The Fungi: an Advance Treatise

Total Page:16

File Type:pdf, Size:1020Kb

The Fungi: an Advance Treatise Biologia dos Fungos Olga Fischman Gompertz Walderez Gambale Claudete Rodrigues Paula Benedito Correa Parede. E uma estrutura rfgida que protege a celula de choques osm6ticos (possui ate oito camadas e mede de 200 Durante muito tempo, os fungos foram considerados a 350nm). E composta, de modo geral, por glucanas, mananas coma vegetais e, somente a partir de 1969, passaram a ser e, em menor quantidade, por quitina, protefnas e lipfdios. As c1assificados em urn reino a parte denominado Fungi. glucanas e as mananas estao combinadas corn protefnas, for- Os fungos apresentam urn conjunto de caracterfsticas mando as glicoprotefnas, manoprotefnas e glicomanoprotef- que permitem sua diferenciac;:ao das plantas: nao sintetizam nas. Estudos citoqufmicos demonstraram que cada camada c1orofila nem qualquer pigmento fotossintetico; nao tern ce- possui urn polissacarfdeo dominante: as camadas mais inter- lulose na parede celular, exceto alguns fungos aquaticos, e nas (8~ e 5~) contem beta-1-3, beta-I-3-g1ucanas e mananas, nao armazenarn amide coma substancia de reserva. A presen- enquanto as mais extern as contem mananas e beta-I-6- c;:ade substancias quitinosas na parede da maior parte das glucanas (Fig. 64.2). A primeira e a terceira camadas sac as especies fungicas e a capacidade de armazenar glicogenio os mms ncas em mananas. assemelharn as celulas animais. As ~lucan~ nas ceIulas fUngicas sac normalmente po- Os fungos sac ubfquos, encontrando-se em vegetais, em lfmeros de b-glicose, ligados por pontes betaglicosfdicas. animais, no homem, em detritos e em abundancia no solo, As mananas, polfmeros de manose, representam 0 mate- participando ativamente do cicIo dos elementos na natureza. rial arnorfo da parede, e sac diferenciados em dois tipos: uma A dispersao dos fungos na natureza e feita por varias manoprotefna nao-enzimatica, envolvida na arquitetura da vias: animais, homem, insetos, agua e, principalmente, pelo ar parede, e uma manoprotefna corn caracte~fsticas enzimaticas, atmosferico, atraves dos ventos. relacionada corn a degradac;:ao de macromoleculas. Os fungos sac seres vivos eucari6ticos corn urn s6 nucIeo, A guitin~ urn polfmero (1,4) de 2-acetamida-2-deoxi-beta- coma as leveduras, ou multinucleados, coma os fungos fila- D-glicose, e 0 principal componente estrutural do exoesque- mentosos ou bolores e os cogumelos (fungos macrosc6picos). leto de invertebrados e da parede celular fungica. Nas leve- duras, a quitina encontra-se em men or quantidade do que nos bolores (na proporc;:ao de 1:3) e esta restrita a area de blasto- conidiac;:ao. A quitina is geralmente encontrada coma micro- Todas as celulas fungicas sac eucari6ticas, isto e, pos- fibrilas cristalinas, dentro de uma matriz protei ca. suem nucleo corn membrana nuclear. Os lipfdios representam somente de 1% a 2% do peso Os fungos originam-se de uma unica celula ou de urn frag- seco celular, e estao presentes coma compostos polares e mento da hifa e estas unidades apresentam estruturas varia- apolares. Os principais lipfdios apolares sac os triacilglicer6is das, e algumas delas, mais especificarnente a parede celular, e os ester6is, e os polares sac os diacilglicerofosfocolinas e sao de grande auxflio na taxonomia destes microrganismos. diacilgliceroctanolaminas. Na Fig. 64.1, estao esquematizadas as principais estruturas da Membrana citoplasmatica. Atua coma uma barreira se- celula fungica. mipermeavel, no transporte ativo e passive dos materiais, Ribossomo Cloroplasto (planta e alga) Citoplasma Complexo de Golgi Ribossomo Mitocondria Complexo de Golgi Microtubulo Citoplasma Vacuolo Nucieolo Nucleolo Nucleo Nucleo Talacoides (planta) Lisossomo Membrana plamatica Membrana plamatica Mitocondria Microfilamento Reticulo endoplamatico rugose Reticulo endoplasmatico liso Microfilamento Centriolo Parede celular MicrotUbulo Reticulo endoplasmatico Iiso para dentro e para fora da celula, sendo constitufda de uma Basicamente esta estrutura consiste em lipfdios e protef- por~ao hidrof6bica e de uma por~ao hidrofOica. As membra- nas. As protefnas servem coma enzimas, que fornecem a nas das celulas dos fungos tern em sua composi~ao qufmica membrana diferentes propriedades funcionais, enquanto os ester6is, que nao sao encontrados nas celulas bacterianas. lipfdios dao a membrana sua verdadeira propriedade estrutu- Fig. 64.2 - Esquema da parede de uma celula fungica e composilyao qufmica. Camadas 1, 2, 3 e 4: Mananas, glucanas e protefnas (Camada 1 = composta por finos filamentos; Camada 2 = continua; Camada 3 = com baixa eletrodensidade; e Camada 4 = com alta eletrodensidade). Camada 5: Glucanas e quitina (nao muito bem delineada). Camada 6: Mananas e protefnas (distribufda de modo nao- homogfmeo). Camada 7: Quitina e glucanas (muito espessa; nao e claramente contrastada). Camada 8: Quitina, protefnas e polissacarfdeos (de espessura irregular). ra!. Na Fig. 64.3, pode-se observar urn modelo de membra- Mitocondria. Sftio da fosforila~ao oxidativa, composta na da celula fungica, que consiste em uma camada por membranas de fosfolipfdios. Possui membrana interna bimolecular de lipfdios intermediada por protefnas. As pro- achatada (crista) e contem seu DNA e ribossomos pr6prios. tefnas extrfnsecas (extern as) estao inseridas perifericamen- Reticulo endoplasmatico. E uma membrana em forma de te na superffcie polar lipfdica, enquanto as protefnas intrfn- rede que se encontra distribufda por toda celula fungi ca. Esta secas (internas) podem estar em qualquer parte da camada ligada a membrana nuclear, mas nao a membrana citoplasma- lipfdica. Externamente, encontramos cadeias de glicoprotef- tica. Os ribossomos (80S) podem estar aderidos ao reticulo nas inseridas tanto nas protefnas intrfnsecas coma nas ex- endoplasmatico. trfnsecas. Aparelho de Golgi. Esta estrutura (dictiossoma) e uma Como as protefnas, os lipfdios podem estar ligados as agrega<;:ao interna de membranas, que esta envolvida no ar- moleculas de a~ucares formando os glicolipfdios, que estao mazenamento de substancias que serao desprezadas pela ce- relacionados corn importantes fenomenos, coma 0 da aderen- lula fungi ca. Os vacuolos estao relacionados corn 0 armaze- cia das celulas fungi cas as celulas do hospedeiro. namento de substancias de reserva para a celula, tais coma Nticleo. Contem 0 genom a fungico e esta agrupado em glicogenio e lipfdios. cromossomos lineares, compostos de dupla fita de DNA ar- Lomassomos. Sao corpusculos que ocorrem dentro do rumados em helice. Con tern tambem as histonas que sao pro- periplasma (espa~o entre a parede celular e a membrana citoplas- tefnas basicas, associadas ao DNA cromossomal. A membra- matica) da celula rungica, corn fun<;:aoainda nao conhecida. na nuclear e de natureza lipfdica e possui numerosos poros. Dentro do nucleo, encontra-se 0 nucleolo, urn corpusculo esferico contendo DNA, RNA e protefnas. Este corpusculo eo sftio de produ~ao do RNA ribossoma!. Os fungos se desenvolvem em meios especiais de culti- Durante a divisao nuclear, observa-se que a membrana vo formando co16nias de dois tipos: leveduriformes e filamen- desaparece, sendo substitufda par urn aparato em forma de tosas. agulhas (processo mit6tico) corn numerosos microtubulos. As co16nias leveduriformes, em geral, sao pastosas ou Ap6s a mitose, a membrana nuclear e novamente sintetizada. cremosas e caracterizam 0 grupo das leveduras. Esses mi- Ribossomos. Sao os sftios da sfntese protei ca, compostos croorganismos sao unicelulares, em que a pr6pria celula cum- por RNA e protefna e ocorrem dentro do citoplasma da celu- pre as fun<;:6esvegetativas e reprodutivas. As estruturas mi- la. Sao formados por duas subunidades, 60S e 40S, e a partf- crosc6picas mais comuns sao os blastoconfdios, tambem de- cula ribossomal completa tern 80S. nominados gemulas, que possuem forma em geral arredonda- Fig. 64.3 - Madela esquematica de membrana de celula ftJngica: 1 = camadas lipfdicas; 2 = glicalipfdeos; 3 = glicoprotefnas; 4 = pro- tefna intrfnseca; 5 = pratefna extrfnseca; 6 = para farmada par pratefnas intrfnsecas; 7 = rede de pratefnas. da ou ovalada. Por brotamento da celula-mae, formam-se os brotos ou as celulas-filha, que podem desprender-se da ce- lula-mae, ou permanecer ligados a mesma, em cadeia, forman- do uma estrutura denominada pseudo-hifa, cujo conjunto e o pseudomicelio (Fig. 64.4). As col6nias filamentosas que identificam os bolores po- dem ser algodonosas, aveludadas, pulverulentas, corn os mais variados tipos de pigmenta~ao. Esses organismos sao constitufdos fundamentalmente por elementos muIticelulares, em forma de tubos - as hifas - que podem ser contfnuas, nao-septadas ou cenocfticas e septadas (Fig. 64.S). Blmo-ou Ao COhJuntode hIfas da-se 0 nome de rruc6ho. d miceIio gemula que se desenvolve no interior do substrato, funcionando ~: .',,-' "" tambem coma elemento de sustenta~ao e de absor~ao dos 1. nutrientes, e chamado micelio vegetativo. 0 miceIio que se ". 4- Celula-mae projeta na superffcie e cresce acima do meio de cultivo e 0 micelio aereo. Blastodconfdio o micelio aereo dos fungos filamentosos pode diferenci- arose ou formar estruturas de reprodu~ao dos fungos - micelio reprodutivo. Essas estruturas tern origem sexuada ou Fig. 64.4 - Blastoconfdio e pseudo-hifa encontrados nas leve- assexuada e sao de importancia fundamental na identifica~ao duras. morfol6gica da maioria das especies fungicas. Os propagulos formados no micelio reprodutivo estao re- redes duplas e espessas, nas quais se concentra 0 citoplas- presentados na Tabela 64.1. ma e formam-se em condi~6es ambientais adversas, coma es- Os confdios
Recommended publications
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Diversification of Fungal Chitinases and Their Functional Differentiation in 2 Histoplasma Capsulatum 3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.137125; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Diversification of fungal chitinases and their functional differentiation in 2 Histoplasma capsulatum 3 4 Kristie D. Goughenour1*, Janice Whalin1, 5 Jason C. Slot2, Chad A. Rappleye1# 6 7 1 Department of Microbiology, Ohio State University 8 2 Department of Plant Pathology, Ohio State University 9 10 11 #corresponding author: 12 [email protected] 13 614-247-2718 14 15 *current affiliation: 16 Division of Pulmonary and Critical Care Medicine 17 University of Michigan 18 VA Ann Arbor Healthcare System, Research Service 19 Ann Arbor, Michigan, USA 20 21 22 running title: Fungal chitinases 23 24 keywords: chitinase, GH18, fungi, Histoplasma 25 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.137125; this version posted June 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 26 ABSTRACT 27 Chitinases enzymatically hydrolyze chitin, a highly abundant biomolecule with many potential 28 industrial and medical uses in addition to their natural biological roles. Fungi are a rich source of 29 chitinases, however the phylogenetic and functional diversity of fungal chitinases are not well 30 understood.
    [Show full text]
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • AN ABSTRACT of the THESIS of Robert Frank Koontz for the Ph
    AN ABSTRACT OF THE THESIS OF Robert Frank Koontz for the Ph. D. (Name of student) (Degree) in Entomology presented onFebruary 14, 1968 (Major) (Date) Title: BIOLOGICAL AND ECOLOGICAL RELATIONSHIPS OF THE FUNGUS, ENTOMOPHTHORA CORONATA (COSTANTIN) KEVORKIAN, AND THE GARDEN SYMPHYLAN, SCUTIGERELLA IMMACULATA (NEWPORT) Signature redacted for privacy. Abstract approved: Clarence G. Thoripson I A study was made to determine biological relationships between the garden symphylan, Scutigerella immaculata (Newport), and an entomogenous fungus, Entomophthora coronata (Costantin), which attacks it under certain conditions.Until this fungus was found to infect this pest, no organism which seemed to offer prom- ise of control had been discovered. Symphylan populations were exposed to coronata and the pathology followed.When i ew syrnphylans were added to an in- fected culture as the diseased individuals died, an epizootic condition developed to apoint at which symphylans were infected and killed in less than two days. E. coronata survived in contaminated containers for as much as five months without susceptible hosts asevidenced by infection of reintroduced symphylans. Wax moth larvae, Galleria, and European house crickets showed high mortality when injected with spores suspended in physiological saline solution.Wax moth larvae and mealworms, Tenebrio, were infected when they were dusted with spores and incubated at 15°C temperature in high humidity. Penetration of the cuticle by germ tubes from attached spores is the usual pathway of infection. Temperature ranges for both organisms correspond closely. Both become active a few degrees above freezing and reach an optimum between 20° and 300G.Lethal temperature for both is somewhat below 37° C.
    [Show full text]
  • Phylogenetic Classification of Trametes
    TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible.
    [Show full text]
  • The Flora Mycologica Iberica Project Fungi Occurrence Dataset
    A peer-reviewed open-access journal MycoKeys 15: 59–72 (2016)The Flora Mycologica Iberica Project fungi occurrence dataset 59 doi: 10.3897/mycokeys.15.9765 DATA PAPER MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research The Flora Mycologica Iberica Project fungi occurrence dataset Francisco Pando1, Margarita Dueñas1, Carlos Lado1, María Teresa Telleria1 1 Real Jardín Botánico-CSIC, Claudio Moyano 1, 28014, Madrid, Spain Corresponding author: Francisco Pando ([email protected]) Academic editor: C. Gueidan | Received 5 July 2016 | Accepted 25 August 2016 | Published 13 September 2016 Citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) The Flora Mycologica Iberica Project fungi occurrence dataset. MycoKeys 15: 59–72. doi: 10.3897/mycokeys.15.9765 Resource citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) Flora Mycologica Iberica Project fungi occurrence dataset. v1.18. Real Jardín Botánico (CSIC). Dataset/Occurrence. http://www.gbif.es/ipt/resource?r=floramicologicaiberi ca&amp;v=1.18, http://doi.org/10.15468/sssx1e Abstract The dataset contains detailed distribution information on several fungal groups. The information has been revised, and in many times compiled, by expert mycologist(s) working on the monographs for the Flora Mycologica Iberica Project (FMI). Records comprise both collection and observational data, obtained from a variety of sources including field work, herbaria, and the literature. The dataset contains 59,235 records, of which 21,393 are georeferenced. These correspond to 2,445 species, grouped in 18 classes. The geographical scope of the dataset is Iberian Peninsula (Continental Portugal and Spain, and Andorra) and Balearic Islands. The complete dataset is available in Darwin Core Archive format via the Global Biodi- versity Information Facility (GBIF).
    [Show full text]
  • Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
    Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12).
    [Show full text]
  • Mating-Type Locus Organization and Mating-Type Chromosome Differentiation in the Bipolar Edible Button Mushroom Agaricus Bisporus
    G C A T T A C G G C A T genes Article Mating-Type Locus Organization and Mating-Type Chromosome Differentiation in the Bipolar Edible Button Mushroom Agaricus bisporus Marie Foulongne-Oriol 1 , Ozgur Taskent 2, Ursula Kües 3, Anton S. M. Sonnenberg 4, Arend F. van Peer 4 and Tatiana Giraud 2,* 1 INRAE, MycSA, Mycologie et Sécurité des Aliments, 33882 Villenave d’Ornon, France; [email protected] 2 Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France; [email protected] 3 Molecular Wood Biotechnology and Technical Mycology, Goettingen Center for Molecular Biosciences (GZMB), Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany; [email protected] 4 Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; [email protected] (A.S.M.S.); [email protected] (A.F.v.P.) * Correspondence: [email protected] Abstract: In heterothallic basidiomycete fungi, sexual compatibility is restricted by mating types, typically controlled by two loci: PR, encoding pheromone precursors and pheromone receptors, and HD, encoding two types of homeodomain transcription factors. We analysed the single mating-type locus of the commercial button mushroom variety, Agaricus bisporus var. bisporus, and of the related Citation: Foulongne-Oriol, M.; variety burnettii. We identified the location of the mating-type locus using genetic map and genome Taskent, O.; Kües, U.; Sonnenberg, information, corresponding to the HD locus, the PR locus having lost its mating-type role. We A.S.M.; van Peer, A.F.; Giraud, T.
    [Show full text]
  • Jason Stajich UC Riverside Fungidb Supported by Sloan Foundation
    FungiDB and 1000 Fungal genomes Jason Stajich UC Riverside FungiDB supported by Sloan Foundation • Data coordinating center - Knight, Sogin, Meyer labs • Fungal microbiome support - Stajich Lab (Greg Gu, Steven Ahrendt) --> Scott Bates, Jon Leff Fierer Lab Fungal genome sequencing * ** 10-15 “Zygos” + Chytrids + Cryptomycota 400-500+ genomes of Fungi http://www.diark.org/diark/statistics http://1000.fungalgenomes.org Addressing the phylogenetic diversity: 1000 Fungal genomes project !"#$%&'%()*+#+,- !"#$%&'%()*+#+,- .%#$'/+%()*+#+,- .%#$'/+%()*+#+,- 01"%2%()*+#+,- 01"%2%()*+#+,- D+%E8%,,%()*+#+,- D+%E8%,,%()*+#+,- F+G'G%()*%2&4- 3&*+"#4+-,+/',- F+G'G%()*%2&4- 3&*+"#4+-,+/',- 547%187+&'%()*+#+,- 547%187+&'%()*+#+,- 5+*4&%"%()*+#+,- 5+*4&%"%()*+#+,- 5+%2%()*+#+,- 5+%2%()*+#+,- 5'*$'&%()*+#+,- 5'*$'&%()*+#+,- 6"7'8'%()*+#+,- 6"7'8'%()*+#+,- F+G'G%()*+#+,- F+G'G%()*+#+,- H4**$4"%()*%2&4- H%"/4"'%()*+#+,- H4**$4"%()*%2&4- H%"/4"'%()*+#+,- H4**$4"%()*+#+,- H4**$4"%()*+#+,- I+%8+*#%()*+#+,- I+%8+*#%()*+#+,- J4K$"'&%()*%2&4- F&+1(%*),2/'%()*+#+,- J4K$"'&%()*%2&4- F&+1(%*),2/'%()*+#+,- H*$'G%,4**$4"%()*+#+,- H*$'G%,4**$4"%()*+#+,- J4K$"'&%()*+#+,- J4K$"'&%()*+#+,- M,284E'&%()*%2&4- 0L%74,'/'%()*+#+,- M,284E'&%()*%2&4- 0L%74,'/'%()*+#+,- M,284E'&%()*+#+,- M,284E'&%()*+#+,- !E4"'*%,287%()*+#+,- !E4"'*%,287%()*+#+,- !#"4*2+88%()*+#+,- !#"4*2+88%()*+#+,- N84,,'*18%()*+#+,- N84,,'*18%()*+#+,- F1**'&'%()*%2&4- N")K#%()*%*%84*%()*+#+,- F1**'&'%()*%2&4- N")K#%()*%*%84*%()*+#+,- N),#%74,'/'%()*+#+,- N),#%74,'/'%()*+#+,- O'*"%7%#")%()*+#+,- O'*"%7%#")%()*+#+,-
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]