Deep Cervical Fascia

Total Page:16

File Type:pdf, Size:1020Kb

Deep Cervical Fascia DEEP CERVICAL FASCIA BY DR.M.MD.MUSTAFA SHARIFF DEPT OF ANATOMY SENIOR LECTURER SRMDC&H DEEP CERVICAL FASCIA • It is also called FASCIA COLLI • The deep cervical fascia of neck is clinically very important for it forms various fascial spaces in the neck. • It also provides capsule to the glands and invests the muscles in the region. • It forms protective sheaths around neurovascular structures. • The layers of deep cervical fascia forms planes to direct the spread of infection or pus in the neck. INVESTING LAYER • It lies deep to the platysma and surrounds the neck like a collar. • It forms the roof of the posterior triangle of the neck. • It encloses the sternocleidomastoid and trapezius the two large superficial muscles of the neck on either side. ATTACHMENTS SUPERIORLY: o External occipital protuberance o Superior nuchal line o Mastoid process o Lower border of mandible ▪ Anterior and superiorly it is attached to the lower border of the mandible. ▪ Anteroinferiorly it is attached to the clavicle and manubrium sterni. Posteriorly: ▪ It is attached to the ligamentum nuchae , spine of the C7 vertebrae, spine of scapula , acromian process of the scapula. ▪ The investing layer encloses two salivary glands namely the parotid and submandibular gland. ▪ Tracing the fascia upwards from the clavicle to the lower border of the mandible , it divides into two layers. ▪ Superficial layer is attached to the lower border of mandible and deep layer attached to mylohyoid line. ▪ Between the two layers the submandibular salivary gland and the lymph glands are enclosed. • Near the angle of mandible the investing layer divides into two layers to enclose the parotid gland. • The superficial layer covers the gland and it is called as masseteric fascia. • It is superiorly attached to the zygomatic arch. • The deep layer of the fascia after covering the parotid gland goes towards the base of the skull. • Between the angle of mandible and styloid process of temporal bone this fascia is thickened to form the stylomandibular ligament. • The investing layer encloses two fascial spaces. • Along the lower part of the roof of the posterior triangle the fascia splits to enclose a space. • Near the lower part of the midline of the neck, the fascia splits to enclose a space called (Suprasternal space or space of Burn’s). Contents of suprasternal space • Jugular venous arch • Anterior jugular veins • Two heads of sternocleidomastoid muscle • Interclavicular ligament Clinical anatomy LUDWIGS ANGINA: o It is a triangular swelling due to infection in the submandibular region. o It is limited laterally by two halves of mandible and posteriorly by hyoid bone. o This is because of the attachments of investing layer of deep cervical fascia to the base of mandible and hyoid bone. MUMPS: o Infection of parotid gland is painful due to thick and strong fascia covering it. COLLAR STUD ABSCESS: o The deep cervical lymph nodes are the site of tuberculus infection. o Abscess penetrates the deep cervical fascia and form a swelling under the skin. PRETRACHEAL FASCIA • Superiorly it extends upto the hyoid bone. • Inferiorly it extends into the thorax and joins the fibrous pericardium. • Laterally it fuses with the carotid sheath and through this sheath it is continuous with the investing layer of deep cervical fascia. • Medially it divides and encloses the thyroid gland. • It forms the false capsule for the thyroid gland. • The posterior capsule of the thyroid is thin and hence enlargement of the thyroid are directed posteriorly. • The pretracheal fascia invest the infra hyoid muscles. • This fascia is attached to the thyroid and cricoid cartilages and suspensory ligament of Berry. • This ligament binds the thyroid gland to larynx. Clinical anatomy o The thyroid gland and all thyroid swellings move with deglutition because the thyroid is attached to the larynx by the suspensory ligaments of Berry. o The abscess present infront of pretracheal fascia descends in the superior mediastinum. o The abscess present behind the pretracheal fascia descends in the superior mediastinum to the posterior mediastinum. PREVERTEBRAL FASCIA • Superiorly it extends to the base of the skull. • Inferiorly it extends into the posterior mediastinum and even extends into the abdomen. • Hence a pus collection under this fascia may track down from the base of the skull to the abdomen. • Laterally it extends to the carotid sheath , via it is connected to the investing layer of deep cervical fascia on the medial surface of the sternocleidomastoid muscle. Function: o To provide a fix base for gliding movements of pharynx, oesophagus and carotid sheath during movements of neck and during swallowing. o The abscess formed behind the prevertable fascia travel down into superior mediastinum upto T3-T4. o The abscess formed infront of prevertbral fascia to superior mediastinum and then the posterior mediastinum. CAROTID SHEATH • It is anteriorly formed by the pretracheal fascia and posteriorly formed by prevertebral fascia. • It extends from the base of the skull to the root of the neck. • On the surface of the carotid sheath the ansa- cervicalis is situated. • This sheath encloses the internal carotid artery, common carotid artery, internal jugular vein and vagus nerve. • The entire sheath is accompanied by the deep cervical group of lymph node. BUCCOPHARYNGEAL FASCIA • It is delicate and distensible layer of fascia that covers the constrictor muscles of pharynx and buccinator muscle. • The buccopharyngeal fascia extends from the base of the skull to the esophagus. PHARYNGOBASILAR FASCIA • This fascia is especially thickened between the upper border of superior constrictor muscle and the base of the skull. • It lies deep to the pharyngeal muscles. RETROPHARYNGEAL SPACE o It is potential or dead space behind the pharynx and acts as a bursa to allow expansion of pharynx during deglutition. Boundaries: o In front , buccopharyngeal fascia which covers the constrictor muscles of pharynx. o Behind , prevertebral fascia which covers the cervical vertebrae, pre and para vertebral muscles On each side o Carotid sheath and its contents. o Above, limited by the base of the skull o Below, the space is open and continuous with the superior mediastinum. o In the midline a fibrous septum connecting the raphe of the pharynx with the prevertebral fascia divide the space incompletely into two compartments. Contents o Loose areolar tissue and retropharyngeal lymph node. o Pharyngeal plexus of vessels and nerves. CLINICAL ANATOMY o Neck infections in front of the prevertebral fascia in the retropharyngeal space usually arise from suppuration, i,e. formation of pus in the retropharyngeal lymph nodes. o It is frequently exposed in block dissection of the neck during surgical removal of deep cervical lymph nodes. o Division of the external jugular vein in the supraclavicular space may cause air embolism and consequent death because the cut ends of the vein are prevented from retraction and closer by the fascia attached firmly to the vein. REFERENCES o EXAM-ORINTED ANATOMY SHOUKAT N.KAZI o HEAD & NECK AK DATTA 5TH EDITION o GRAYS ANATOMY STUDENTS EDITION o CLINCAL ANATOMY SNELL 8TH EDITION o CLINICAL ANATOMY MOORE 5TH EDITION o HEAD & NECK BD CHAURASIA’S 4TH EDITION o HEAD & NECK DR.AS.MONI o TEXT BOOK OF ANATOMY HEAD NECK AND BRAIN VOL III VISHRAM SINGH .
Recommended publications
  • 7-Khyati Santram
    J. Anat. Sciences, 24(2): Dec. 2016, 33-35 Case Report ANATOMICAL VARIATION OF THE TRAPEZIUS MUSCLE- A CASE REPORT Khayati Sant Ram*, Anjali Aggarwal*,Tulika Gupta *,Amandeep kaur*,Jyoti Rajput*, Daisy Sahni* *Department of Anatomy, Post Graduate Institute of Medical Education and Research, Chandigarh, ABSTRACT During routine cadaveric dissection for undergraduate teaching variation in the course and insertion of fibers left trapezius muscle was noticed in two embalmed male cadavers. Some of the occipital fibers while descending towards clavicle got separated from rest of the muscle, inclined medially and inserted on the 1cm area of middle third of superior surface of clavicle. The remaining occipital fibers got inserted after a gap of on 1.5cm on the superior surface of lateral part of clavicle. Detached portion of trapezius muscles was tendinous in insertion. Two structures namely external jugular vein and supraclavicular nerves were seen passing through the gap in one cadaver (Case 1) whereas in other cadaver (Case 2) only external jugular vein was passing through the gap. Knowledge of this variation is clinically important in surgical exploration of posterior triangle.supraclavicular nerve entrapment syndrome and in various approaches involving external jugular vein. Key words: - trapezius muscle, cleidoccipital, supraclavicular nerves INTRODUCTION insertion of clavicular fibers left trapezius muscle of Trapezius muscle(TM) is a flat triangular muscle left side was noticed in two adult male cadavers. which extends over back of the neck and upper Case 1- In 78- years-old male cadaver trapezius thorax. On either side the muscle is attached to muscle of left side took usual origin from the medial medial third of superior nuchal line, external occipital portion of superior nuchal line, external occipital protuberance, ligamentum nuchae and apices of the protuberance, ligamentum nuchae and apices of the spinous processes and their supraspinous ligament spinous processes of thoracic vertebrae.
    [Show full text]
  • Neck Dissection Using the Fascial Planes Technique
    OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY NECK DISSECTION USING THE FASCIAL PLANE TECHNIQUE Patrick J Bradley & Javier Gavilán The importance of identifying the presence larised in the English world in the mid-20th of metastatic neck disease with head and century by Etore Bocca, an Italian otola- neck cancer is recognised as a prominent ryngologist, and his colleagues 5. factor determining patients’ prognosis. The current available techniques to identify Fascial compartments allow the removal disease in the neck all have limitations in of cervical lymphatic tissue by separating terms of accuracy; thus, elective neck dis- and removing the fascial walls of these section is the usual choice for management “containers” along with their contents of the clinically N0 neck (cN0) when the from the underlying vascular, glandular, risk of harbouring occult regional metasta- neural, and muscular structures. sis is significant (≥20%) 1. Methods availa- ble to identify the N+ (cN+) neck include Anatomical basis imaging (CT, MRI, PET), ultrasound- guided fine needle aspiration cytology The basic understanding of fascial planes (USGFNAC), and sentinel node biopsy, in the neck is that there are two distinct and are used depending on resource fascial layers, the superficial cervical fas- availability, for the patient as well as the cia, and the deep cervical fascia (Figures local health service. In many countries, 1A-C). certainly in Africa and Asia, these facilities are not available or affordable. In such Superficial cervical fascia circumstances patients with head and neck cancer whose primary disease is being The superficial cervical fascia is a connec- treated surgically should also have the tive tissue layer lying just below the der- neck treated surgically.
    [Show full text]
  • Gross Anatomy
    www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY www.BookOfLinks.com Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the infor- mation contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs. www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY David A. Morton, PhD Associate Professor Anatomy Director Department of Neurobiology and Anatomy University of Utah School of Medicine Salt Lake City, Utah K. Bo Foreman, PhD, PT Assistant Professor Anatomy Director University of Utah College of Health Salt Lake City, Utah Kurt H.
    [Show full text]
  • 3 Approach-Related Complications Following Anterior Cervical Spine Surgery: Dysphagia, Dysphonia, and Esophageal Perforations
    3 Approach-Related Complications Following Anterior Cervical Spine Surgery: Dysphagia, Dysphonia, and Esophageal Perforations Bharat R. Dave, D. Devanand, and Gautam Zaveri Introduction This chapter analyzes the problems of dysphagia, dysphonia, and esophageal tears during the Pathology involving the anterior subaxial anterior approach to the cervical spine and cervical spine is most commonly accessed suggests ways of prevention and management. through an anterior retropharyngeal approach (Fig. 3.1). While this approach uses tissue planes to access the anterior cervical spine, visceral Dysphagia structures such as the trachea and esophagus and nerves such as the recurrent laryngeal Dysphagia or difficulty in swallowing is a nerve (RLN), superior laryngeal nerve (SLN), and symptom indicative of impairment in the ability pharyngeal plexus are vulnerable to direct or to swallow because of neurologic or structural traction injury (Table 3.1). Complaints such as problems that alter the normal swallowing dysphagia and dysphonia are not rare following process. Postoperative dysphagia is labeled as anterior cervical spine surgery. The treating acute if the patient presents with difficulty in surgeon must be aware of these possible swallowing within 1 week following surgery, complications, must actively look for them in intermediate if the presentation is within 1 to the postoperative period, and deal with them 6 weeks, and chronic if the presentation is longer expeditiously to avoid secondary complications. than 6 weeks after surgery. Common carotid artery Platysma muscle Sternohyoid muscle Vagus nerve Recurrent laryngeal nerve Longus colli muscle Internal jugular artery Anterior scalene muscle Middle scalene muscle External jugular vein Posterior scalene muscle Fig. 3.1 Anterior retropharyngeal approach to the cervical spine.
    [Show full text]
  • Unusual Organization of the Ansa Cervicalis: a Case Report
    CASE REPORT ISSN- 0102-9010 UNUSUAL ORGANIZATION OF THE ANSA CERVICALIS: A CASE REPORT Ranjana Verma1, Srijit Das2 and Rajesh Suri3 Department of Anatomy, Maulana Azad Medical College, New Delhi-110002, India. ABSTRACT The superior root of the ansa cervicalis is formed by C1 fibers carried by the hypoglossal nerve, whereas the inferior root is contributed by C2 and C3 nerves. We report a rare finding in a 40-year-old male cadaver in which the vagus nerve fused with the hypoglossal nerve immediately after its exit from the skull on the left side. The vagus nerve supplied branches to the sternohyoid, sternothyroid and superior belly of the omohyoid muscles and also contributed to the formation of the superior root of the ansa cervicalis. In this arrangement, paralysis of the infrahyoid muscles may result following lesion of the vagus nerve anywhere in the neck. The cervical location of the vagus nerve was anterior to the common carotid artery within the carotid sheath. This case report may be of clinical interest to surgeons who perform laryngeal reinnervation and neurologists who diagnose nerve disorders. Key words: Ansa cervicalis, hypoglossal nerve, vagus nerve, variations INTRODUCTION cadaver. The right side was normal. The neck region The ansa cervicalis is a nerve loop formed was dissected and the neural structures in the carotid by the union of superior and inferior roots. The and muscular triangle regions were exposed, with superior root is a branch of the hypoglossal nerve particular attention given to the organization of the containing C1 fibers, whereas the inferior root is ansa cervicalis.
    [Show full text]
  • Earthworm Dissection External Anatomy Examine Your Earthworm and Determine the Dorsal and Ventral Sides
    Name(s): ___________________________________________Date:________ Earthworm Dissection External Anatomy Examine your earthworm and determine the dorsal and ventral sides. Locate the two openings on the ventral surface of the earthworm. Locate the openings toward the anterior of the worm which are the s perm ducts. Locate the openings near the clitellum which are the g enital setae . Locate the dark line that runs down the dorsal side of the worm, this is the dorsal blood vessel. The ventral blood vessel can be seen on the underside of the worm, though it is usually not as dark . Locate the worm’s anus on the far posterior end of the worm. Note the swelling of the earthworm near its anterior side - this is the clitellum. Label the earthworm pictured. A_____________________________ B _____________________________ C _____________________________ D _____________________________ Internal Anatomy 1. Place the specimen in the dissecting pan D ORSAL side up. 2. Locate the clitellum and insert the tip of the scissors about 3 cm posterior. 3. Cut carefully all the way up to the head. Try to keep the scissors pointed up, and only cut through the skin. 4. Spread the skin of the worm out, use a teasing needle to gently tear the s epta (little thread like structures that hold the skin to organs below it) 5. Place pins in the skin to hold it apart – set them at an angle so they aren’t in the way of your view. Reproductive System The first structures you probably see are the s eminal vesicles. They are cream colored and located toward the anterior of the worm.
    [Show full text]
  • Head & Neck Surgery Course
    Head & Neck Surgery Course Parapharyngeal space: surgical anatomy Dr Pierfrancesco PELLICCIA Pr Benjamin LALLEMANT Service ORL et CMF CHU de Nîmes CH de Arles Introduction • Potential deep neck space • Shaped as an inverted pyramid • Base of the pyramid: skull base • Apex of the pyramid: greater cornu of the hyoid bone Introduction • 2 compartments – Prestyloid – Poststyloid Anatomy: boundaries • Superior: small portion of temporal bone • Inferior: junction of the posterior belly of the digastric and the hyoid bone Anatomy: boundaries Anatomy: boundaries • Posterior: deep fascia and paravertebral muscle • Anterior: pterygomandibular raphe and medial pterygoid muscle fascia Anatomy: boundaries • Medial: pharynx (pharyngobasilar fascia, pharyngeal wall, buccopharyngeal fascia) • Lateral: superficial layer of deep fascia • Medial pterygoid muscle fascia • Mandibular ramus • Retromandibular portion of the deep lobe of the parotid gland • Posterior belly of digastric muscle • 2 ligaments – Sphenomandibular ligament – Stylomandibular ligament Aponeurosis and ligaments Aponeurosis and ligaments • Stylopharyngeal aponeurosis: separates parapharyngeal spaces to two compartments: – Prestyloid – Poststyloid • Cloison sagittale: separates parapharyngeal and retropharyngeal space Aponeurosis and ligaments Stylopharyngeal aponeurosis Muscles stylohyoidien Stylopharyngeal , And styloglossus muscles Prestyloid compartment Contents: – Retromandibular portion of the deep lobe of the parotid gland – Minor or ectopic salivary gland – CN V branch to tensor
    [Show full text]
  • Deep Neck Infections 55
    Deep Neck Infections 55 Behrad B. Aynehchi Gady Har-El Deep neck space infections (DNSIs) are a relatively penetrating trauma, surgical instrument trauma, spread infrequent entity in the postpenicillin era. Their occur- from superfi cial infections, necrotic malignant nodes, rence, however, poses considerable challenges in diagnosis mastoiditis with resultant Bezold abscess, and unknown and treatment and they may result in potentially serious causes (3–5). In inner cities, where intravenous drug or even fatal complications in the absence of timely rec- abuse (IVDA) is more common, there is a higher preva- ognition. The advent of antibiotics has led to a continu- lence of infections of the jugular vein and carotid sheath ing evolution in etiology, presentation, clinical course, and from contaminated needles (6–8). The emerging practice antimicrobial resistance patterns. These trends combined of “shotgunning” crack cocaine has been associated with with the complex anatomy of the head and neck under- retropharyngeal abscesses as well (9). These purulent col- score the importance of clinical suspicion and thorough lections from direct inoculation, however, seem to have a diagnostic evaluation. Proper management of a recog- more benign clinical course compared to those spreading nized DNSI begins with securing the airway. Despite recent from infl amed tissue (10). Congenital anomalies includ- advances in imaging and conservative medical manage- ing thyroglossal duct cysts and branchial cleft anomalies ment, surgical drainage remains a mainstay in the treat- must also be considered, particularly in cases where no ment in many cases. apparent source can be readily identifi ed. Regardless of the etiology, infection and infl ammation can spread through- Q1 ETIOLOGY out the various regions via arteries, veins, lymphatics, or direct extension along fascial planes.
    [Show full text]
  • 6. the Pharynx the Pharynx, Which Forms the Upper Part of the Digestive Tract, Consists of Three Parts: the Nasopharynx, the Oropharynx and the Laryngopharynx
    6. The Pharynx The pharynx, which forms the upper part of the digestive tract, consists of three parts: the nasopharynx, the oropharynx and the laryngopharynx. The principle object of this dissection is to observe the pharyngeal constrictors that form the back wall of the vocal tract. Because the cadaver is lying face down, we will consider these muscles from the back. Figure 6.1 shows their location. stylopharyngeus suuperior phayngeal constrictor mandible medial hyoid bone phayngeal constrictor inferior phayngeal constrictor Figure 6.1. Posterior view of the muscles of the pharynx. Each of the three pharyngeal constrictors has a left and right part that interdigitate (join in fingerlike branches) in the midline, forming a raphe, or union. This raphe forms the back wall of the pharynx. The superior pharyngeal constrictor is largely in the nasopharynx. It has several origins (some texts regard it as more than one muscle) one of which is the medial pterygoid plate. It assists in the constriction of the nasopharynx, but has little role in speech production other than helping form a site against which the velum may be pulled when forming a velic closure. The medial pharyngeal constrictor, which originates on the greater horn of the hyoid bone, also has little function in speech. To some extent it can be considered as an elevator of the hyoid bone, but its most important role for speech is simply as the back wall of the vocal tract. The inferior pharyngeal constrictor also performs this function, but plays a more important role constricting the pharynx in the formation of pharyngeal consonants.
    [Show full text]
  • An Anomalous Digastric Muscle in the Carotid Sheath: a Case Report with Its
    Short Communication 2020 iMedPub Journals Journal of Stem Cell Biology and Transplantation http://journals.imedpub.com Vol. 4 ISS. 4 : sc 37 ISSN : 2575-7725 DOI : 10.21767/2575-7725.4.4.37 8th Edition of International Conference on Clinical and Medical Case Reports - An anomalous digastric muscle in the carotid sheath: a case report with its embryological perspective and clinical relevance Srinivasa Rao Sirasanagandla Sultan Qaboos University, Oman Abstract Key words: Although infrahyoid muscles show considerable variations in Anterior belly, Posterior belly, Variation, Stylohyoid muscle, My- their development, existence of an anomalous digastric muscle lohyoid muscle, Hyoid bone in the neck was seldom reported. During dissection of trian- Anatomy gles of the neck for medical undergraduate students, we came across an anomalous digastric muscle in the carotid sheath of There is a pair of digastric muscles in the neck, and each digas- left side of neck. It was observed in a middle-aged cadaver at tric muscle has the anterior belly and the posterior belly. The College of Medicine and Health Sciences, Sultan Qaboos Uni- anterior belly is attached to the digastric fossa on the base of versity, Muscat, Oman. Digastric muscle was located within the the mandible close to the midline and runs toward the hyoid carotid sheath between the common and internal carotid arter- bone. The posterior belly is attached to the notch of the mas- ies and internal jugular vein. It had two bellies; cranial belly and toid process of the temporal bone and also runs toward the caudal belly which were connected by an intermediate tendon.
    [Show full text]
  • The Levator Scapulae Muscle – Morphological Variations K
    International Journal of Anatomy and Research, Int J Anat Res 2019, Vol 7(4.3):7169-75. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2019.335 THE LEVATOR SCAPULAE MUSCLE – MORPHOLOGICAL VARIATIONS K. Satheesh Naik 1, Sadhu Lokanadham 2. *1 Assistant Professor, Department of Anatomy, Viswabharathi Medical College & General Hospital, Penchikalapadu, Kurnool, Andhrapradesh, India. 2 Associate Professor, Department of Anatomy, Santhiram Medical College and General Hospital, Nandyal, Andhrapradesh, India. ABSTRACT Introduction: Anatomical variations of the levator scapulae are important and therefore clinically relevant. The levator scapulae are now believed to be the leading cause of discomfort in patients with chronic tension-type neck and shoulder pain and a link between anatomical variants of the muscle and increased risk of developing pain has been speculated. The results obtained were compared with previous studies. Materials and methods: The study was conducted on 32 levator scapulae muscle of 16 cadavers over a period of 3 years. The dissection of head and neck was done carefully to preserve all minute details, observing the morphological variations of the muscle in the department of Anatomy, Viswabharathi Medical College, Penchikalapadu, and Kurnool. Results: Total 32 levator scapulae muscles were used. All the sample values were measured to 2 decimal places. The average age of the cadavers in the sample was 82.87 years. The oldest cadaver in the sample was 100 years old and the youngest 61 years. Measurements of the proximal and distal attachments and the total length of the muscles were taken. Between 3 and 6 muscle slips were reported at the proximal attachment.
    [Show full text]
  • Tenderness Over the Hyoid Bone Can Indicate Epiglottitis in Adults
    J Am Board Fam Med: first published as 10.3122/jabfm.19.5.517 on 1 September 2006. Downloaded from Tenderness Over the Hyoid Bone Can Indicate Epiglottitis in Adults Hiroshi Ehara, MD Adult acute epiglottitis is a rare but life-threatening disease caused by obstruction of the airway. The symptoms and signs of this disease may be nonspecific without apparent airway compromise. We en- countered 3 consecutive cases of adult patients with this disease in a single 5-month period in one phy- sician’s office. In all cases, physical examination revealed tenderness of the anterior neck over the hyoid bone. These observations assisted us in identifying this rare disease quickly. We suggest that tenderness over the hyoid bone should raise suspicion of adult acute epiglottitis. (J Am Board Fam Med 2006;19: 517–20.) Adult acute epiglottitis is an inflammatory disease power, and talking aggravated her sore throat. At of the epiglottis and adjacent structures resulting admission, the patient did not seem to be critically from infection. It can be a rapidly fatal condition ill. Her voice was neither muffled nor hoarse. The because of the potential for sudden upper airway vital signs indicating the nature of her condition obstruction. Early recognition of acute epiglottitis were as follows: body temperature, 37.0°C (axil- is therefore of the utmost importance in minimiz- lary); blood pressure, 90/64 mm Hg; pulse, 64/min; ing morbidity and mortality. respirations, 24/min; peripheral oxygen saturation, Unfortunately, misdiagnosis occurs in 23% to 97%. At this point, these findings were not suffi- 1–3 31% of the cases of adult acute epiglottitis.
    [Show full text]