The Big Bang Cosmological Model: Theory and Observations

Total Page:16

File Type:pdf, Size:1020Kb

The Big Bang Cosmological Model: Theory and Observations THE BIG BANG COSMOLOGICAL MODEL: THEORY AND OBSERVATIONS MARTINA GERBINO INFN, sezione di Ferrara ISAPP 2021 Valencia July 22st, 2021 1 Structure formation Maps of CMB anisotropies show the Universe as it was at the time of recombination. The CMB field is isotropic and !" the rms fluctuations (in total intensity) are very small, < | |# > ~10$% (even smaller in polarization). Density " perturbations � ≡ ��/� are proportional to CMB fluctuations. It is possible to show that, at recombination, perturbations could be from a few (for baryons) to at most 100 times (for CDM) larger than CMB fluctuations. We need a theory of structure formation that allows to link the tiny perturbations at z~1100 to the large scale structure of the Universe we observe today (from galaxies to clusters and beyond). General picture: small density perturbations grow via gravitational instability (Jeans mechanism). The growth is suppressed during radiation-domination and eventually kicks-off after the time of equality (z~3000). When inside the horizon, perturbations grow proportional to the scale factor as long as they are in MD and remain in the linear regime (� ≪ 1). M. GERBINO 2 ISAPP-VALENCIA, 22 JULY 2021 Preliminaries & (⃗ $&) Density contrast �(�⃗) ≡ and its Fourier expansion � = ∫ �+� �(�⃗) exp(��. �⃗) &) * Credits: Kolb&Turner 2� � � ≡ ; � = ; � = ��; � ,-./ � ,-./ � � �+, �� � ≡ �+ �; � � = �(�)$+� ∝ 6 ,-./ -01 6 �+/#, �� �+ �(�) ≈ �3 -01 2� The amplitude of perturbations as they re-enter the horizon is given by the primordial power spectrum. Once perturbations re-enter the horizon, micro-physics processes modify the primordial spectrum Scale factor M. GERBINO 3 ISAPP-VALENCIA, 22 JULY 2021 Jeans mechanism (non-expanding) The Newtonian motion of a perfect fluid is decribed via the Eulerian equations. Let’s linearize them! We obtain a second-order differential equation 4, , Where �# ≡ = is the sound speed / 4& & A solution to this equation is ! # # # * Where the dispersion relation is given by � = �/ � − 4���5 = 4���5 ! − 1 *" M. GERBINO 4 ISAPP-VALENCIA, 22 JULY 2021 Jeans mechanism (non-expanding) The critical Jeans wavenumber kJ sets the threshold for gravitational instability: # # # # � � = �/ � − 4���5 = 4���5 # − 1 �6 # k>kJ : � > 0, solution is oscillating sound wave (collapse counterbalanced by pressure) # k<kJ: � < 0, solution is an exponentially growing mode (gravitational collapse) k/kJ ~ tpressure/tgrav M. GERBINO 5 ISAPP-VALENCIA, 22 JULY 2021 Jeans mechanism (expanding) To apply this formalism to the evolution of cosmological perturbations, we must take the expansion into account Novelties: the Hubble friction term (I-order derivative) and a redefinition of the Jeans wavenumber # # 4���5� �6 ≡ # �/ The Jeans wavenumber still represents the threshold for gravitational instabilites. However, the two solutions differ: k>kJ : acoustic waves with slowly decreasing amplitude k<kJ: power-law (non-exponential!) growing mode à the expansion slows down the exponential growth M. GERBINO 6 ISAPP-VALENCIA, 22 JULY 2021 Jeans mechanism (expanding) When we have multiple components in the Universe, we must take them into account in the Poisson term In the case of CDM in a RD epoch, for k<<kJ, the equation above has the solution � � ∝ ln � : The higher expansion rate in a RD epoch suppresses the growth of perturbations (stagnation) M. GERBINO 7 ISAPP-VALENCIA, 22 JULY 2021 Jeans mechanism (expanding) Let’s summarize what happens to the growth of CDM and baryon perturbations. Consider their physical kJ,phys=kJ/a: 7& CDM: kJ,phys~ → ∞ à kJ,phys is always much larger than any other scale and CDM perturbations always grow 8# as soon as they re-enter the horizon 7& < �, � > �9:; BARYON: : kJ,phys~ { à kJ,phys is ~ acoustic horizon (smaller than the causal horizon) as long as baryons are 8# → ∞, � < �9:; tightly coupled to photons: baryons undergo acoustic oscillations as soon as they re-enter the horizon. After decoupling, the baryon sound speed drops and baryon perturbations can catch up with CDM perturbations M. GERBINO 8 ISAPP-VALENCIA, 22 JULY 2021 Free streaming Once decoupled, a given species evolves like free falling particles. If they have large velocity dispersion, they can stream out of overdense region and into underdense regions. This free-streaming effect efficiently erase perturbations on scales smaller than a characteristic free-streaming scale kfs. In analogy with the Jeans scale, we can define � � = </,,-./ � Where v=c for massless particles (or massive particles in the UR regime) and v=<p>/m for massive particle (when NR). Hence, massless and UR particles are free-streaming on all scales smaller than the horizon. The Jeans wavenumber allows to identify the scale below which (k>>kJ -> � ≪ �6) pressure counterbalances gravitational instability and prevents gravitational collapse. Similarly, the free-streaming wavenumber identifies the scale below which the high thermal velocity allows collisionless particles to escape gravitational wells. Free streaming inhibits structure formation on scales much smaller than the free-streaming scale. Hot dark matter cannot be the dominant dark matter component (top-down vs bottom-up). M. GERBINO 9 ISAPP-VALENCIA, 22 JULY 2021 Lambda-dominated epoch At recent times, the cosmological constant takes over CDM and becomes the dominating species. When this happens, the growth of perturbations is modified due to the change in the expansion history. Lambda is responsible for the accelerated expansion we observe today. Therefore, it enhances the effect of the Hubble friction term in the Boltzmann equations for the evolution of perturbations. As a result, the growth of perturbations is slowed down in a way that is independent of the wavenumber: �(�) ∝ ��(�, Ω>, Ω?) where g(a) is a decreasing function of the scale factor that goes from 1 during MD to vanishingly small values at later times and depends on the amount of CDM and Lambda. Observations of the distribution of cosmic structures at late times are key to investigate dark energy properties! M. GERBINO 10 ISAPP-VALENCIA, 22 JULY 2021 Super-horizon perturbations To correctly describe the behaviour of super-horizon perturbations, general-relativistic analysis is needed. Here, we will follow an approximate scheme (on super-horizon scales, micro-physics can be neglected). Consider a flat Universe with average density �5 and a second Universe with the same expansion rate but a slighlty higher density �@ > �5 (hence, it must have curvature parameter k=1). If we equate the Friedmann equations in the two Universes, we can work out the density contrast as & $& */A! � ≡ $ % = &% BC7&%/+ As long as the contrast remains small, we can easily see that $# � �#, �� � ∝ ∝ U � �, �� Super-horizon perturbations are untouched by micro-physics effects. When they re-enter the horizon, their amplitude at horizon-crossing is set by the inflationary spectrum. When inside the horizon, micro-physics kicks in and the initial spectrum is modified. M. GERBINO 11 ISAPP-VALENCIA, 22 JULY 2021 Matter power spectrum khc=ahcH~ keq -1 -1/2 (ahc , RD; ahc , MD) -3 -3 Phc~k Pin~k P(k,t)~k P(k,t)~k-3 1) thc <teq: P(k,0)~[(1/aeq) X 2 ln(1+aeq/ahc)] Phc -3 # ~k ln(1+k) � �, � = � �, � �-;(�) 2) thc> teq: 2 4 P(k,0)~(1/ahc) Phc~k Phc~k Credits: NeutrinoCosmology M. GERBINO 12 ISAPP-VALENCIA, 22 JULY 2021 Matter power spectrum We have seen that the spectrum of perturbations at horizon crossing is given by the primordial spectrum of scalar perturbations. Different scales cross the horizon at different times. It is useful to have an expression for the spectrum at a given time as a function of the scale/wavenumber. To do so, we must find 1) when a given scale enters the horizon, 2) How the scale is modified between horizon crossing and the time at which we want the spectrum to be computed. In practice, we can express the spectrum as # � �, � = � �, � �-;(�) If we want the CDM spectrum today: 1) Let’s call keq the scale that enters the horizon at matter-radiation equality; -1 -1/2 -3 -3 2) Let’s see that khc=ahcH~ (ahc , RD; ahc , MD) and Phc~k Pin~k ; 2 -3 3) Scales k>keq have entered the horizon at thc <teq: P(k,0)~[(1/aeq)ln(1+aeq/ahc)] Phc~k ln(1+k) 2 4 4) Scales k<keq will enter the horizon at thc> teq: P(k,0)~(1/ahc) Phc~k Phc~k. After teq, all scales evolve as a(t) and the shape of the (linear) spectrum remains the same. There is a time tnl when a given scale enters in the non-linear regime: clustering is enhanced and initial conditions are Rapidly forgot. The evolution in the (midly) non-linear regime must be studied with different dedicated tools. M. GERBINO 13 ISAPP-VALENCIA, 22 JULY 2021 Matter power spectrum We can add the effect of baryons. We know that: 1) On super-horizon scales, baryon perturbations evolve as the dominant component 2) Before recombination, baryon oscillates with photons (BAO) 3) After recombination, baryon perturbations catch-up with CDM We can also add the effect of neutrinos: 1) Neutrinos contribute to clustering only on scales larger than the free streaming scale (k<kfs) 2) On smaller scales, neutrino free streaming erases perturbations in the neutrino fluid On top of these direct effects, baryons and neutrinos backreact on CDM slowing down the overall growth of perturbations with respect to the case of a pure CDM Universe. M. GERBINO 14 ISAPP-VALENCIA, 22 JULY 2021 Cosmic Microwave Background Soon after matter-radiation decoupling, CMB photons propagate (almost) undisturbed. The equilibrium distribution of CMB photons is redshifted as the Universe expands and cools down. The currently observed CMB frequency spectrum is a perfect black body spectrum (vanishingly small spectral distortions) with a very precisely measured temperature -4 T0=(2.725+/-0.001) K=(2.348+/-0.001) 10 eV On top of this average temperature, the standard model predicts (and we observe!) fluctuations in intensity and polarization.
Recommended publications
  • String Theory and Pre-Big Bang Cosmology
    IL NUOVO CIMENTO 38 C (2015) 160 DOI 10.1393/ncc/i2015-15160-8 Colloquia: VILASIFEST String theory and pre-big bang cosmology M. Gasperini(1)andG. Veneziano(2) (1) Dipartimento di Fisica, Universit`a di Bari - Via G. Amendola 173, 70126 Bari, Italy and INFN, Sezione di Bari - Bari, Italy (2) CERN, Theory Unit, Physics Department - CH-1211 Geneva 23, Switzerland and Coll`ege de France - 11 Place M. Berthelot, 75005 Paris, France received 11 January 2016 Summary. — In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikely. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe “bounce” into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a “hot big bounce” in which the bouncing and heating mechanisms originate from the quan- tum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its simplest version (where it represents an alternative and not a complement to standard slow-roll inflation) it can produce a viable spectrum of density perturbations, together with a tensor component characterized by a “blue” spectral index with a peak in the GHz frequency range.
    [Show full text]
  • Big Bang Blunder Bursts the Multiverse Bubble
    WORLD VIEW A personal take on events IER P P. PA P. Big Bang blunder bursts the multiverse bubble Premature hype over gravitational waves highlights gaping holes in models for the origins and evolution of the Universe, argues Paul Steinhardt. hen a team of cosmologists announced at a press world will be paying close attention. This time, acceptance will require conference in March that they had detected gravitational measurements over a range of frequencies to discriminate from fore- waves generated in the first instants after the Big Bang, the ground effects, as well as tests to rule out other sources of confusion. And Worigins of the Universe were once again major news. The reported this time, the announcements should be made after submission to jour- discovery created a worldwide sensation in the scientific community, nals and vetting by expert referees. If there must be a press conference, the media and the public at large (see Nature 507, 281–283; 2014). hopefully the scientific community and the media will demand that it According to the team at the BICEP2 South Pole telescope, the is accompanied by a complete set of documents, including details of the detection is at the 5–7 sigma level, so there is less than one chance systematic analysis and sufficient data to enable objective verification. in two million of it being a random occurrence. The results were The BICEP2 incident has also revealed a truth about inflationary the- hailed as proof of the Big Bang inflationary theory and its progeny, ory. The common view is that it is a highly predictive theory.
    [Show full text]
  • Neutrino Decoupling Beyond the Standard Model: CMB Constraints on the Dark Matter Mass with a Fast and Precise Neff Evaluation
    KCL-2018-76 Prepared for submission to JCAP Neutrino decoupling beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise Neff evaluation Miguel Escudero Theoretical Particle Physics and Cosmology Group Department of Physics, King's College London, Strand, London WC2R 2LS, UK E-mail: [email protected] Abstract. The number of effective relativistic neutrino species represents a fundamental probe of the thermal history of the early Universe, and as such of the Standard Model of Particle Physics. Traditional approaches to the process of neutrino decoupling are either very technical and computationally expensive, or assume that neutrinos decouple instantaneously. In this work, we aim to fill the gap between these two approaches by modeling neutrino decoupling in terms of two simple coupled differential equations for the electromagnetic and neutrino sector temperatures, in which all the relevant interactions are taken into account and which allows for a straightforward implementation of BSM species. Upon including finite temperature QED corrections we reach an accuracy on Neff in the SM of 0:01. We illustrate the usefulness of this approach to neutrino decoupling by considering, in a model independent manner, the impact of MeV thermal dark matter on Neff . We show that Planck rules out electrophilic and neutrinophilic thermal dark matter particles of m < 3:0 MeV at 95% CL regardless of their spin, and of their annihilation being s-wave or p-wave. We point out arXiv:1812.05605v4 [hep-ph] 6 Sep 2019 that thermal dark matter particles with non-negligible interactions with both electrons and neutrinos are more elusive to CMB observations than purely electrophilic or neutrinophilic ones.
    [Show full text]
  • DARK AGES of the Universe the DARK AGES of the Universe Astronomers Are Trying to fill in the Blank Pages in Our Photo Album of the Infant Universe by Abraham Loeb
    THE DARK AGES of the Universe THE DARK AGES of the Universe Astronomers are trying to fill in the blank pages in our photo album of the infant universe By Abraham Loeb W hen I look up into the sky at night, I often wonder whether we humans are too preoccupied with ourselves. There is much more to the universe than meets the eye on earth. As an astrophysicist I have the privilege of being paid to think about it, and it puts things in perspective for me. There are things that I would otherwise be bothered by—my own death, for example. Everyone will die sometime, but when I see the universe as a whole, it gives me a sense of longevity. I do not care so much about myself as I would otherwise, because of the big picture. Cosmologists are addressing some of the fundamental questions that people attempted to resolve over the centuries through philosophical thinking, but we are doing so based on systematic observation and a quantitative methodology. Perhaps the greatest triumph of the past century has been a model of the uni- verse that is supported by a large body of data. The value of such a model to our society is sometimes underappreciated. When I open the daily newspaper as part of my morning routine, I often see lengthy de- scriptions of conflicts between people about borders, possessions or liberties. Today’s news is often forgotten a few days later. But when one opens ancient texts that have appealed to a broad audience over a longer period of time, such as the Bible, what does one often find in the opening chap- ter? A discussion of how the constituents of the universe—light, stars, life—were created.
    [Show full text]
  • Majorana Neutrino Magnetic Moment and Neutrino Decoupling in Big Bang Nucleosynthesis
    PHYSICAL REVIEW D 92, 125020 (2015) Majorana neutrino magnetic moment and neutrino decoupling in big bang nucleosynthesis † ‡ N. Vassh,1,* E. Grohs,2, A. B. Balantekin,1, and G. M. Fuller3,§ 1Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA 2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA 3Department of Physics, University of California, San Diego, La Jolla, California 92093, USA (Received 1 October 2015; published 22 December 2015) We examine the physics of the early universe when Majorana neutrinos (νe, νμ, ντ) possess transition magnetic moments. These extra couplings beyond the usual weak interaction couplings alter the way neutrinos decouple from the plasma of electrons/positrons and photons. We calculate how transition magnetic moment couplings modify neutrino decoupling temperatures, and then use a full weak, strong, and electromagnetic reaction network to compute corresponding changes in big bang nucleosynthesis abundance yields. We find that light element abundances and other cosmological parameters are sensitive to −10 magnetic couplings on the order of 10 μB. Given the recent analysis of sub-MeV Borexino data which −11 constrains Majorana moments to the order of 10 μB or less, we find that changes in cosmological parameters from magnetic contributions to neutrino decoupling temperatures are below the level of upcoming precision observations. DOI: 10.1103/PhysRevD.92.125020 PACS numbers: 13.15.+g, 26.35.+c, 14.60.St, 14.60.Lm I. INTRODUCTION Such processes alter the primordial abundance yields which can be used to constrain the allowed sterile neutrino mass In this paper we explore how the early universe, and the and magnetic moment parameter space [4].
    [Show full text]
  • Origin and Evolution of the Universe Baryogenesis
    Physics 224 Spring 2008 Origin and Evolution of the Universe Baryogenesis Lecture 18 - Monday Mar 17 Joel Primack University of California, Santa Cruz Post-Inflation Baryogenesis: generation of excess of baryon (and lepton) number compared to anti-baryon (and anti-lepton) number. in order to create the observed baryon number today it is only necessary to create an excess of about 1 quark and lepton for every ~109 quarks+antiquarks and leptons +antileptons. Other things that might happen Post-Inflation: Breaking of Pecci-Quinn symmetry so that the observable universe is composed of many PQ domains. Formation of cosmic topological defects if their amplitude is small enough not to violate cosmological bounds. There is good evidence that there are no large regions of antimatter (Cohen, De Rujula, and Glashow, 1998). It was Andrei Sakharov (1967) who first suggested that the baryon density might not represent some sort of initial condition, but might be understandable in terms of microphysical laws. He listed three ingredients to such an understanding: 1. Baryon number violation must occur in the fundamental laws. At very early times, if baryon number violating interactions were in equilibrium, then the universe can be said to have “started” with zero baryon number. Starting with zero baryon number, baryon number violating interactions are obviously necessary if the universe is to end up with a non-zero asymmetry. As we will see, apart from the philosophical appeal of these ideas, the success of inflationary theory suggests that, shortly after the big bang, the baryon number was essentially zero. 2. CP-violation: If CP (the product of charge conjugation and parity) is conserved, every reaction which produces a particle will be accompanied by a reaction which produces its antiparticle at precisely the same rate, so no baryon number can be generated.
    [Show full text]
  • What Happened Before the Big Bang?
    Quarks and the Cosmos ICHEP Public Lecture II Seoul, Korea 10 July 2018 Michael S. Turner Kavli Institute for Cosmological Physics University of Chicago 100 years of General Relativity 90 years of Big Bang 50 years of Hot Big Bang 40 years of Quarks & Cosmos deep connections between the very big & the very small 100 years of QM & atoms 50 years of the “Standard Model” The Universe is very big (billions and billions of everything) and often beyond the reach of our minds and instruments Big ideas and powerful instruments have enabled revolutionary progress a very big idea connections between quarks & the cosmos big telescopes on the ground Hawaii Chile and in space: Hubble, Spitzer, Chandra, and Fermi at the South Pole basics of our Universe • 100 billion galaxies • each lit with the light of 100 billion stars • carried away from each other by expanding space from a • big bang beginning 14 billion yrs ago Hubble (1925): nebulae are “island Universes” Universe comprised of billions of galaxies Hubble Deep Field: one ten millionth of the sky, 10,000 galaxies 100 billion galaxies in the observable Universe Universe is expanding and had a beginning … Hubble, 1929 Signature of big bang beginning Einstein: Big Bang = explosion of space with galaxies carried along The big questions circa 1978 just two numbers: H0 and q0 Allan Sandage, Hubble’s “student” H0: expansion rate (slope age) q0: deceleration (“droopiness” destiny) … tens of astronomers working (alone) to figure it all out Microwave echo of the big bang Hot MichaelBig S Turner Bang
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • Banks-Zaks Cosmology, Inflation, and the Big Bang Singularity
    Prepared for submission to JCAP Banks-Zaks Cosmology, Inflation, and the Big Bang Singularity Michal Artymowski, Ido Ben-Dayan, Utkarsh Kumar Physics Department, Ariel University, Ariel 40700, Israel E-mail: [email protected], [email protected], [email protected] Abstract. We consider the thermodynamical behavior of Banks-Zaks theory close to the conformal point in a cosmological setting. Due to the anomalous dimension, the resulting pressure and energy density deviate from that of radiation and result in various interesting cosmological scenarios. Specifically, for a given range of parameters one avoids the cosmological singularity. We provide a full "phase diagram" of possible Universe evolution for the given parameters. For a certain range of parameters, the thermal averaged Banks-Zaks theory alone results in an exponentially contracting uni- verse followed by a non-singular bounce and an exponentially expanding universe, i.e. Inflation without a Big Bang singularity, or shortly termed "dS Bounce". The tem- perature of such a universe is bounded from above and below. The result is a theory violating the classical Null Energy Condition (NEC). Considering the Banks-Zaks the- ory with an additional perfect fluid, yields an even richer phase diagram that includes the standard Big Bang model, stable single "normal" bounce, dS Bounce and stable cyclic solutions. The bouncing and cyclic solutions are with no singularities, and the violation of the NEC happens only near the bounce. We also provide simple analytical conditions for the existence of these non-singular solutions. Hence, within effective field theory, we have a new alternative non-singular cosmology based on the anoma- arXiv:1912.10532v2 [hep-th] 13 May 2020 lous dimension of Bank-Zaks theory that may include inflation and without resorting to scalar fields.
    [Show full text]
  • Arxiv:0910.5224V1 [Astro-Ph.CO] 27 Oct 2009
    Baryon Acoustic Oscillations Bruce A. Bassett 1,2,a & Ren´ee Hlozek1,2,3,b 1 South African Astronomical Observatory, Observatory, Cape Town, South Africa 7700 2 Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, South Africa 7700 3 Department of Astrophysics, University of Oxford Keble Road, Oxford, OX1 3RH, UK a [email protected] b [email protected] Abstract Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling universe. They are the standard rulers of choice for 21st century cosmology, provid- ing distance estimates that are, for the first time, firmly rooted in well-understood, linear physics. This review synthesises current understanding regarding all aspects of BAO cosmology, from the theoretical and statistical to the observational, and includes a map of the future landscape of BAO surveys, both spectroscopic and photometric . † 1.1 Introduction Whilst often phrased in terms of the quest to uncover the nature of dark energy, a more general rubric for cosmology in the early part of the 21st century might also be the “the distance revolution”. With new knowledge of the extra-galactic distance arXiv:0910.5224v1 [astro-ph.CO] 27 Oct 2009 ladder we are, for the first time, beginning to accurately probe the cosmic expansion history beyond the local universe. While standard candles – most notably Type Ia supernovae (SNIa) – kicked off the revolution, it is clear that Statistical Standard Rulers, and the Baryon Acoustic Oscillations (BAO) in particular, will play an increasingly important role. In this review we cover the theoretical, observational and statistical aspects of the BAO as standard rulers and examine the impact BAO will have on our understand- † This review is an extended version of a chapter in the book Dark Energy Ed.
    [Show full text]
  • Lecture 19 Big Bang Cosmology
    PHY100 ― The Nature of the Physical World Lecture 19 Big Bang Cosmology Arán García-Bellido PHY100 1 News Exam 2: you can do better! Presentations April 14: Great Physicist life, Controlled fusion April 19: Nuclear power, Search for ET life April 21: Music, Nuclear terrorism 2 per day 20 min+discussion/Q&A Want to meet with all groups this week Contact me PHY100 2 Cosmology Scientific study of the large scale structure of the universe Attempt to understand the origin, evolution and fate of the universe The universe: all matter, space, time and energy Remember first lecture: Tycho Brahe (1546-1601): careful observation of sun, moon, planets Johannes Kepler (1571-1630): elliptical orbits, 3 laws of planetary motion Isaac Newton (1643-1727): Universal law of gravitation + laws of motion explained Kepler's laws of planetary motion Albert Einstein (1879-1955): In an accelerated rocket ship, light would seem to travel on a curved path Gravity = accelerated frame Gravity curves space PHY100 3 Gravity bends light From outside Light is not bent because of the gravitational force 'per se' Light moves on a geodesic (=shortest distance between two points) So Einstein interprets gravitation as a curvature of spacetime Gravity warps spacetime Light just follows the curvature of space From inside PHY100 4 General Relativity: tests Bending of light by gravitational field 4 Gravitational redshift of light 4 Perihelion advance of Mercury 4 Gravitational waves ? PHY100 5 Light travels at a finite speed Object Lookback time Sun 8 minutes Alpha Centauri
    [Show full text]
  • Baryon Acoustic Oscillations Under the Hood
    Baryon acoustic oscillations! under the hood Martin White UC Berkeley/LBNL Santa Fe, NM July 2010 Acoustic oscillations seen! First “compression”, at kcstls=π. Density maxm, velocity null. Velocity maximum First “rarefaction” peak at kcstls=2π Acoustic scale is set by the sound horizon at last scattering: s = cstls CMB calibration • Not coincidentally the sound horizon is extremely well determined by the structure of the acoustic peaks in the CMB. WMAP 5th yr data Dominated by uncertainty in ρm from poor constraints near 3rd peak in CMB spectrum. (Planck will nail this!) Baryon oscillations in P(k) • Since the baryons contribute ~15% of the total matter density, the total gravitational potential is affected by the acoustic oscillations with scale set by s. • This leads to small oscillations in the matter power spectrum P(k). – No longer order unity, like in the CMB – Now suppressed by Ωb/Ωm ~ 0.1 • Note: all of the matter sees the acoustic oscillations, not just the baryons. Baryon (acoustic) oscillations RMS fluctuation Wavenumber Divide out the gross trend … A damped, almost harmonic sequence of “wiggles” in the power spectrum of the mass perturbations of amplitude O(10%). Higher order effects • The matter and radiation oscillations are not in phase, and the phase shift depends on k. • There is a subtle shift in the oscillations with k due to the fact that the universe is expanding and becoming more matter dominated. • The finite duration of decoupling and rapid change in mfp means the damping of the oscillations on small scales is not a simple Gaussian shape.
    [Show full text]