Physics of the Cosmic Microwave Background and the Planck Mission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neutrino Decoupling Beyond the Standard Model: CMB Constraints on the Dark Matter Mass with a Fast and Precise Neff Evaluation
KCL-2018-76 Prepared for submission to JCAP Neutrino decoupling beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise Neff evaluation Miguel Escudero Theoretical Particle Physics and Cosmology Group Department of Physics, King's College London, Strand, London WC2R 2LS, UK E-mail: [email protected] Abstract. The number of effective relativistic neutrino species represents a fundamental probe of the thermal history of the early Universe, and as such of the Standard Model of Particle Physics. Traditional approaches to the process of neutrino decoupling are either very technical and computationally expensive, or assume that neutrinos decouple instantaneously. In this work, we aim to fill the gap between these two approaches by modeling neutrino decoupling in terms of two simple coupled differential equations for the electromagnetic and neutrino sector temperatures, in which all the relevant interactions are taken into account and which allows for a straightforward implementation of BSM species. Upon including finite temperature QED corrections we reach an accuracy on Neff in the SM of 0:01. We illustrate the usefulness of this approach to neutrino decoupling by considering, in a model independent manner, the impact of MeV thermal dark matter on Neff . We show that Planck rules out electrophilic and neutrinophilic thermal dark matter particles of m < 3:0 MeV at 95% CL regardless of their spin, and of their annihilation being s-wave or p-wave. We point out arXiv:1812.05605v4 [hep-ph] 6 Sep 2019 that thermal dark matter particles with non-negligible interactions with both electrons and neutrinos are more elusive to CMB observations than purely electrophilic or neutrinophilic ones. -
Majorana Neutrino Magnetic Moment and Neutrino Decoupling in Big Bang Nucleosynthesis
PHYSICAL REVIEW D 92, 125020 (2015) Majorana neutrino magnetic moment and neutrino decoupling in big bang nucleosynthesis † ‡ N. Vassh,1,* E. Grohs,2, A. B. Balantekin,1, and G. M. Fuller3,§ 1Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA 2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA 3Department of Physics, University of California, San Diego, La Jolla, California 92093, USA (Received 1 October 2015; published 22 December 2015) We examine the physics of the early universe when Majorana neutrinos (νe, νμ, ντ) possess transition magnetic moments. These extra couplings beyond the usual weak interaction couplings alter the way neutrinos decouple from the plasma of electrons/positrons and photons. We calculate how transition magnetic moment couplings modify neutrino decoupling temperatures, and then use a full weak, strong, and electromagnetic reaction network to compute corresponding changes in big bang nucleosynthesis abundance yields. We find that light element abundances and other cosmological parameters are sensitive to −10 magnetic couplings on the order of 10 μB. Given the recent analysis of sub-MeV Borexino data which −11 constrains Majorana moments to the order of 10 μB or less, we find that changes in cosmological parameters from magnetic contributions to neutrino decoupling temperatures are below the level of upcoming precision observations. DOI: 10.1103/PhysRevD.92.125020 PACS numbers: 13.15.+g, 26.35.+c, 14.60.St, 14.60.Lm I. INTRODUCTION Such processes alter the primordial abundance yields which can be used to constrain the allowed sterile neutrino mass In this paper we explore how the early universe, and the and magnetic moment parameter space [4]. -
Science from Litebird
Prog. Theor. Exp. Phys. 2012, 00000 (27 pages) DOI: 10.1093=ptep/0000000000 Science from LiteBIRD LiteBIRD Collaboration: (Fran¸coisBoulanger, Martin Bucher, Erminia Calabrese, Josquin Errard, Fabio Finelli, Masashi Hazumi, Sophie Henrot-Versille, Eiichiro Komatsu, Paolo Natoli, Daniela Paoletti, Mathieu Remazeilles, Matthieu Tristram, Patricio Vielva, Nicola Vittorio) 8/11/2018 ............................................................................... The LiteBIRD satellite will map the temperature and polarization anisotropies over the entire sky in 15 microwave frequency bands. These maps will be used to obtain a clean measurement of the primordial temperature and polarization anisotropy of the cosmic microwave background in the multipole range 2 ` 200: The LiteBIRD sensitivity will be better than that of the ESA Planck satellite≤ by≤ at least an order of magnitude. This document summarizes some of the most exciting new science results anticipated from LiteBIRD. Under the conservatively defined \full success" criterion, LiteBIRD will 3 measure the tensor-to-scalar ratio parameter r with σ(r = 0) < 10− ; enabling either a discovery of primordial gravitational waves from inflation, or possibly an upper bound on r; which would rule out broad classes of inflationary models. Upon discovery, LiteBIRD will distinguish between two competing origins of the gravitational waves; namely, the quantum vacuum fluctuation in spacetime and additional matter fields during inflation. We also describe how, under the \extra success" criterion using data external to Lite- BIRD, an even better measure of r will be obtained, most notably through \delensing" and improved subtraction of polarized synchrotron emission using data at lower frequen- cies. LiteBIRD will also enable breakthrough discoveries in other areas of astrophysics. We highlight the importance of measuring the reionization optical depth τ at the cosmic variance limit, because this parameter must be fixed in order to allow other probes to measure absolute neutrino masses. -
Obtaining the Best Cosmological Information from CMB, CMB Lensing and Galaxy Information
Obtaining the best cosmological information from CMB, CMB lensing and galaxy information. Larissa Santos P.H.D thesis in Astronomy Supervisors: Amedeo Balbi and Paolo Cabella Rome 2012 Contents 1 Prologue 1 2 Introduction: The standard cosmology 3 2.1 The ΛCDM model: an overview . .3 2.2 The expanding universe . .4 2.2.1 The Friedmann Robertson-Walker metric . .4 2.2.2 Cosmological distances . .5 2.3 The discovery of CMB . .6 2.4 Temperature anisotropies . .7 2.4.1 Primary temperature anisotropies . .8 2.4.2 Secondary temperature anisotropies . .9 2.5 CMB temperature angular power spectrum . 10 2.6 Cosmological parameters . 12 2.7 Polarization . 13 2.8 The matter power spectrum . 16 2.9 The ΛCDM model + primordial isocurvature fluctuations . 17 2.10 The CDM model + massive neutrinos + time evolving dark en- ergy equation of state . 19 2.11 The script of the present thesis . 20 I Asymmetries in the angular distribution of the CMB 22 3 The WMAP satellite and used dataset 23 3.1 Internal linear combination maps . 24 3.2 The WMAP masks . 25 4 The quadrant asymmetry 28 4.1 Mehod: The two-point angular correlation function . 29 4.2 Results . 30 4.2.1 The cold spot . 38 i 4.3 Discussion . 38 4.4 Conclusions . 41 II Constraining cosmological parameters 43 5 The Planck satellite 44 6 The SDSS galaxy survey 46 7 Mixed models (adiabatic + isocurvature initial fluctuations) 48 7.1 Isocurvature notation . 48 7.2 Methodology . 49 7.2.1 Information from CMB . 49 7.2.2 Information from galaxy survey . -
The Big Bang Cosmological Model: Theory and Observations
THE BIG BANG COSMOLOGICAL MODEL: THEORY AND OBSERVATIONS MARTINA GERBINO INFN, sezione di Ferrara ISAPP 2021 Valencia July 22st, 2021 1 Structure formation Maps of CMB anisotropies show the Universe as it was at the time of recombination. The CMB field is isotropic and !" the rms fluctuations (in total intensity) are very small, < | |# > ~10$% (even smaller in polarization). Density " perturbations � ≡ ��/� are proportional to CMB fluctuations. It is possible to show that, at recombination, perturbations could be from a few (for baryons) to at most 100 times (for CDM) larger than CMB fluctuations. We need a theory of structure formation that allows to link the tiny perturbations at z~1100 to the large scale structure of the Universe we observe today (from galaxies to clusters and beyond). General picture: small density perturbations grow via gravitational instability (Jeans mechanism). The growth is suppressed during radiation-domination and eventually kicks-off after the time of equality (z~3000). When inside the horizon, perturbations grow proportional to the scale factor as long as they are in MD and remain in the linear regime (� ≪ 1). M. GERBINO 2 ISAPP-VALENCIA, 22 JULY 2021 Preliminaries & (⃗ $&) Density contrast �(�⃗) ≡ and its Fourier expansion � = ∫ �+� �(�⃗) exp(��. �⃗) &) * Credits: Kolb&Turner 2� � � ≡ ; � = ; � = ��; � ,-./ � ,-./ � � �+, �� � ≡ �+ �; � � = �(�)$+� ∝ 6 ,-./ -01 6 �+/#, �� �+ �(�) ≈ �3 -01 2� The amplitude of perturbations as they re-enter the horizon is given by the primordial power spectrum. Once perturbations re-enter the horizon, micro-physics processes modify the primordial spectrum Scale factor M. GERBINO 3 ISAPP-VALENCIA, 22 JULY 2021 Jeans mechanism (non-expanding) The Newtonian motion of a perfect fluid is decribed via the Eulerian equations. -
Arxiv:0910.5224V1 [Astro-Ph.CO] 27 Oct 2009
Baryon Acoustic Oscillations Bruce A. Bassett 1,2,a & Ren´ee Hlozek1,2,3,b 1 South African Astronomical Observatory, Observatory, Cape Town, South Africa 7700 2 Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, South Africa 7700 3 Department of Astrophysics, University of Oxford Keble Road, Oxford, OX1 3RH, UK a [email protected] b [email protected] Abstract Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling universe. They are the standard rulers of choice for 21st century cosmology, provid- ing distance estimates that are, for the first time, firmly rooted in well-understood, linear physics. This review synthesises current understanding regarding all aspects of BAO cosmology, from the theoretical and statistical to the observational, and includes a map of the future landscape of BAO surveys, both spectroscopic and photometric . † 1.1 Introduction Whilst often phrased in terms of the quest to uncover the nature of dark energy, a more general rubric for cosmology in the early part of the 21st century might also be the “the distance revolution”. With new knowledge of the extra-galactic distance arXiv:0910.5224v1 [astro-ph.CO] 27 Oct 2009 ladder we are, for the first time, beginning to accurately probe the cosmic expansion history beyond the local universe. While standard candles – most notably Type Ia supernovae (SNIa) – kicked off the revolution, it is clear that Statistical Standard Rulers, and the Baryon Acoustic Oscillations (BAO) in particular, will play an increasingly important role. In this review we cover the theoretical, observational and statistical aspects of the BAO as standard rulers and examine the impact BAO will have on our understand- † This review is an extended version of a chapter in the book Dark Energy Ed. -
Physics of the Cosmic Microwave Background Anisotropy∗
Physics of the cosmic microwave background anisotropy∗ Martin Bucher Laboratoire APC, Universit´eParis 7/CNRS B^atiment Condorcet, Case 7020 75205 Paris Cedex 13, France [email protected] and Astrophysics and Cosmology Research Unit School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Durban 4041, South Africa January 20, 2015 Abstract Observations of the cosmic microwave background (CMB), especially of its frequency spectrum and its anisotropies, both in temperature and in polarization, have played a key role in the development of modern cosmology and our understanding of the very early universe. We review the underlying physics of the CMB and how the primordial temperature and polarization anisotropies were imprinted. Possibilities for distinguish- ing competing cosmological models are emphasized. The current status of CMB ex- periments and experimental techniques with an emphasis toward future observations, particularly in polarization, is reviewed. The physics of foreground emissions, especially of polarized dust, is discussed in detail, since this area is likely to become crucial for measurements of the B modes of the CMB polarization at ever greater sensitivity. arXiv:1501.04288v1 [astro-ph.CO] 18 Jan 2015 1This article is to be published also in the book \One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity," edited by Wei-Tou Ni (World Scientific, Singapore, 2015) as well as in Int. J. Mod. Phys. D (in press). -
Baryon Acoustic Oscillations Under the Hood
Baryon acoustic oscillations! under the hood Martin White UC Berkeley/LBNL Santa Fe, NM July 2010 Acoustic oscillations seen! First “compression”, at kcstls=π. Density maxm, velocity null. Velocity maximum First “rarefaction” peak at kcstls=2π Acoustic scale is set by the sound horizon at last scattering: s = cstls CMB calibration • Not coincidentally the sound horizon is extremely well determined by the structure of the acoustic peaks in the CMB. WMAP 5th yr data Dominated by uncertainty in ρm from poor constraints near 3rd peak in CMB spectrum. (Planck will nail this!) Baryon oscillations in P(k) • Since the baryons contribute ~15% of the total matter density, the total gravitational potential is affected by the acoustic oscillations with scale set by s. • This leads to small oscillations in the matter power spectrum P(k). – No longer order unity, like in the CMB – Now suppressed by Ωb/Ωm ~ 0.1 • Note: all of the matter sees the acoustic oscillations, not just the baryons. Baryon (acoustic) oscillations RMS fluctuation Wavenumber Divide out the gross trend … A damped, almost harmonic sequence of “wiggles” in the power spectrum of the mass perturbations of amplitude O(10%). Higher order effects • The matter and radiation oscillations are not in phase, and the phase shift depends on k. • There is a subtle shift in the oscillations with k due to the fact that the universe is expanding and becoming more matter dominated. • The finite duration of decoupling and rapid change in mfp means the damping of the oscillations on small scales is not a simple Gaussian shape. -
Baryon Acoustic Oscillations. Equation and Physical Interpretation
Scientia et Technica Año XXIII, Vol. 23, No. 02, junio de 2018. Universidad Tecnológica de Pereira. ISSN 0122-1701 263 Baryon Acoustic Oscillations. Equation and physical interpretation Baryon Acoustic Oscillations. Equation and physical interpretation. Leandro Manuel Pardo Calderón Observatorio Astronómico Nacional, Universidad Nacional, Bogotá D.C., Colombia [email protected] Abstract —Baryon Acoustic Oscillations are a a harmonic oscillator equation. This fact, together phenomenon occurred before matter-radiation with some approximate solutions will make easier to decoupling, characterized because the baryonic matter understand its physical interpretation. Software perturbation presents oscillations, as the name suggests. CAMB was used to complement the investigation of These perturbations propagate like a pressure wave on baryon acoustic oscillations phenomenon through the photon-baryon fluid produced by gravitational potentials, which join the baryonic matter, and analysis of simulations and graphics. collisions of baryons and photons, which scatter it. This paper shows the Baryon Acoustic Oscillations equation II. COSMOLOGICAL and it provides its physical meaning. Besides, it PERTURBATIONS presents software CAMB as a tool to find BAO equation solutions and support for its physical The universe must contain inhomogeneities that description. explain grouping of matter, like galaxies clusters (figure 1). These inhomogeneities occurs on an Key Word —Acoustic oscillations, baryons, cosmological idealized universe, thus, it is convenient first to perturbations, Newtonian gauge. discuss about the ideal universe. I. INTRODUCTION First models about universe appeared few years after Albert Einstein published his General Relativity Theory. They described an isotropic and homogeneous expanding universe. However, since the universe contains inhomogeneities, which are the cause of great structures formation, it was necessary to develop a Cosmological Perturbation Theory. -
Reionization and Dark Matter Decay Parameters Used in the MCMC Analysis
Prepared for submission to JCAP Reionization and dark matter decay Isabel M. Oldengott, Daniel Boriero and Dominik J. Schwarz Fakult¨at f¨ur Physik, Bielefeld University, D–33501 Bielefeld, Germany E-mail: [email protected], [email protected], [email protected] Abstract. Cosmic reionization and dark matter decay can impact observations of the cosmic microwave sky in a similar way. A simultaneous study of both effects is required to constrain unstable dark matter from cosmic microwave background observations. We compare two reionization models with and without dark matter decay. We find that a reionization model that fits also data from quasars and star forming galaxies results in tighter constraints on the reionization optical depth τreio, but weaker constraints on the spectral index ns than the conventional parametrization. We use the Planck 2015 data to constrain the effective decay rate of dark matter to Γ < 2.9 10 25/s at 95% C.L. This limit is robust and model eff × − independent. It holds for any type of decaying dark matter and it depends only weakly on the chosen parametrization of astrophysical reionization. For light dark matter particles that decay exclusively into electromagnetic components this implies a limit of Γ < 5.3 10 26/s at × − 95% C.L. Specifying the decay channels, we apply our result to the case of keV-mass sterile neutrinos as dark matter candidates and obtain constraints on their mixing angle and mass, which are comparable to the ones from the diffuse X-ray background. -
1 Electron-Proton Decoupling in Excited State Hydrogen Atom
Electron-Proton Decoupling in Excited State Hydrogen Atom Transfer in the Gas Phase Mitsuhiko Miyazaki1, Ryuhei Ohara1, Kota Daigoku2, Kenro Hashimoto3, Jonathan R. Woodward4, Claude Dedonder5, Christophe Jouvet*5 and Masaaki Fujii*1 1 Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-15, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan 2 Division of Chemistry, Center for Natural Sciences, College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitazato, Sagamihara, Kanagawa 228-8555 Japan 3 Department of Chemistry, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397, Japan 4 Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan. 5 CNRS, Aix Marseille Université, Physique des Interactions Ioniques et Moleculaires (PIIM) UMR 7345, 13397 Marseille cedex, France Corresponding authors Masaaki Fujii: [email protected]; Christophe Jouvet: [email protected] TOC Do the hydrogen nucleus (proton) and electron move together or sequentially in the excited state hydrogen transfer (ESHT)? We answer this question by observing time-resolved spectroscopic changes that can distinguish between the electron and proton movements in a molecular cluster of phenol solvated by 5 ammonia molecules. The measurement demonstrates for the first time that the electron moves first and the proton then follows on a much slower timescale. 1 Abstract Hydrogen-release by photoexcitation, called excited-state-hydrogen-transfer (ESHT), is one of the important photochemical processes that occur in aromatic acids. It is responsible for photoprotection of biomolecules, such as nuclei acids. Theoretically the mechanism is described by conversion of the initial state to a charge-separated state along the elongation of O(N)-H bond leading to dissociation. -
Arxiv:1707.09220V1 [Astro-Ph.CO] 28 Jul 2017
An Introduction to the Planck Mission David L. Clementsa aPhysics Department, Imperial College, Prince Consort Road, London, SW7 2AZ, UK ARTICLE HISTORY Compiled July 31, 2017 ABSTRACT The Cosmic Microwave Background (CMB) is the oldest light in the universe. It is seen today as black body radiation at a near-uniform temperature of 2.73K covering the entire sky. This radiation field is not perfectly uniform, but includes within it temperature anisotropies of order ∆T=T ∼ 10−5. Physical processes in the early universe have left their fingerprints in these CMB anisotropies, which later grew to become the galaxies and large scale structure we see today. CMB anisotropy observations are thus a key tool for cosmology. The Planck Mission was the Euro- pean Space Agency's (ESA) probe of the CMB. Its unique design allowed CMB anisotropies to be measured to greater precision over a wider range of scales than ever before. This article provides an introduction to the Planck Mission, includ- ing its goals and motivation, its instrumentation and technology, the physics of the CMB, how the contaminating astrophysical foregrounds were overcome, and the key cosmological results that this mission has so far produced. KEYWORDS cosmology; Planck mission; astrophysics; space astronomy; cosmic microwave background 1. Introduction The Cosmic Microwave Background (CMB) was discovered by Arno Penzias and Robert Wilson using an absolute radiometer working at a wavelength of 7 cm [1]. It was one of the great serendipitous discoveries of science since the radiometer was intended as a low-noise ground station for the Echo satellites and Penzias and Wilson were looking for a source of excess noise rather than trying to make a fundamental observation in cosmology.