Majorana Neutrino Magnetic Moment and Neutrino Decoupling in Big Bang Nucleosynthesis

Total Page:16

File Type:pdf, Size:1020Kb

Majorana Neutrino Magnetic Moment and Neutrino Decoupling in Big Bang Nucleosynthesis PHYSICAL REVIEW D 92, 125020 (2015) Majorana neutrino magnetic moment and neutrino decoupling in big bang nucleosynthesis † ‡ N. Vassh,1,* E. Grohs,2, A. B. Balantekin,1, and G. M. Fuller3,§ 1Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA 2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA 3Department of Physics, University of California, San Diego, La Jolla, California 92093, USA (Received 1 October 2015; published 22 December 2015) We examine the physics of the early universe when Majorana neutrinos (νe, νμ, ντ) possess transition magnetic moments. These extra couplings beyond the usual weak interaction couplings alter the way neutrinos decouple from the plasma of electrons/positrons and photons. We calculate how transition magnetic moment couplings modify neutrino decoupling temperatures, and then use a full weak, strong, and electromagnetic reaction network to compute corresponding changes in big bang nucleosynthesis abundance yields. We find that light element abundances and other cosmological parameters are sensitive to −10 magnetic couplings on the order of 10 μB. Given the recent analysis of sub-MeV Borexino data which −11 constrains Majorana moments to the order of 10 μB or less, we find that changes in cosmological parameters from magnetic contributions to neutrino decoupling temperatures are below the level of upcoming precision observations. DOI: 10.1103/PhysRevD.92.125020 PACS numbers: 13.15.+g, 26.35.+c, 14.60.St, 14.60.Lm I. INTRODUCTION Such processes alter the primordial abundance yields which can be used to constrain the allowed sterile neutrino mass In this paper we explore how the early universe, and the and magnetic moment parameter space [4]. weak decoupling/big bang nucleosynthesis (BBN) epochs Since the magnetic moment interaction always changes in particular, respond to new neutrino sector physics in the the helicity of the incoming neutrino, Dirac neutrinos in form of beyond-the-standard model neutrino magnetic particular have been of interest in BBN research due to their moments. Small electromagnetic couplings of neutrinos, ability to populate the “wrong” helicity states. For instance e.g., magnetic moments, may have effects in the early studies of the spin-flip rate in a primordial magnetic field universe, where neutrinos determine much of the energetics [5] and primordial plasmon decay into νν¯ pairs [6] are and composition (e.g., isospin). Examinations of the role centered around the possibility of generating right-handed that neutrino magnetic channels can play in astrophysics neutrino states. If the neutrino is a Dirac particle, magnetic and cosmology began long before laboratory experiments, interactions between the neutrinos and charged leptons such as GEMMA [1], ever attempted to detect beyond-the- could keep the right-handed states in thermal, Fermi-Dirac standard model magnetic moments. Any plasma environ- equilibrium with the left-handed states. The higher energy ment in which neutrinos are produced in copious amounts, ∼3 ∼6 density would increase Neff from to which is in such as the Sun and supernovae, is susceptible to the disagreement with current observations [7]. This has lead possibility of small neutrino magnetic moments having many authors to examine limits on the magnetic moments observable consequences. Since neutrinos are a dominant of Dirac neutrinos by constraining the production of right- constituent of the early universe during the BBN era, this handed states during times earlier than BBN such as the environment is sensitive to the additional interactions that QCD epoch [8–11]. Morgan [8] and Fukugita et al. [9] use the magnetic channels provide. For example, changes in the an approximate neutrino-electron scattering cross section 4 νν¯ primordial He abundance due to annihilation into to quantify the production of these helicity states. Elmfors electron-positron pairs were used to provide limitations et al. [10] and Ayala et al. [11] perform numerical treat- on the mass and magnetic moment of tau neutrinos before ments of the right-handed production rate by considering experiment was able to exclude tau neutrino mass of order the proper photon propagator in an electron-positron MeV [2,3]. Similarly, massive sterile neutrinos have the plasma. These analyses then require that these helicity ability to magnetically decay into a light neutrino while states have decoupled prior to BBN. The connection with injecting a nonthermal photon into the primordial plasma. BBN comes through either comparisons of the expansion rate and right-handed interaction rate or in the case of [9] through constraining the number density of right-handed *[email protected][email protected] states. Therefore the limits on the magnetic moment ‡ [email protected] of neutrinos that these works produce are necessarily §[email protected] functions of the right-handed decoupling temperature. 1550-7998=2015=92(12)=125020(13) 125020-1 © 2015 American Physical Society N. VASSH et al. PHYSICAL REVIEW D 92, 125020 (2015) −11 Fukugita et al. [9] obtain μν < 7 × 10 μB for a right- difficult to solve in the general case, but become simpler in ≃ handed neutrino decoupling temperature of Tdec the homogeneous and isotropic conditions of the early 100 MeV. Elmfors et al. [10] and Ayala et al. [11] obtain universe [24–34]. In contrast to the solar and supernovae −11 −10 μν < 6.2 × 10 μB and μν < 2.9 × 10 μB respectively environments, the literature on the role of Majorana neutrino ≃ 100 (also for Tdec MeV). However, limitations on the transition moments in BBN is sparse. To the best of our magnetic interaction of neutrinos which appeal to the need knowledge the only investigation of Majorana moments in to avoid right-handed states are only applicable to Dirac the early universe appeals to an active-sterile transition neutrinos. A right-handed Majorana neutrino behaves as an moment [35] in the presence of a primordial magnetic field. antineutrino and so would not cause a sizable increase in In this paper, we examine effects of the Majorana the effective number of neutrino species. Since for this neutrino transition moments in the early universe without paper we will consider the case of Majorana neutrinos, invoking sterile neutrinos or primordial magnetic fields. inclusion of the magnetic channels can keep the neutrinos If its transition magnetic moments are large enough, a given interacting with the primordial plasma into the BBN era. active neutrino species can remain coupled to the electro- This allows us to examine explicitly the connection magnetic plasma into the BBN epoch. In the early universe, between neutrino magnetic moment and BBN observables a Majorana neutrino can magnetically interact with elec- such as the primordial abundances and Neff. trons and positrons as well as photons and other neutrinos. In addition to helicity considerations, magnetic inter- However magnetic neutrino-neutrino scattering and inter- actions of Majorana neutrinos differ from the Dirac case in actions between neutrinos and photons (such as neutrino that Majorana dipole moments are necessarily transition Compton scattering) are proportional to the fourth power of moments. Dirac neutrinos can have both diagonal and the magnetic moment [36] and so are suppressed relative to nondiagonal moments, but Majorana neutrino diagonal interactions with electrons and positrons which are propor- moments are identically zero [12]. This implies that for tional to the second power of the magnetic moment. Here we Majorana neutrinos the magnetic channels must occur with explore effects on the primordial abundances when enhanced − − flavor changing currents such as νe þ e → ν¯μ þ e and interactions between electrons/positrons and Majorana neu- þ − νe þ νμ → e þ e . Constraints on the effective magnetic trinos via magnetic scattering and annihilation channels are moment of neutrinos measured by experiments such as taken into account. In Sec. II we demonstrate how magnetic TEXONO [13] and GEMMA are not readily applicable to neutrino-electron scattering can play a significant role in a the transition magnetic moments of Majorana neutrinos. relatively low temperature environment such as the early Experimental upper bounds need to be converted into limits universe. In Sec. III we find the neutrino interaction rate for the case of thermal equilibrium by introducing expressions on transition moments, μxy, where subscripts x and y denote the neutrino states coupling to the photon. Such constraints for the thermally averaged cross section times Moller were first found in [14] using available solar þ reactor velocity which make use of Fermi-Dirac statistics. We use these interaction rates to find neutrino decoupling temper- scattering data from experiments such as SNO, SuperK, μ ROVNO and MUNU. A recent analysis of sub-MeV atures as a function of the transition magnetic moments eμ, μ τ,andμμτ. In Sec. IV we explore the corresponding change Borexino scattering data [15] found constraints on the e in the predicted abundances and N when these decoupling three Majorana transition moments in the mass basis to be eff temperatures are implemented in a modified version of μ ≤ ½3.1–5.6 × 10−11μ [16]. These new limits given by ij B the Wagoner-Kawano (WK)code[37,38]. We conclude in Borexino data are stronger than those found from MUNU Sec. V. Appendix A discusses the inverse Debye screening and TEXONO data, and secondary only to constraints length at all temperatures for an electron-positron plasma from GEMMA data which for Majorana moments are μ ≤ ½2 9–5 0 10−11μ which is used here to demonstrate that the magnetic ij . × B [16]. scattering cross section is finite. Appendix B shows the The most restrictive constraint on Dirac and Majorana derivation of the interaction rate expressions employed here dipole moments comes from astrophysics by considering which are functions of the cross section. All relevant cross how energy loss due to plasmon decay in red giant stars sections are listed in Appendix C. Throughout this paper, we affects the core mass at the helium flash [17].
Recommended publications
  • Neutrino Decoupling Beyond the Standard Model: CMB Constraints on the Dark Matter Mass with a Fast and Precise Neff Evaluation
    KCL-2018-76 Prepared for submission to JCAP Neutrino decoupling beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise Neff evaluation Miguel Escudero Theoretical Particle Physics and Cosmology Group Department of Physics, King's College London, Strand, London WC2R 2LS, UK E-mail: [email protected] Abstract. The number of effective relativistic neutrino species represents a fundamental probe of the thermal history of the early Universe, and as such of the Standard Model of Particle Physics. Traditional approaches to the process of neutrino decoupling are either very technical and computationally expensive, or assume that neutrinos decouple instantaneously. In this work, we aim to fill the gap between these two approaches by modeling neutrino decoupling in terms of two simple coupled differential equations for the electromagnetic and neutrino sector temperatures, in which all the relevant interactions are taken into account and which allows for a straightforward implementation of BSM species. Upon including finite temperature QED corrections we reach an accuracy on Neff in the SM of 0:01. We illustrate the usefulness of this approach to neutrino decoupling by considering, in a model independent manner, the impact of MeV thermal dark matter on Neff . We show that Planck rules out electrophilic and neutrinophilic thermal dark matter particles of m < 3:0 MeV at 95% CL regardless of their spin, and of their annihilation being s-wave or p-wave. We point out arXiv:1812.05605v4 [hep-ph] 6 Sep 2019 that thermal dark matter particles with non-negligible interactions with both electrons and neutrinos are more elusive to CMB observations than purely electrophilic or neutrinophilic ones.
    [Show full text]
  • Week 3: Thermal History of the Universe
    Week 3: Thermal History of the Universe Cosmology, Ay127, Spring 2008 April 21, 2008 1 Brief Overview Before moving on, let’s review some of the high points in the history of the Universe: T 10−4 eV, t 1010 yr: today; baryons and the CMB are entirely decoupled, stars and • ∼ ∼ galaxies have been around a long time, and clusters of galaxies (gravitationally bound systems of 1000s of galaxies) are becoming common. ∼ T 10−3 eV, t 109 yr; the first stars and (small) galaxies begin to form. • ∼ ∼ T 10−1−2 eV, t millions of years: baryon drag ends; at earlier times, the baryons are still • ∼ ∼ coupled to the CMB photons, and so perturbations in the baryon cannot grow; before this time, the gas distribution in the Universe remains smooth. T eV, t 400, 000 yr: electrons and protons combine to form hydrogen atoms, and CMB • ∼ ∼ photons decouple; at earlier times, photons are tightly coupled to the baryon fluid through rapid Thomson scattering from free electrons. T 3 eV, t 10−(4−5) yrs: matter-radiation equality; at earlier times, the energy den- • ∼ ∼ sity of the Universe is dominated by radiation. Nothing really spectacular happens at this time, although perturbations in the dark-matter density can begin to grow, providing seed gravitational-potential wells for what will later become the dark-matter halos that house galaxies and clusters of galaxies. T keV, t 105 sec; photons fall out of chemical equilibrium. At earlier times, interac- • ∼ ∼ tions that can change the photon number occur rapidly compared with the expansion rate; afterwards, these reactions freeze out and CMB photons are neither created nor destroyed.
    [Show full text]
  • The Big Bang Cosmological Model: Theory and Observations
    THE BIG BANG COSMOLOGICAL MODEL: THEORY AND OBSERVATIONS MARTINA GERBINO INFN, sezione di Ferrara ISAPP 2021 Valencia July 22st, 2021 1 Structure formation Maps of CMB anisotropies show the Universe as it was at the time of recombination. The CMB field is isotropic and !" the rms fluctuations (in total intensity) are very small, < | |# > ~10$% (even smaller in polarization). Density " perturbations � ≡ ��/� are proportional to CMB fluctuations. It is possible to show that, at recombination, perturbations could be from a few (for baryons) to at most 100 times (for CDM) larger than CMB fluctuations. We need a theory of structure formation that allows to link the tiny perturbations at z~1100 to the large scale structure of the Universe we observe today (from galaxies to clusters and beyond). General picture: small density perturbations grow via gravitational instability (Jeans mechanism). The growth is suppressed during radiation-domination and eventually kicks-off after the time of equality (z~3000). When inside the horizon, perturbations grow proportional to the scale factor as long as they are in MD and remain in the linear regime (� ≪ 1). M. GERBINO 2 ISAPP-VALENCIA, 22 JULY 2021 Preliminaries & (⃗ $&) Density contrast �(�⃗) ≡ and its Fourier expansion � = ∫ �+� �(�⃗) exp(��. �⃗) &) * Credits: Kolb&Turner 2� � � ≡ ; � = ; � = ��; � ,-./ � ,-./ � � �+, �� � ≡ �+ �; � � = �(�)$+� ∝ 6 ,-./ -01 6 �+/#, �� �+ �(�) ≈ �3 -01 2� The amplitude of perturbations as they re-enter the horizon is given by the primordial power spectrum. Once perturbations re-enter the horizon, micro-physics processes modify the primordial spectrum Scale factor M. GERBINO 3 ISAPP-VALENCIA, 22 JULY 2021 Jeans mechanism (non-expanding) The Newtonian motion of a perfect fluid is decribed via the Eulerian equations.
    [Show full text]
  • Neutrino Cosmology
    International Workshop on Astroparticle and High Energy Physics PROCEEDINGS Neutrino cosmology Julien Lesgourgues∗† LAPTH Annecy E-mail: [email protected] Abstract: I will briefly summarize the main effects of neutrinos in cosmology – in particular, on the Cosmic Microwave Background anisotropies and on the Large Scale Structure power spectrum. Then, I will present the constraints on neutrino parameters following from current experiments. 1. A powerful tool: cosmological perturbations The theory of cosmological perturbations has been developed mainly in the 70’s and 80’s, in order to explain the clustering of matter observed in the Large Scale Structure (LSS) of the Universe, and to predict the anisotropy distribution in the Cosmic Microwave Background (CMB). This theory has been confronted with observations with great success, and accounts perfectly for the most recent CMB data (the WMAP satellite, see Spergel et al. 2003 [1]) and LSS observations (the 2dF redshift survey, see Percival et al. 2003 [2]). LSS data gives a measurement of the two-point correlation function of matter pertur- bations in our Universe, which is related to the linear power spectrum predicted by the theory of cosmological perturbations on scales between 40 Mega-parsecs (smaller scales cor- respond to non-linear perturbations, because they were enhanced by gravitational collapse) and 600 Mega-parsecs (larger scales are difficult to observe because galaxies are too faint). On should keep in mind that the reconstruction of the power spectrum starting from a red- shift survey is complicated by many technical issues, like the correction of redshift–space distortions, and relies on strong assumptions concerning the light–to–mass biasing factor.
    [Show full text]
  • Arxiv:0910.5224V1 [Astro-Ph.CO] 27 Oct 2009
    Baryon Acoustic Oscillations Bruce A. Bassett 1,2,a & Ren´ee Hlozek1,2,3,b 1 South African Astronomical Observatory, Observatory, Cape Town, South Africa 7700 2 Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, South Africa 7700 3 Department of Astrophysics, University of Oxford Keble Road, Oxford, OX1 3RH, UK a [email protected] b [email protected] Abstract Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling universe. They are the standard rulers of choice for 21st century cosmology, provid- ing distance estimates that are, for the first time, firmly rooted in well-understood, linear physics. This review synthesises current understanding regarding all aspects of BAO cosmology, from the theoretical and statistical to the observational, and includes a map of the future landscape of BAO surveys, both spectroscopic and photometric . † 1.1 Introduction Whilst often phrased in terms of the quest to uncover the nature of dark energy, a more general rubric for cosmology in the early part of the 21st century might also be the “the distance revolution”. With new knowledge of the extra-galactic distance arXiv:0910.5224v1 [astro-ph.CO] 27 Oct 2009 ladder we are, for the first time, beginning to accurately probe the cosmic expansion history beyond the local universe. While standard candles – most notably Type Ia supernovae (SNIa) – kicked off the revolution, it is clear that Statistical Standard Rulers, and the Baryon Acoustic Oscillations (BAO) in particular, will play an increasingly important role. In this review we cover the theoretical, observational and statistical aspects of the BAO as standard rulers and examine the impact BAO will have on our understand- † This review is an extended version of a chapter in the book Dark Energy Ed.
    [Show full text]
  • Baryon Acoustic Oscillations Under the Hood
    Baryon acoustic oscillations! under the hood Martin White UC Berkeley/LBNL Santa Fe, NM July 2010 Acoustic oscillations seen! First “compression”, at kcstls=π. Density maxm, velocity null. Velocity maximum First “rarefaction” peak at kcstls=2π Acoustic scale is set by the sound horizon at last scattering: s = cstls CMB calibration • Not coincidentally the sound horizon is extremely well determined by the structure of the acoustic peaks in the CMB. WMAP 5th yr data Dominated by uncertainty in ρm from poor constraints near 3rd peak in CMB spectrum. (Planck will nail this!) Baryon oscillations in P(k) • Since the baryons contribute ~15% of the total matter density, the total gravitational potential is affected by the acoustic oscillations with scale set by s. • This leads to small oscillations in the matter power spectrum P(k). – No longer order unity, like in the CMB – Now suppressed by Ωb/Ωm ~ 0.1 • Note: all of the matter sees the acoustic oscillations, not just the baryons. Baryon (acoustic) oscillations RMS fluctuation Wavenumber Divide out the gross trend … A damped, almost harmonic sequence of “wiggles” in the power spectrum of the mass perturbations of amplitude O(10%). Higher order effects • The matter and radiation oscillations are not in phase, and the phase shift depends on k. • There is a subtle shift in the oscillations with k due to the fact that the universe is expanding and becoming more matter dominated. • The finite duration of decoupling and rapid change in mfp means the damping of the oscillations on small scales is not a simple Gaussian shape.
    [Show full text]
  • Physics of the Cosmic Microwave Background and the Planck Mission
    Physics of the Cosmic Microwave Background and the Planck Mission H. Kurki-Suonio Department of Physics, University of Helsinki, and Helsinki Institute of Physics, Finland Abstract This lecture is a sketch of the physics of the cosmic microwave background. The observed anisotropy can be divided into four main contributions: varia- tions in the temperature and gravitational potential of the primordial plasma, Doppler effect from its motion, and a net red/blueshift the photons accumulate from traveling through evolving gravitational potentials on their way from the primordial plasma to here. These variations are due to primordial perturba- tions, probably caused by quantum fluctuations in the very early universe. The ongoing Planck satellite mission to observe the cosmic microwave background is also described. 1 Introduction The cosmic microwave background (CMB) is radiation that comes from the early universe. In the early universe, ordinary matter was in the form of hot hydrogen and helium plasma which was almost homoge- neously distributed in space. Almost all electrons were free. Because of scattering from these electrons, the mean free path of photons was short compared to cosmological distance scales: the universe was opaque. As the universe expanded, this plasma cooled, and first the helium ions, then also the hydrogen ions captured the free electrons: the plasma was converted into gas and the universe became transparent. After that the photons of the thermal radiation of this primordial plasma have travelled through the uni- verse and we observe them today as the CMB. The CMB is close to isotropic, i.e., the microwave sky appears almost equally bright in every direction.
    [Show full text]
  • 25. Neutrinos in Cosmology
    1 25. Neutrinos in Cosmology 25. Neutrinos in Cosmology Revised August 2019 by J. Lesgourgues (TTK, RWTH) and L. Verde (ICC, U. of Barcelona; ICREA, Barcelona). 25.1 Standard neutrino cosmology Neutrino properties leave detectable imprints on cosmological observations that can then be used to constrain neutrino properties. This is a great example of the remarkable interconnection and interplay between nuclear physics, particle physics, astrophysics and cosmology (for general reviews see e.g., [1–4]). Present cosmological data are already providing constraints on neutrino properties not only complementary but also competitive with terrestrial experiments; for instance, upper bounds on the total neutrino mass have shrinked by a factor of about 14 in the past 17 years. Forthcoming cosmological data may soon provide key information, not obtainable in other ways like e.g., a measurement of the absolute neutrino mass scale. This new section is motivated by this exciting prospect. A relic neutrino background pervading the Universe (the Cosmic Neutrino background, CνB) is a generic prediction of the standard hot Big Bang model (see Big Bang Nucleosynthesis – Chap. 23 of this Review). While it has not yet been detected directly, it has been indirectly confirmed by the accurate agreement of predictions and observations of: a) the primordial abundance of light elements (see Big Bang Nucleosynthesis – Chap. 23) of this Review; b) the power spectrum of Cosmic Microwave Background (CMB) anisotropies (see Cosmic Microwave Background – Chap. 28 of this Review); and c) the large scale clustering of cosmological structures. Within the hot Big Bang model such good agreement would fail dramatically without a CνB with properties matching closely those predicted by the standard neutrino decoupling process (i.e., involving only weak interactions).
    [Show full text]
  • Baryon Acoustic Oscillations. Equation and Physical Interpretation
    Scientia et Technica Año XXIII, Vol. 23, No. 02, junio de 2018. Universidad Tecnológica de Pereira. ISSN 0122-1701 263 Baryon Acoustic Oscillations. Equation and physical interpretation Baryon Acoustic Oscillations. Equation and physical interpretation. Leandro Manuel Pardo Calderón Observatorio Astronómico Nacional, Universidad Nacional, Bogotá D.C., Colombia [email protected] Abstract —Baryon Acoustic Oscillations are a a harmonic oscillator equation. This fact, together phenomenon occurred before matter-radiation with some approximate solutions will make easier to decoupling, characterized because the baryonic matter understand its physical interpretation. Software perturbation presents oscillations, as the name suggests. CAMB was used to complement the investigation of These perturbations propagate like a pressure wave on baryon acoustic oscillations phenomenon through the photon-baryon fluid produced by gravitational potentials, which join the baryonic matter, and analysis of simulations and graphics. collisions of baryons and photons, which scatter it. This paper shows the Baryon Acoustic Oscillations equation II. COSMOLOGICAL and it provides its physical meaning. Besides, it PERTURBATIONS presents software CAMB as a tool to find BAO equation solutions and support for its physical The universe must contain inhomogeneities that description. explain grouping of matter, like galaxies clusters (figure 1). These inhomogeneities occurs on an Key Word —Acoustic oscillations, baryons, cosmological idealized universe, thus, it is convenient first to perturbations, Newtonian gauge. discuss about the ideal universe. I. INTRODUCTION First models about universe appeared few years after Albert Einstein published his General Relativity Theory. They described an isotropic and homogeneous expanding universe. However, since the universe contains inhomogeneities, which are the cause of great structures formation, it was necessary to develop a Cosmological Perturbation Theory.
    [Show full text]
  • Reionization and Dark Matter Decay Parameters Used in the MCMC Analysis
    Prepared for submission to JCAP Reionization and dark matter decay Isabel M. Oldengott, Daniel Boriero and Dominik J. Schwarz Fakult¨at f¨ur Physik, Bielefeld University, D–33501 Bielefeld, Germany E-mail: [email protected], [email protected], [email protected] Abstract. Cosmic reionization and dark matter decay can impact observations of the cosmic microwave sky in a similar way. A simultaneous study of both effects is required to constrain unstable dark matter from cosmic microwave background observations. We compare two reionization models with and without dark matter decay. We find that a reionization model that fits also data from quasars and star forming galaxies results in tighter constraints on the reionization optical depth τreio, but weaker constraints on the spectral index ns than the conventional parametrization. We use the Planck 2015 data to constrain the effective decay rate of dark matter to Γ < 2.9 10 25/s at 95% C.L. This limit is robust and model eff × − independent. It holds for any type of decaying dark matter and it depends only weakly on the chosen parametrization of astrophysical reionization. For light dark matter particles that decay exclusively into electromagnetic components this implies a limit of Γ < 5.3 10 26/s at × − 95% C.L. Specifying the decay channels, we apply our result to the case of keV-mass sterile neutrinos as dark matter candidates and obtain constraints on their mixing angle and mass, which are comparable to the ones from the diffuse X-ray background.
    [Show full text]
  • 1 Electron-Proton Decoupling in Excited State Hydrogen Atom
    Electron-Proton Decoupling in Excited State Hydrogen Atom Transfer in the Gas Phase Mitsuhiko Miyazaki1, Ryuhei Ohara1, Kota Daigoku2, Kenro Hashimoto3, Jonathan R. Woodward4, Claude Dedonder5, Christophe Jouvet*5 and Masaaki Fujii*1 1 Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-15, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan 2 Division of Chemistry, Center for Natural Sciences, College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitazato, Sagamihara, Kanagawa 228-8555 Japan 3 Department of Chemistry, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397, Japan 4 Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan. 5 CNRS, Aix Marseille Université, Physique des Interactions Ioniques et Moleculaires (PIIM) UMR 7345, 13397 Marseille cedex, France Corresponding authors Masaaki Fujii: [email protected]; Christophe Jouvet: [email protected] TOC Do the hydrogen nucleus (proton) and electron move together or sequentially in the excited state hydrogen transfer (ESHT)? We answer this question by observing time-resolved spectroscopic changes that can distinguish between the electron and proton movements in a molecular cluster of phenol solvated by 5 ammonia molecules. The measurement demonstrates for the first time that the electron moves first and the proton then follows on a much slower timescale. 1 Abstract Hydrogen-release by photoexcitation, called excited-state-hydrogen-transfer (ESHT), is one of the important photochemical processes that occur in aromatic acids. It is responsible for photoprotection of biomolecules, such as nuclei acids. Theoretically the mechanism is described by conversion of the initial state to a charge-separated state along the elongation of O(N)-H bond leading to dissociation.
    [Show full text]
  • Recombination and the Cosmic Microwave Background
    M. Pettini: Introduction to Cosmology | Lecture 9 RECOMBINATION AND THE COSMIC MICROWAVE BACKGROUND Once Big Bang Nucleosynthesis is over, at time t ∼ 300 s and tempera- ture T ∼ 8 × 108 K, the Universe is a thermal bath of photons, protons, helium nuclei, traces of other light elements, and electrons, in addition to neutrinos and the unknown dark matter particle(s). The energy density is dominated by the relativistic component, photons and neutrinos. With the exception of neutrinos and the dark matter which by this time have decoupled from the plasma, all particle species have the same temperature which is established by interactions of charged particles with the photons. Photons interacted primarily with electrons through Thomson scattering: γ + e− ! γ + e− i.e. the elastic scattering of electromagnetic radiation by a free charged particle. Thomson scattering is the low-energy limit of Compton scattering and is a valid description in the regime where the photon energy is much less than the rest-mass energy of the electron. In this process, the electron can be thought of as being made to oscillate in the electromagnetic field of the photon causing it, in turn, to emit radiation at the same frequency as the incident wave, and thus the wave is scattered. An important feature of Thomson scattering is that it introduces polarization along the direction of motion of the electron (see Figure 9.1). The cross-section for Thomson scattering is tiny: 2 2 1 e −25 2 σT = 2 2 = 6:6 × 10 cm (9.1) 6π0 mec and therefore Thomson scattering is most important when the density of free electrons is high, as in the early Universe or in the dense interiors of stars.1 1 Photons are also scattered by free protons, but σT for proton scattering is smaller by a factor 2 (me=mp) (eq.
    [Show full text]