Use of Natural Resource Information for Corporate Data Bases

Total Page:16

File Type:pdf, Size:1020Kb

A Primer on Evaluation and Use of Natural Resource Information for Corporate Data Bases This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. United States Department ofAgricultu re A Primer on Evaluation and Use of Natural Resource Information for Corporate Data Bases Forest Service General Technical Report W0-62 0 I I I I I I I lo I I The cover shows an old USDA Forest Service photograph of a range conservationist evaluating one of his sheep. Like a shepherd, the USDA Forest Service has a huge flock of data that must be evaluated before it can be used. This primer provides suggestions for conducting such an evaluation. United States Department of A Primer on Evaluation and Agriculture Forest Service Use of Natural Resource General Technical Information for Corporate Report W0-62 March 1995 Data Bases Technical Coordinators H. Gyde Lund, Research Forester, Forest Inventory, Economics, and Recreation Research Staff, USDA Forest Service, Washington, DC Charles E. Thomas, Research Forester, Southern Forest Experiment Station, USDA Forest Service, New Orleans, LA Contributing Authors Robert G. Bailey, Program Manager, Land Management Planning Staff, Washington Office Detached, USDA Forest Service, Fort Collins, CO James E. Brickell, Forest Mensurationist (retired), Northern Region, USDA Forest Service, Missoula, MT William H. Clerke, Remote Sensing Specialist, Southern Region, USDA Forest Service, Atlanta, GA RobertS. Cunningham, Branch Chief, Programs and Legislation Staff, USDA Forest Service, Washington, DC Raymond L. Czaplewski, Mathematical Statistician, Rocky Mountain Forest and Range Experiment Station, USDA Forest Service, Fort Collins, CO Susan J. DeLost, Cartographer, Northeastern Area State and Private Forestry, USDA Forest Service, Morgantown, WV Fran Evanisko, Cartographer, USDI Bureau of Land Management, Sacramento, CA Harold R. Greenlee, Cartographer Supervisor, Southern Region, USDA Forest Service, Atlanta, GA Paul Howard, GIS Specialist, Pacific Northwest Region, USDA Forest Service, Portland, OR Randy Moore, .Deputy Forest Supervisor, Eastern Region, USDA Forest Service, Rolla, MO Jerry F. Ragus, Regional Soil Scientist, Southern Region, USDA Forest Service, Atlanta, GA Brian M. Spears, Forest Health Analytical Biologist (GIS), Southern Region, USDA Forest Service, Asheville, NC Wayne Valentine, Photogrammetrist (retired), Geometronics Service Center, USDA Forest Service, Salt Lake City, UT Lund, H. Gyde, and ChaMes E. Thomas (Technical Coordinators). March 1995. A Primer on Evaluation and Use of Natural Resource Information for Corporate Data Bases. USDA Forest Service, Washington Office, General Technical Report W0- 62. Washington, DC 168 p., illus. This primer provides resource inventory specialists with information on how to evaluate existing natural resource- information and how to use it in preparing new resource inventortes. Subjects covered indude determining information needs, finding ex!sllng lnformaUon, determining its utility, evaluating Its suitability and quality, and incorporating It into new geographic information systems. Keywords: corporate data bases, geographic information systems, resource inventories, Inventory reports, spatial data bases, nonspatial data bases, maps, overlays. remote sensing, aerial photos, aerial imagery, information sources, data utility, data suitability, data quality, data conversion, data updating The U.S. Department of Agriculture (USDA) prohibits discrimination In its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, aUdio­ tape, etc.) should contact the USDA Office of Communications at (202) 720-5881 (voice) or (202) 720-7808 (TDD). To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, DC 20250, or call (202) 720-7327 (voice) or (202) 720-1127 (TDD). USDA is r n equal employment opportunity employer. Contents v Preface vii Abbreviations 1 Chapter 1: Using This Primer Make Believe 3 Reality 7 Chapter 2: Determining Information Needs 7 Needs for Resource Management Decisions 9 Needs Specific to Corporate Data Bases 9 Advantages of Corporate Data Bases 10 Disadvantages of Corporate Data Bases 10 Needs Specific to Geographic Information Systems 15 Needs Specific to Future Resource Inventories 15 Summary 17 Chapter 3: Finding Sources of Information 17 Kinds of Information 17 Personal Knowledge 18 Inventory Reports and Data Bases 19 Maps, Overlays, and Computer Spatial Data Bases 19 Remote Sensing 23 Other Georeferenced Data 23 Locations oflnformation 26 Documenting Information 27 Summary 29 Chapter 4: Determining Data Utility 30 Basic Concepts 30 Information and Data 32 Classification Systems 34 Suitability and Quality 35 Accuracy Standards 37 Major Categories of Error Sources 38 Source Errors 39 Processing Errors 39 Use Errors 39 Specific Issues 39 Nonspatial Data Bases 41 Spatial Data Bases 48 Summary 49 Chapter 5: Evaluating Data Suitability and Quality 49 Data Suitability 51 Thematic Content 51 Resolution 52 Location 52 Data Quality 53 Strategies 56 Methods 58 Quality of Content iii 62 Conversion and Update Issues 63 Benefit/Cost Analysis 64 Nonspatial Data 64 Personal Knowledge 65 Inventory Reports and Data Bases 66 Spatial Data 66 Maps and Overlays 74 Remote Sensing Imagery and Satellite Classification 82 Summary 85 Chapter 6: Incorporating Existing Information 86 Converting Data for GIS and Corporate Data Bases 86 Personal Knowledge 86 Aerial Photos and Imagery 88 Maps and Overlays 93 Computer Spatial Data Bases 94 Inventory Data Bases and Reports 95 Updating and Maintaining Existing Information 95 Aerial Photos and Imagery 96 Maps and Overlays 97 Computer Spatial Data Bases 98 Inventory Data Bases and Reports 99 Spatial Information from Different Sources 109 New Mapping and Inventory Projects 110 Aerial Photos and Imagery Ill Maps and Overlays 112 Computer Spatial Data Bases 114 Inventory Plot Data, Data Bases, and Reports 119 Summary 121 Chapter 7: Building Better Data Bases 123 References 133 Appendix: Summary of Remote Sensing Sources 141 Bibliography 147 Glossary iv Preface The USDA Forest Service is about to embark on an agencywide implementation of geographic information system (GIS) technology and corporate data bases. GIS's and corporate data bases can be invaluable tools for monitoring, protecting, and managing the country's forest and rangeland resources. The value of these tools in meeting specific requirements will largely depend on the quality and usefulness of the informa­ tion included in the data bases. Much information exists about natural resources in the form of reports, maps, over­ lays, imagery, personal knowledge, and data bases. It is usually more economical to use existing information, to the extent practical, than to collect new data, but, in some cases, new data are needed. Evaluation of existing information is important either when designing a GIS or corporate database or when a new information requirement is being defined that will use an existing GIS or corporate database. What information is needed? What is available? Are the resource data adequate, or do new data need to be collected? These are some of the questions resource and informa­ tion specialists face. Starting in 1990, the Forest Service's, Washington Office Geo­ graphic Information System Steering Committee, through the Timber Management and Information Systems and Technology Staffs, commissioned a task group to de­ velop a primer to address these questions. During that year, a number of outlines of the proposed primer's content were devel­ oped and circulated within the Forest Service for review. Agency specialists in remote sensing, GIS, cartography, information systems, and resource inventory were recruited to write the primer. In May 1993, a draft was sent to selected Forest Service personnel and to internationally recognized authorities for peer review. This volume incorpo­ rates the comments and suggestions received from that peer review. It is designed to benefit any person or agency in the process of building corporate data bases, GIS's, or planning inventories. It is important to learn from the past. When the Forest Service first started the plan­ ning process under the National Forest Management Act of 1976, its field units were instructed to use existing information to build their data bases. In some instances, the existing data were outdated or inappropriate for integrated forest planning. Using this data was a costly error resulting in delays in implementation as new inventories were made and forest plans redone. This primer is intended to provide managers and re­ source specialists with the guidance necessary to build corporate and GIS data bases that will meet the agency's needs now and in the coming century. v This page intentionally left blank. Abbreviations AVHRR Advanced very high resolution radiometer BA Basal area BW Black and white (panchromatic) photographs CFF Cartographic feature file CI Confidence interval CIR Color infared dbh Diameter at breast height (4.5 ft [1.3 m]) DBMS Database management system DEM Digital elevation model DLG Digital line graph EOSAT Earth Observation Satellite Corporation EROS Earth Resources Observation Satellite Data Center FIA Forest Inventory and Analysis Unit FGDC Federal Geographic Data Committee FPM USDA
Recommended publications
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • General Index
    General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d.
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • Use of Remotely Sensed Data to Enhance Estimation of Aboveground Biomass for the Dry Afromontane Forest in South-Central Ethiopia
    remote sensing Article Use of Remotely Sensed Data to Enhance Estimation of Aboveground Biomass for the Dry Afromontane Forest in South-Central Ethiopia Habitamu Taddese 1,2,* , Zerihun Asrat 2,3 , Ingunn Burud 1, Terje Gobakken 3 , Hans Ole Ørka 3 , Øystein B. Dick 1 and Erik Næsset 3 1 Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; [email protected] (I.B.); [email protected] (Ø.B.D.) 2 Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene 3870006, Ethiopia; [email protected] 3 Faculty Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; [email protected] (T.G.); [email protected] (H.O.Ø.); [email protected] (E.N.) * Correspondence: [email protected]; Tel.: +47-4671-8534 Received: 31 July 2020; Accepted: 11 October 2020; Published: 13 October 2020 Abstract: Periodic assessment of forest aboveground biomass (AGB) is essential to regulate the impacts of the changing climate. However, AGB estimation using field-based sample survey (FBSS) has limited precision due to cost and accessibility constraints. Fortunately, remote sensing technologies assist to improve AGB estimation precisions. Thus, this study assessed the role of remotely sensed (RS) data in improving the precision of AGB estimation in an Afromontane forest in south-central Ethiopia. The research objectives were to identify RS variables that are useful for estimating AGB and evaluate the extent of improvement in the precision of the remote sensing-assisted AGB estimates beyond the precision of a pure FBSS.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • User Guide to 1:250,000 Scale Lunar Maps
    CORE https://ntrs.nasa.gov/search.jsp?R=19750010068Metadata, citation 2020-03-22T22:26:24+00:00Z and similar papers at core.ac.uk Provided by NASA Technical Reports Server USER GUIDE TO 1:250,000 SCALE LUNAR MAPS (NASA-CF-136753) USE? GJIDE TO l:i>,, :LC h75- lu1+3 SCALE LUNAR YAPS (Lumoalcs Feseclrch Ltu., Ottewa (Ontario) .) 24 p KC 53.25 CSCL ,33 'JIACA~S G3/31 11111 DANNY C, KINSLER Lunar Science Instltute 3303 NASA Road $1 Houston, TX 77058 Telephone: 7131488-5200 Cable Address: LUtiSI USER GUIDE TO 1: 250,000 SCALE LUNAR MAPS GENERAL In 1972 the NASA Lunar Programs Office initiated the Apollo Photographic Data Analysis Program. The principal point of this program was a detailed scientific analysis of the orbital and surface experiments data derived from Apollo missions 15, 16, and 17. One of the requirements of this program was the production of detailed photo base maps at a useable scale. NASA in conjunction with the Defense Mapping Agency (DMA) commenced a mapping program in early 1973 that would lead to the production of the necessary maps based on the need for certain areas. This paper is designed to present in outline form the neces- sary background informatiox or users to become familiar with the program. MAP FORMAT * The scale chosen for the project was 1:250,000 . The re- search being done required a scale that Principal Investigators (PI'S) using orbital photography could use, but would also serve PI'S doing surface photographic investigations. Each map sheet covers an area four degrees north/south by five degrees east/west.
    [Show full text]
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • Seeds of Discovery: Chapters in the Economic History of Innovation Within NASA
    Seeds of Discovery: Chapters in the Economic History of Innovation within NASA Edited by Roger D. Launius and Howard E. McCurdy 2015 MASTER FILE AS OF Friday, January 15, 2016 Draft Rev. 20151122sj Seeds of Discovery (Launius & McCurdy eds.) – ToC Link p. 1 of 306 Table of Contents Seeds of Discovery: Chapters in the Economic History of Innovation within NASA .............................. 1 Introduction: Partnerships for Innovation ................................................................................................ 7 A Characterization of Innovation ........................................................................................................... 7 The Innovation Process .......................................................................................................................... 9 The Conventional Model ....................................................................................................................... 10 Exploration without Innovation ........................................................................................................... 12 NASA Attempts to Innovate .................................................................................................................. 16 Pockets of Innovation............................................................................................................................ 20 Things to Come ...................................................................................................................................... 23
    [Show full text]
  • Women in Astronomy: an Introductory Resource Guide
    Women in Astronomy: An Introductory Resource Guide by Andrew Fraknoi (Fromm Institute, University of San Francisco) [April 2019] © copyright 2019 by Andrew Fraknoi. All rights reserved. For permission to use, or to suggest additional materials, please contact the author at e-mail: fraknoi {at} fhda {dot} edu This guide to non-technical English-language materials is not meant to be a comprehensive or scholarly introduction to the complex topic of the role of women in astronomy. It is simply a resource for educators and students who wish to begin exploring the challenges and triumphs of women of the past and present. It’s also an opportunity to get to know the lives and work of some of the key women who have overcome prejudice and exclusion to make significant contributions to our field. We only include a representative selection of living women astronomers about whom non-technical material at the level of beginning astronomy students is easily available. Lack of inclusion in this introductory list is not meant to suggest any less importance. We also don’t include Wikipedia articles, although those are sometimes a good place for students to begin. Suggestions for additional non-technical listings are most welcome. Vera Rubin Annie Cannon & Henrietta Leavitt Maria Mitchell Cecilia Payne ______________________________________________________________________________ Table of Contents: 1. Written Resources on the History of Women in Astronomy 2. Written Resources on Issues Women Face 3. Web Resources on the History of Women in Astronomy 4. Web Resources on Issues Women Face 5. Material on Some Specific Women Astronomers of the Past: Annie Cannon Margaret Huggins Nancy Roman Agnes Clerke Henrietta Leavitt Vera Rubin Williamina Fleming Antonia Maury Charlotte Moore Sitterly Caroline Herschel Maria Mitchell Mary Somerville Dorrit Hoffleit Cecilia Payne-Gaposchkin Beatrice Tinsley Helen Sawyer Hogg Dorothea Klumpke Roberts 6.
    [Show full text]
  • Space Security Index 2013
    SPACE SECURITY INDEX 2013 www.spacesecurity.org 10th Edition SPACE SECURITY INDEX 2013 SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security Index 2013 ISBN: 978-1-927802-05-2 FOR PDF version use this © 2013 SPACESECURITY.ORG ISBN: 978-1-927802-05-2 Edited by Cesar Jaramillo Design and layout by Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Soyuz TMA-07M Spacecraft ISS034-E-010181 (21 Dec. 2012) As the International Space Station and Soyuz TMA-07M spacecraft were making their relative approaches on Dec. 21, one of the Expedition 34 crew members on the orbital outpost captured this photo of the Soyuz. Credit: NASA. Printed in Canada Printer: Pandora Print Shop, Kitchener, Ontario First published October 2013 Please direct enquiries to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 7708 Fax: 519-888-0018 Email: [email protected] Governance Group Julie Crôteau Foreign Aairs and International Trade Canada Peter Hays Eisenhower Center for Space and Defense Studies Ram Jakhu Institute of Air and Space Law, McGill University Ajey Lele Institute for Defence Studies and Analyses Paul Meyer The Simons Foundation John Siebert Project Ploughshares Ray Williamson Secure World Foundation Advisory Board Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research John Logsdon The George Washington University Lucy Stojak HEC Montréal Project Manager Cesar Jaramillo Project Ploughshares Table of Contents TABLE OF CONTENTS TABLE PAGE 1 Acronyms and Abbreviations PAGE 5 Introduction PAGE 9 Acknowledgements PAGE 10 Executive Summary PAGE 23 Theme 1: Condition of the space environment: This theme examines the security and sustainability of the space environment, with an emphasis on space debris; the potential threats posed by near-Earth objects; the allocation of scarce space resources; and the ability to detect, track, identify, and catalog objects in outer space.
    [Show full text]
  • THE BAADER PLANETARIUM MORPHEUS™ By: William A
    THE BAADER PLANETARIUM MORPHEUS™ by: William A. Paolini, August 18, 2015 The new Baader Morpheus eyepieces sport a wide 76º apparent field of view, comfortable eye relief, sealed watertight housings, and an optical design that provides sharp-to-the-edge performance even in fast focal ratio telescopes. Fig 1: Baader’s new Morpheus eyepieces -- precision optics, light weight, comfortable, engaging, and photo-visual ready. 1. OVERVIEW The new Morpheus line of eyepieces from Baader Planetarium provide a level of performance well above their current Hyperions, and are a worthy "big brother" to that line. The Morpheus sport a long list of features which include: light weight, sealed watertight construction, immersive 76º apparent field of view (AFOV), generous eye relief that varies from 17.5mm to 21mm, a proprietary 8 element 5 group design incorporating rare-earth glasses, Baader's Phantom Coating® Group index-matched to each glass type, blackened lens edges, rubber grip ring, integrated M43 photo-visual threading, dual skirt design allowing them to be used in either 1.25" or 2" focusers, multiple eye guards (conventional and winged), multiple dust caps (to accommodate the multiple eyeguards), “safety-kerfs” instead of undercuts on the 1.25" and 2" barrels, photo-luminescent graphics to aid in identification in the dark, and a Cordura eyepiece holster with belt attachment. Focal AFOV Eye Field Min Height Max Width Weight Parfocal Length Relief Stop (eyeguards down) (housing) 4.5 mm 76° 17.5 mm 6.10 mm 127 mm 55 mm 13.0 oz Yes 6.5 mm 76° 18.5 mm 8.75mm 122 mm 55 mm 12.3 oz Yes 9 mm 76° 21.0 mm 12.10 mm 119 mm 55 mm 12.7 oz Yes 12.5 mm 76° 20.0 mm 16.80 mm 109 mm 55 mm 12.2 oz Yes 14 mm 76° 18.5 mm 18.85 mm 110 mm 55 mm 12.7 oz Yes 17.5 mm 76° 19.0 mm 23.55 mm 104 mm 55 mm 13.9 oz Yes 2.
    [Show full text]
  • Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) Observation Coverage Over the Conterminous United States and Implications for Terrestrial Monitoring
    remote sensing Article Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) Observation Coverage over the Conterminous United States and Implications for Terrestrial Monitoring Alexey V. Egorov 1 , David P. Roy 2,* , Hankui K. Zhang 1 , Zhongbin Li 1, Lin Yan 1 and Haiyan Huang 1 1 Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD 57007, USA; [email protected] (A.V.E.); [email protected] (H.K.Z.); [email protected] (Z.L.); [email protected] (L.Y.); [email protected] (H.H.) 2 Department of Geography, Environment & Spatial Sciences and Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48824, USA * Correspondence: [email protected]; Tel.: +1-517-355-3898 Received: 28 January 2019; Accepted: 17 February 2019; Published: 21 February 2019 Abstract: The Landsat Analysis Ready Data (ARD) are designed to make the U.S. Landsat archive straightforward to use. In this paper, the availability of the Landsat 4 and 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) ARD over the conterminous United States (CONUS) are quantified for a 36-year period (1 January 1982 to 31 December 2017). Complex patterns of ARD availability occur due to the satellite orbit and sensor geometry, cloud, sensor acquisition and health issues and because of changing relative orientation of the ARD tiles with respect to the Landsat orbit paths. Quantitative per-pixel and summary ARD tile results are reported. Within the CONUS, the average annual number of non-cloudy observations in each 150 × 150 km ARD tile varies from 0.53 to 16.80 (Landsat 4 TM), 11.08 to 22.83 (Landsat 5 TM), 9.73 to 21.72 (Landsat 7 ETM+) and 14.23 to 30.07 (all three sensors).
    [Show full text]