Histopathological Diagnosis of Japanese Spotted Fever Using

Total Page:16

File Type:pdf, Size:1020Kb

Histopathological Diagnosis of Japanese Spotted Fever Using CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector ORIGINAL ARTICLE BACTERIOLOGY Histopathological diagnosis of Japanese spotted fever using formalin- fixed, paraffin-embedded skin biopsy specimens Usefulness of immunohistochemistry and real-time PCR analysis K. Tamakuma1, Y. Mizutani1, M. Ito1, K. Shiogama1, K. Inada1, K. Miyamoto2, H. Utsunomiya3, F. Mahara4 and Y. Tsutsumi1 1) Department of Pathology, Fujita Health University School of Medicine, Toyoake, 2) Department of Microbiology, 3) Division of Strategic Surveillance for Function Food and Comprehensive Traditional Medicine, Wakayama Medical University School of Medicine, Wakayama and 4) Mahara Clinic, Anan, Japan Abstract Japanese spotted fever (JSF) is caused by Rickettsia japonica, and lethal cases are reported yearly in southwest Japan. We thus established the method of diagnosing JSF by immunohistochemistry (IHC) and real-time PCR (RT-PCR) using formalin-fixed, paraffin-embedded skin biopsy specimens. Two monoclonal antibodies were used for IHC, and the 17k genus common antigen gene served as the target of RT-PCR. We collected skin biopsy (n = 61) and autopsy (n = 1) specimens from 50 patients clinically suspected of JSF. Immunohisto- chemically, the rickettsial antigens were localized as coarse dots in the cytoplasm of endothelial cells and macrophages. Thirty-one sero- positive cases plus one autopsy case (group A) and nine seronegative cases but with positive IHC and/or RT-PCR (group B) were judged as JSF. Nine cases were regarded as non-JSF disorders based on negative serology, IHC and RT-PCR (group C). Of 50 biopsies (eschar 34, eruptions 10, and scabs 6) from groups A and B, IHC and RT-PCR positivities were 94% (32/34) and 62% (21/34) for eschar, 80% (8/10) and 30% (3/10) for eruptions, and 33% (2/6) and 50% (3/6) for scabs. For IHC, eschar was most suitable, and scabs were insufficient. Unexpectedly, 18 biopsies happened to be fixed in 100% formalin, and this lowered the detection rate by RT-PCR, but IHC was tolerant. Sequence analysis using five skin biopsy specimens confirmed a 114 bp DNA stretch homologous to that reported for the target gene of R. japonica. In 26 (84%) of the 31 seropositive patients, the diagnosis was made by IHC and/or RT-PCR earlier than serology. Keywords: 17k genus common antigen, formalin-fixed paraffin-embedded specimen, immunohistochemistry, Japanese spotted fever, real-time PCR, Rickettsia japonica, skin biopsy Original Submission: 11 January 2011; Revised Submission: 16 April 2011; Accepted: 22 April 2011 Editor: D. Raoult Article published online: 7 May 2011 Clin Microbiol Infect 2012; 18: 260–267 10.1111/j.1469-0691.2011.03569.x confirmed [4,5]. Because fatal JSF cases have recently been Corresponding author: Y. Tsutsumi, MD, Department of seen in southwest Japan [6,7], establishment of reliable diag- Pathology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan nostic assays is needed. E-mail: [email protected] Serological screening of IgM and IgG antibodies and detec- tion of Rj DNA in blood by polymerase chain reaction (PCR) are the main diagnostic tests for JSF [8,9]. Serology requires a minimal twofold increase of antibody titres between the initial Introduction and second blood samples. It usually takes a 2-week period; therefore this cannot be used in an emergency situation. There are two rickettsioses endemic in Japan: Japanese spot- Indeed, fatal JSF cases have occurred within 24 h of hospitaliza- ted fever (JSF) caused by Rickettsia japonica (Rj) and Tsutsuga- tion. Empirical treatment was started on clinical suspicion, and mushi disease caused by Orientia tsutsugamushi (Ot). JSF was serological diagnosis was made retrospectively [6]. first reported by Mahara, et al. [1,2] in 1984 in Tokushima, We have established diagnostic immunohistochemistry Shikoku Island. JSF is thus one of the newcomers to the (IHC) using two monoclonal antibodies in formalin-fixed, spotted fever group (SFG) rickettsioses [3]. In Japan, JSF paraffin-embedded (FFPE) specimens biopsied from eschar cases must be reported to the health authorities once and eruptions [10,11]. When tiny samples or superficial ª2011 The Authors Clinical Microbiology and Infection ª2011 European Society of Clinical Microbiology and Infectious Diseases CMI Tamakuma et al. Histopathological diagnosis of Japanese spotted fever 261 scabs were submitted, false-negative results happened. 5% fetal calf serum (Hyclone, Logan, UT, USA). The cells Therefore, we started detecting Rj DNA extracted from harvested 5 to 7 days after inoculation were fixed in 10% for- Ò FFPE skin biopsies with TaqMan real-time PCR (RT-PCR). malin overnight. Cell blocks of uninfected and infected L929 RT-PCR was targeted at the 17k genus common antigen cells were prepared by a gelation method using sodium algi- gene to yield short-length products. We utilized FFPE speci- nate membranes [13]. Cell blocks were also prepared from mens not only to establish histopathological diagnostic tools R. conorii (Malish strain)-infected monkey Vero cells (Fuller but also to avoid possible biohazard during handling of the Laboratories, Fullerton, CA, USA) fixed in 10% formalin. biopsy material. The aims of the present study are to establish the method Monoclonal antibodies and IHC for diagnosing JSF with IHC and RT-PCR in FFPE skin biop- Mouse IgM monoclonal antibodies, clones S3 and X1, directed sies, and to compare these two assays with serology. to the Rj Aoki strain were a gift from Dr Yosaburo Oikawa, Department of Parasitology, Kanazawa Medical University, Kanazawa. Both clones react with the epitope common to Materials and Methods SFG rickettsiae, but do not cross-react with Ot [14,15]. Sections, 4 lm thick, were prepared from cell blocks and Clinical specimens tissue specimens. After inactivating endogenous peroxidase In the period 2004–2010, we collected specimens from 50 with 0.3% H2O2 in methanol for 20 min, sections were heat- patients clinically suspected of having JSF. The clinics and retrieved in 10 mM citrate buffer, pH 7.0 for 10 min with a hospitals supplying samples included Mahara Clinic (Anan, pressure cooker. Incubation with the monoclonals (dilution: Tokushima, n = 17), Yamada Red Cross Hospital (Ise, Mie, 1:100) at room temperature overnight and then amino acid n = 13), Myojin Clinic (Kozagawa, Wakayama, n = 9), Uwaj- polymers (Simple Stain MAX-PO, Nichirei, Tokyo, Japan) for ima Municipal Hospital (Uwajima, Ehime, n = 7), Hyogo Pre- 30 min at room temperature followed [10,11]. Antigen local- fectural Awaji Hospital (Sumoto, Hyogo, n = 1), Shinano ization was visualized in 50 mM Tris–HCl buffer, pH 7.6 con- Hospital (Tomi, Nagano, n = 1), Yasu Hospital (Yasu, Shiga, taining 1 mM 3,3¢-diaminobenzidine and 0.006% H2O2. n = 1) and Notogawa Hospital (Higashiomi, Shiga, n = 1). Nuclei were counterstained with haematoxylin. Biopsy samples were taken from 49 cases, and autopsy material from one. The skin samples (n = 61) included eschar DNA preparation (n = 42), eruptions (n = 12) and scabs (n = 7). All but the Five 4-lm-thick FFPE sections were collected in Eppendorf’s autopsied tissues, fixed in formalin, were sent to our depart- tubes. After deparaffinization, DNA was extracted using a ment within 24–72 h. Normal skin sampled at autopsy QIAamp DNA FFPE Tissue kit (#56404; Qiagen, Hilden, served as a negative control. For serological assays, sera Germany). At sample processing, microtome blades were were sent to Ohara Research Laboratory, Fukushima, or renewed to prevent sample-to-sample contamination. Prefectural Institutes of Public Health. In total, 89 sera (acute 46 and convalescent 43) were analysed serologically, as Real-time PCR described earlier [12]. The cut-off value was set at <·40 for The 17k genus common antigen gene of SFG rickettsia origin both IgM and IgG. The Rj Aoki strain was used as the anti- was amplified by RT-PCR, according to the previous reports gen. Rickettsia was isolated in limited cases in Ohara [9,16,17]. Primer pairs for Rj consisted of 5¢-ATG AAT AAA Research Laboratory, as reported previously [12]. CAA GGT ACA GGA ACA-3¢ (forward: 24mer) and 5¢-AAG TAA TGC ACC TAC ACC TAC TC-3¢ (reverse: 23mer), gen- Cultivation of rickettsial strains and preparation of cell erating products of 114 bp length (GenBank D16515). Both blocks primers were 100% homologous to R. conorii (GenBank Rickettsiae (Aoki and Katayama strains of Rj and Kato, Karp M28480) and R. rickettsii (M28479), while three bases (for- and Gilliam strains of Ot) were sent from Ohara Research ward) and one base (reverse) were mismatched with R. typhi Laboratory. All strains were passed in cultured L929 cells (M28481) and R. prowazekii (M28482). Signals were detected Ò (fibroblast-like cells of a C3H/An mouse) at a biosafety level with a TaqMan hybridization probe FAM-GGT GGC GCA 3 containment laboratory in the Department of Microbiol- TTA CTT GGT TCT CAA TTC GGT AAG GG-TAMRA for ogy, Wakayama Medical University, Wakayama. Rj (Applied Biosystems, Foster City, CA, USA). The number of Ò The cells were grown at 32°Cin25cm2 plastic cell cul- bases mismatched with the TaqMan probe (35mer) was one ture flasks containing Dulbecco’s modified Eagle’s minimal base for R. conorii, two bases for R. rickettsii, three bases for essential medium (Nissui, Tokyo, Japan) supplemented with R. prowazekii and four bases for R. typhi. ª2011 The Authors Clinical Microbiology and Infection ª2011 European Society of Clinical Microbiology and Infectious Diseases, CMI, 18, 260–267 262 Clinical Microbiology and Infection, Volume 18 Number 3, March 2012 CMI Assays were carried out in 20 lL final volume containing to antibiotic therapy, and positivities of IHC and/or RT-PCR. 1.5–3.0 lL of sample DNA, 2· reaction mixture (10 lL, Pre- Case distribution in groups A and B (n = 41) is shown on mix Ex TaqÔ; TaKaRa Bio, Otsu, Shiga, Japan), 10 pmol prim- Japan’s map (Fig.
Recommended publications
  • Vectorborne Zoonoses: Break-Out Session Epidemiology and Laboratory Capacity Workshop – Oct
    Texas Department of State Health Services Vectorborne Zoonoses: Break-out Session Epidemiology and Laboratory Capacity Workshop – Oct. 2018 DSHS Zoonosis Control Branch Session Topics Texas Department of State Health Services • NEDSS case investigation tips • Lyme disease • Rickettsial diseases • Arboviral diseases ELC 2018 - Vectorborne Diseases 2 Texas Department of State Health Services Don’t be a Reject! Helpful tips to keep your notification from being rejected ELC breakout session October 3, 2018 Kamesha Owens, MPH Zoonosis Control Branch Texas Department of State Health Services Objectives • Rejection Criteria • How to document in NBS (NEDSS) • How to Report Texas Department of State Health Services 10/3/2018 ELC 2018 - Vectorborne Diseases 4 Rejection Criteria Texas Department of State Health Services Missing/incorrect information: • Incorrect case status or condition selected • Full Name • Date of Birth • Address • County • Missing laboratory data 10/3/2018 ELC 2018 - Vectorborne Diseases 5 Rejection Criteria continued Texas Department of State Health Services • Inconsistent information • e.g. Report date is a week before onset date • Case investigation form not received by ZCB within 14 days of notification • ZCB recommends that notification not be created until the case is closed and the investigation form has been submitted 10/3/2018 ELC 2018 - Vectorborne Diseases 6 Rejection Criteria continued Texas Department of State Health Services • Condition-specific information necessary to report the case is missing: • Travel history for Zika and other non-endemic conditions • Evidence of neurological disease for WNND case • Supporting documentation for Lyme disease case determination 10/3/2018 ELC 2018 - Vectorborne Diseases 7 How to Document in NBS (NEDSS) Do Don’t Add detailed comments in designated Leave us guessing! comments box under case info tab.
    [Show full text]
  • Mechanisms of Rickettsia Parkeri Invasion of Host Cells and Early Actin-Based Motility
    Mechanisms of Rickettsia parkeri invasion of host cells and early actin-based motility By Shawna Reed A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Matthew D. Welch, Chair Professor David G. Drubin Professor Daniel Portnoy Professor Kathleen R. Ryan Fall 2012 Mechanisms of Rickettsia parkeri invasion of host cells and early actin-based motility © 2012 By Shawna Reed ABSTRACT Mechanisms of Rickettsia parkeri invasion of host cells and early actin-based motility by Shawna Reed Doctor of Philosophy in Microbiology University of California, Berkeley Professor Matthew D. Welch, Chair Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Spotted fever group (SFG) Rickettsia hijack the host actin cytoskeleton to invade, move within, and spread between eukaryotic host cells during their obligate intracellular life cycle. Rickettsia express two bacterial proteins that can activate actin polymerization: RickA activates the host actin-nucleating Arp2/3 complex while Sca2 directly nucleates actin filaments. In this thesis, I aimed to resolve which host proteins were required for invasion and intracellular motility, and to determine how the bacterial proteins RickA and Sca2 contribute to these processes. Although rickettsiae require the host cell actin cytoskeleton for invasion, the cytoskeletal proteins that mediate this process have not been completely described. To identify the host factors important during cell invasion by Rickettsia parkeri, a member of the SFG, I performed an RNAi screen targeting 105 proteins in Drosophila melanogaster S2R+ cells.
    [Show full text]
  • Scrub Typhus and Molecular Characterization of Orientia Tsutsugamushi from Central Nepal
    pathogens Article Scrub Typhus and Molecular Characterization of Orientia tsutsugamushi from Central Nepal Rajendra Gautam 1, Keshab Parajuli 1, Mythili Tadepalli 2, Stephen Graves 2, John Stenos 2,* and Jeevan Bahadur Sherchand 1 1 Department of Microbiology, Maharajgunj Medical Campus, Institute of Medicine, Kathmandu 44600, Nepal; [email protected] (R.G.); [email protected] (K.P.); [email protected] (J.B.S.) 2 Australian Rickettsial Reference Laboratory, Geelong, VIC 3220, Australia; [email protected] (M.T.); [email protected] (S.G.) * Correspondence: [email protected]; Tel.: +61-342151357 Abstract: Scrub typhus is a vector-borne, acute febrile illness caused by Orientia tsutsugamushi. Scrub typhus continues to be an important but neglected tropical disease in Nepal. Information on this pathogen in Nepal is limited to serological surveys with little information available on molecular methods to detect O. tsutsugamushi. Limited information exists on the genetic diversity of this pathogen. A total of 282 blood samples were obtained from patients with suspected scrub typhus from central Nepal and 84 (30%) were positive for O. tsutsugamushi by 16S rRNA qPCR. Positive samples were further subjected to 56 kDa and 47 kDa molecular typing and molecularly compared to other O. tsutsugamushi strains. Phylogenetic analysis revealed that Nepalese O. tsutsugamushi strains largely cluster together and cluster away from other O. tsutsugamushi strains from Asia and elsewhere. One exception was the sample of Nepal_1, with its partial 56 kDa sequence clustering Citation: Gautam, R.; Parajuli, K.; more closely with non-Nepalese O. tsutsugamushi 56 kDa sequences, potentially indicating that Tadepalli, M.; Graves, S.; Stenos, J.; homologous recombination may influence the genetic diversity of strains in this region.
    [Show full text]
  • Typhus Fever, Organism Inapparently
    Rickettsia Importance Rickettsia prowazekii is a prokaryotic organism that is primarily maintained in prowazekii human populations, and spreads between people via human body lice. Infected people develop an acute, mild to severe illness that is sometimes complicated by neurological Infections signs, shock, gangrene of the fingers and toes, and other serious signs. Approximately 10-30% of untreated clinical cases are fatal, with even higher mortality rates in Epidemic typhus, debilitated populations and the elderly. People who recover can continue to harbor the Typhus fever, organism inapparently. It may re-emerge years later and cause a similar, though Louse–borne typhus fever, generally milder, illness called Brill-Zinsser disease. At one time, R. prowazekii Typhus exanthematicus, regularly caused extensive outbreaks, killing thousands or even millions of people. This gave rise to the most common name for the disease, epidemic typhus. Epidemic typhus Classical typhus fever, no longer occurs in developed countries, except as a sporadic illness in people who Sylvatic typhus, have acquired it while traveling, or who have carried the organism for years without European typhus, clinical signs. In North America, R. prowazekii is also maintained in southern flying Brill–Zinsser disease, Jail fever squirrels (Glaucomys volans), resulting in sporadic zoonotic cases. However, serious outbreaks still occur in some resource-poor countries, especially where people are in close contact under conditions of poor hygiene. Epidemics have the potential to emerge anywhere social conditions disintegrate and human body lice spread unchecked. Last Updated: February 2017 Etiology Rickettsia prowazekii is a pleomorphic, obligate intracellular, Gram negative coccobacillus in the family Rickettsiaceae and order Rickettsiales of the α- Proteobacteria.
    [Show full text]
  • Positive Rates of Anti-Acari-Borne Disease Antibodies of Rural Inhabitants in Japan
    NOTE Public Health Positive rates of anti-acari-borne disease antibodies of rural inhabitants in Japan Tsutomu TAKEDA1)*, Hiromi FUJITA2), Masumi IWASAKI3), Moe KASAI3), Nanako TATORI4), Tomohiko ENDO5), Yuuji KODERA1,5) and Naoto YAMABATA6) 1)Wildlife Section, Center for Weed and Wildlife Management, Utsunomiya University, 350 Mine, Utsunomiya-shi, Tochigi 321-8505, Japan 2)Mahara Institute of Medical Acarology, 56-3 Aratano, Anan-shi, Tokushima 779-1510, Japan 3)Nikko Yumoto Visitor Center, National Parks Foundation Nikko Branch, Yumoto, Nikko-shi, Tochigi 321-1662, Japan 4)Department of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya-shi, Tochigi 321-8505, Japan 5)United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan 6)Institute of Natural and Environmental Sciences, University of Hyogo, Sawano 940, Aogaki-cho, Tanba, Hyogo 669-3842, Japan J. Vet. Med. Sci. ABSTRACT. An assessment of acari (tick and mite) borne diseases was required to support 81(5): 758–763, 2019 development of risk management strategies in rural areas. To achieve this objective, blood samples were mainly collected from rural residents participating in hunting events. Out of 1,152 doi: 10.1292/jvms.18-0572 blood samples, 93 were positive against acari-borne pathogens from 12 prefectures in Japan. Urban areas had a lower rate of positive antibodies, whereas mountainous farming areas had a higher positive antibody prevalence. Residents of mountain areas were bitten by ticks or mites Received: 25 September 2018 significantly more often than urban residents. Resident of mountain areas, including hunters, may Accepted: 9 March 2019 necessary to be educated for prevention of akari-borne infectious diseases.
    [Show full text]
  • A Streamlined Method for Transposon Mutagenesis of Rickettsia Parkeri
    bioRxiv preprint doi: https://doi.org/10.1101/277160; this version posted March 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A streamlined method for transposon mutagenesis of 2 Rickettsia parkeri yields numerous mutations that 3 impact infection 4 5 Rebecca L. Lamason1,#a,*, Natasha M. Kafai1,#b, and Matthew D. Welch1* 6 7 8 1 Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, 9 CA 10 #a Current address: Department of Biology, Massachusetts Institute of Technology, 11 Cambridge, MA 12 #b Current address: Medical Scientist Training Program, Washington University in St. 13 Louis School of Medicine, St. Louis, MO 14 15 16 17 18 * Co-corresponding authors 19 E-mail: [email protected], [email protected] 20 1 bioRxiv preprint doi: https://doi.org/10.1101/277160; this version posted March 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 21 Abstract 22 The rickettsiae are obligate intracellular alphaproteobacteria that exhibit a complex 23 infectious life cycle in both arthropod and mammalian hosts. As obligate intracellular 24 bacteria, Rickettsia are highly adapted to living inside a variety of host cells, including 25 vascular endothelial cells during mammalian infection. Although it is assumed that the 26 rickettsiae produce numerous virulence factors that usurp or disrupt various host cell 27 pathways, they have been challenging to genetically manipulate to identify the key 28 bacterial factors that contribute to infection.
    [Show full text]
  • Laboratory Diagnostics of Rickettsia Infections in Denmark 2008–2015
    biology Article Laboratory Diagnostics of Rickettsia Infections in Denmark 2008–2015 Susanne Schjørring 1,2, Martin Tugwell Jepsen 1,3, Camilla Adler Sørensen 3,4, Palle Valentiner-Branth 5, Bjørn Kantsø 4, Randi Føns Petersen 1,4 , Ole Skovgaard 6,* and Karen A. Krogfelt 1,3,4,6,* 1 Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), 2300 Copenhagen, Denmark; [email protected] (S.S.); [email protected] (M.T.J.); [email protected] (R.F.P.) 2 European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), 27180 Solnar, Sweden 3 Scandtick Innovation, Project Group, InterReg, 551 11 Jönköping, Sweden; [email protected] 4 Virus and Microbiological Special Diagnostics, Statens Serum Institut (SSI), 2300 Copenhagen, Denmark; [email protected] 5 Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut (SSI), 2300 Copenhagen, Denmark; [email protected] 6 Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark * Correspondence: [email protected] (O.S.); [email protected] (K.A.K.) Received: 19 May 2020; Accepted: 15 June 2020; Published: 19 June 2020 Abstract: Rickettsiosis is a vector-borne disease caused by bacterial species in the genus Rickettsia. Ticks in Scandinavia are reported to be infected with Rickettsia, yet only a few Scandinavian human cases are described, and rickettsiosis is poorly understood. The aim of this study was to determine the prevalence of rickettsiosis in Denmark based on laboratory findings. We found that in the Danish individuals who tested positive for Rickettsia by serology, the majority (86%; 484/561) of the infections belonged to the spotted fever group.
    [Show full text]
  • Implementation Manual for the National Epidemiological Surveillance of Infectious Diseases Program
    Implementation Manual for the National Epidemiological Surveillance of Infectious Diseases Program Part I. Purpose and Aim The National Epidemiological Surveillance of Infectious Diseases (NESID) Program was started in July 1981 with 18 target diseases. It has been operated with reinforcement and expansion along the way, including the adoption of a computerized online system and an increase in the target diseases to 27 diseases since January 1987. In response to the enactment of the Act on the Prevention of Infectious Disease and Medical Care for Patients with Infectious Diseases (Act No. 114 of 1998; hereinafter referred to as the “Act”) in September 1998 and its enforcement from April 1999, the NESID Program was positioned as a statutory measure. This program will build an appropriate system with cooperation from physicians and other healthcare workers, in order to prevent outbreaks and spread of various infectious diseases by ensuring that measures are taken for the effective and appropriate prevention, diagnosis and treatment of infectious diseases through the accurate monitoring and analysis of information on the occurrences of infectious diseases and through prompt provision and public disclosure of findings from such monitoring and analysis to the general public and healthcare workers, in order to design appropriate measures against infectious diseases by monitoring the detection status of, and identifying the characteristics of, circulating pathogens through collection and analysis of information on the pathogens. Part II. Target Infectious Diseases Target infectious diseases of this surveillance program shall be as follows. 1. Infectious diseases requiring report of all cases (notifiable diseases) Category I Infectious Diseases (1) Ebola hemorrhagic fever, (2) Crimean-Congo hemorrhagic fever, (3) smallpox, (4) South American hemorrhagic fever, (5) plague, (6) Marburg disease, (7) Lassa fever.
    [Show full text]
  • Infectious Diseases Weekly Report Tokyo
    Infectious Diseases Weekly Report Tokyo Metropolitan Infectious Disease Surveillance Center 3 June 2021 / Number 21 ( 5/24 ~ 5/30 ) Surveillance System in Tokyo, Japan The infectious diseases which all physicians must report All physicians must report to health centers the incidence of the diseases which are shown at page one. Health centers electronically report the individual cases to Tokyo Metropolitan Infectious Disease Surveillance Center. The infectious diseases required to be reported by the sentinels The numbers of patients who visit the sentinel clinics or hospitals during a week are reported to health centers in Tokyo. And they electronically report the numbers to Tokyo Metropolitan Infectious Disease Surveillance Center. We have about 500 sentinel clinics and hospitals in Tokyo. Tokyo Metropolitan Institute of Public Health TEL:81-3-3363-3213 FAX:81-3-5332-7365 e-mail:[email protected] URL:idsc.tokyo-eiken.go.jp/ Number of patients with the diseases which all physicians must report Tokyo Japan Category Diseases Cum Cum 18th 19th 20th 21st 21st 2021 2021 Ebola hemorrhagic fever Crimean-Congo hemorrhagic fever Smallpox I South American hemorrhagic fever Plague Marburg disease Lassa fever Acute poliomyelitis Tuberculosis 26 32 63 45 883 268 6,125 Diphtheria II Severe Acute Respiratory Syndrome(SARS) Middle East Respiratory Syndrome (MERS) Avian influenza H5N1 Avian influenza H7N9 Cholera Shigellosis 24 III Enterohemorrhagic Escherichia coli infection 22885349483 Typhoid fever Paratyphoid fever Hepatitis E 1441631226 West Nile
    [Show full text]
  • | Oa Tai Ei Rama Telut Literatur
    |OA TAI EI US009750245B2RAMA TELUT LITERATUR (12 ) United States Patent ( 10 ) Patent No. : US 9 ,750 ,245 B2 Lemire et al. ( 45 ) Date of Patent : Sep . 5 , 2017 ( 54 ) TOPICAL USE OF AN ANTIMICROBIAL 2003 /0225003 A1 * 12 / 2003 Ninkov . .. .. 514 / 23 FORMULATION 2009 /0258098 A 10 /2009 Rolling et al. 2009 /0269394 Al 10 /2009 Baker, Jr . et al . 2010 / 0034907 A1 * 2 / 2010 Daigle et al. 424 / 736 (71 ) Applicant : Laboratoire M2, Sherbrooke (CA ) 2010 /0137451 A1 * 6 / 2010 DeMarco et al. .. .. .. 514 / 705 2010 /0272818 Al 10 /2010 Franklin et al . (72 ) Inventors : Gaetan Lemire , Sherbrooke (CA ) ; 2011 / 0206790 AL 8 / 2011 Weiss Ulysse Desranleau Dandurand , 2011 /0223114 AL 9 / 2011 Chakrabortty et al . Sherbrooke (CA ) ; Sylvain Quessy , 2013 /0034618 A1 * 2 / 2013 Swenholt . .. .. 424 /665 Ste - Anne -de - Sorel (CA ) ; Ann Letellier , Massueville (CA ) FOREIGN PATENT DOCUMENTS ( 73 ) Assignee : LABORATOIRE M2, Sherbrooke, AU 2009235913 10 /2009 CA 2567333 12 / 2005 Quebec (CA ) EP 1178736 * 2 / 2004 A23K 1 / 16 WO WO0069277 11 /2000 ( * ) Notice : Subject to any disclaimer, the term of this WO WO 2009132343 10 / 2009 patent is extended or adjusted under 35 WO WO 2010010320 1 / 2010 U . S . C . 154 ( b ) by 37 days . (21 ) Appl. No. : 13 /790 ,911 OTHER PUBLICATIONS Definition of “ Subject ,” Oxford Dictionary - American English , (22 ) Filed : Mar. 8 , 2013 Accessed Dec . 6 , 2013 , pp . 1 - 2 . * Inouye et al , “ Combined Effect of Heat , Essential Oils and Salt on (65 ) Prior Publication Data the Fungicidal Activity against Trichophyton mentagrophytes in US 2014 /0256826 A1 Sep . 11, 2014 Foot Bath ,” Jpn .
    [Show full text]
  • Update on Australian Rickettsial Infections
    Update on Australian Rickettsial Infections Stephen Graves Founder & Medical Director Australian Rickettsial Reference Laboratory Geelong, Victoria & Newcastle NSW. Director of Microbiology Pathology North – Hunter NSW Health Pathology Newcastle. NSW Conjoint Professor, University of Newcastle, NSW What are rickettsiae? • Bacteria • Rod-shaped (0.4 x 1.5µm) • Gram negative • Obligate intracellular growth • Energy parasite of host cell • Invertebrate vertebrate Vertical transmission through life stages • Egg invertebrate Horizontal transmission via • Larva invertebrate bite/faeces (larva “chigger”, nymph, adult ♀) • Nymph • Adult (♀♂) Classification of Rickettsiae (phylum) α-proteobacteria (genus) 1. Rickettsia – Spotted Fever Group Typhus Group 2. Orientia – Scrub Typhus 3. Ehrlichia (not in Australia?) 4. Anaplasma (veterinary only in Australia?) 5. Rickettsiella (? Koalas) NB: Coxiella burnetii (Q fever) is a γ-proteobacterium NOT a true rickettsia despite being tick-transmitted (not covered in this presentation) 1 Rickettsiae from Australian Patients Rickettsia Vertebrate Invertebrate (human disease) Host Host A. Spotted Fever Group Rickettsia i. Rickettsia australis Native rats Ticks (Ixodes holocyclus, (Queensland Tick Typhus) Bandicoots I. tasmani) ii. R. honei Native reptiles (blue-tongue Tick (Bothriocroton (Flinders Island Spotted Fever) lizard & snakes) hydrosauri) iii.R. honei sub sp. Unknown Tick (Haemophysalis marmionii novaeguineae) (Australian Spotted Fever) iv.R. gravesii Macropods Tick (Amblyomma (? Human pathogen) (kangaroo, wallabies) triguttatum) Feral pigs (WA) v. R. felis cats/dogs Flea (cat flea typhus) (Ctenocephalides felis) All these rickettsiae grown in pure culture Rickettsiae in Australian patients (cont.) Rickettsia Vertebrate Invertebrate Host Host B. Typhus Group Rickettsia R. typhi Rodents (rats, mice) Fleas (murine typhus) (Ctenocephalides felis) (R. prowazekii) (humans)* (human body louse) ╪ (epidemic typhus) (Brill’s disease) C.
    [Show full text]
  • Mediterranean Spotted Fever: a Rare Non- Endemic Disease in the USA
    Open Access Case Report DOI: 10.7759/cureus.974 Mediterranean Spotted Fever: A Rare Non- Endemic Disease in the USA Joshua Brad Oaks 1 , Glenmore Lasam 1 , Gina LaCapra 1 1. Department of Medicine, Overlook Medical Center Corresponding author: Glenmore Lasam, [email protected] Abstract We report a case of a 43-year-old Israeli male who presented with an intermittent fever associated with a gradual appearance of diffusely scattered erythematous non-pruritic maculopapular lesions, generalized body malaise, muscle aches, and distal extremity weakness. He works in the Israeli military and has been exposed to dogs that are used to search for people in tunnels and claimed that he had removed ticks from the dogs. In the hospital, he presented with fever, a diffuse maculopapular rash, and an isolated round black eschar. He was started on doxycycline based on suspected Mediterranean spotted fever (MSF) in which he improved significantly with resolution of his clinical complaints. His immunoglobulin G (IgG) MSF antibody came back positive. Categories: Infectious Disease, Epidemiology/Public Health Keywords: mediterranean spotted fever, boutonneuse fever, brown dog tick, rickettsia conorii, tache noire, doxycycline Introduction Mediterranean spotted fever (MSF) is a rare tick-borne disease in the United States and has been imported from endemic areas. A comprehensive health history including travel and exposure elucidated the dilemma of the myriads of differentials in patients presenting with a fever and a rash. Case Presentation A 43-year-old Israeli male with diabetes mellitus presented with fever and rash for almost 10 days which occurred while traveling across the country as a tourist.
    [Show full text]