Biogeosciences, 15, 2033–2053, 2018 https://doi.org/10.5194/bg-15-2033-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient Wenqiang Zhao1, Peter B. Reich2, Qiannan Yu1,3, Ning Zhao4, Chunying Yin1, Chunzhang Zhao1, Dandan Li1, Jun Hu1, Ting Li1, Huajun Yin1, and Qing Liu1 1CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2Department of Forest Resources and Institute on the Environment, University of Minnesota, Minnesota 55108, USA 3Southwest Jiaotong University & Faculty of Geosciences and Environmental Engineering, Chengdu 611756, China 4Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China Correspondence: Qing Liu (
[email protected]) and Huajun Yin (
[email protected]) Received: 14 November 2017 – Discussion started: 14 December 2017 Revised: 26 February 2018 – Accepted: 7 March 2018 – Published: 9 April 2018 Abstract. Understanding leaf stoichiometric patterns is cru- deciduous, broadleaf, and conifer), their leaf element con- cial for improving predictions of plant responses to environ- tents and responses to environments were remarkably differ- mental changes. Leaf stoichiometry of terrestrial ecosystems ent. Shrub type was the largest contributor to the total varia- has been widely investigated along latitudinal and longitudi- tions in leaf stoichiometry, while climate indirectly affected nal gradients. However, very little is known about the vertical the leaf C : N : P via its interactive effects on shrub type or distribution of leaf C : N : P and the relative effects of envi- soil.