Baryon Acoustic Oscillations in the Large Scale Structures of the Universe As Seen by the Sloan Digital Sky Survey Julian Bautista

Total Page:16

File Type:pdf, Size:1020Kb

Baryon Acoustic Oscillations in the Large Scale Structures of the Universe As Seen by the Sloan Digital Sky Survey Julian Bautista Baryon Acoustic Oscillations in the Large Scale Structures of the Universe as seen by the Sloan Digital Sky Survey Julian Bautista To cite this version: Julian Bautista. Baryon Acoustic Oscillations in the Large Scale Structures of the Universe as seen by the Sloan Digital Sky Survey. Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]. Université Paris Diderot, 2014. English. tel-01389967 HAL Id: tel-01389967 https://tel.archives-ouvertes.fr/tel-01389967 Submitted on 4 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale Particules, Noyaux et Cosmos 517 UNIVERSITE´ PARIS DIDEROT SORBONNE PARIS CITE Laboratoire Astroparticules Cosmologie THESE` pour obtenir le grade de Docteur en Sciences Sp´ecialit´e: Cosmologie Baryon Acoustic Oscillations in the Large Scale Structures of the Universe as seen by the Sloan Digital Sky Survey par Juli´anErnesto Bautista Soutenue le 15 Septembre 2014. Jury : Pr´esident: M. Stavros Katzanevas - Laboratoire AstroParticule et Cosmologie Rapporteurs : M. Alain Blanchard - Institut de Recherche en Astrophysique et Plan´etologie M. Jean-Paul Kneib - Ecole Polytechnique F´ed´eralede Lausanne Examinateurs : M. Julien Guy - Lawrence Berkeley National Laboratory M. Jordi Miralda-Escude´ - Institut de Cincies del Cosmos Barcelona M. David Weinberg - Ohio State University Directeurs : M. Nicol´asG. Busca - Laboratoire Astroparticules et Cosmologie M. James Rich - Centre Energie Atomique, Saclay \BAO is easy, it is just double for loop..." Jim Rich Abstract This thesis exposes my contribution to the measurement of baryon acoustic oscillations (BAO) using Lyα forests and galaxies, with the cosmological interpretation of results. The Baryon Oscillation Spectroscopic Survey (BOSS) - part of the Sloan Digital Sky Survey III - measured spectra of 1:3 million galaxies and 150; 000 z > 2 quasars during four years ∼ ∼ of observations. For the galaxy BAO measurement, I contributed to the development of a new optimal estimator of the correlation function. Using Data Release 9 CMASS galaxy catalogs, we obtained errors on the BAO peak position estimate reduced by 20% compared to Landy-Szalay estimator. My contribution to the BAO measurement in the Lyα forest covers from simulations, to data analysis and cosmological interpretation. Concerning simulations, I developed a method to generate spatially correlated random fields dedicated to the production of mock Lyα forest absorption fields. This method has many advan- tages: computing time scaling linearly with the number of quasars, low memory requirements and no need to separate the survey into independent regions. I created the MockExpander package, that converts an absorption field into a realistic set of quasar spectra. These spectra follow BOSS characteristics, including resolution, noise, sky residuals, mis-estimates of pixel errors. Astrophysical features such as metal absorption and high column density systems are also implemented. The BOSS collaboration currently uses the MockExpander to build mock catalogs. These mock catalogs were extensively used to test our analysis chain. I quantified the possible sources of systematics, such as continuum fitting methods, sky residuals, errors on pixel noise, calibration features and metal absorption. No strong evidence was found for systematic errors on the BAO peak estimates using mock catalogs. Using DR11 data, the measurement of the radial and transverse BAO peak position yield, re- +2:8 spectively, c=rdH(¯z) = 9:18 0:28(1σ) 0:6(2σ) and DA(¯z)=rd = 11:28 0:65(1σ) (2σ), ± ± ± −1:2 where rd is the comoving sound horizon andz ¯ = 2:34 is the mean redshift of the measurement. Assuming rd = 147:4 Mpc, value derived from cosmic microwave background measurements, our −1 −1 results give H(¯z) = 222 7(1σ) km s Mpc and the DA(¯z) = 1662 96(1σ) Mpc. This pair ± ± of values is at 1.8σ from the prediction given by a ΛCDM model with Planck best-fit parameters. Acknowledgements It is time to thank some very important people. Without them, I would never have successfully accomplished this thesis. To better transmit my gratefulness, I have chosen to write these words in different languages. First, I would like to thank Jean-Paul Kneib, Alain Blanchard and Julien Guy for reading my thesis, bringing some insightful comments. I thank David Weinberg for his presence in my jury. I thank Jordi, for being in my jury, for all the transmitted knowledge in this subject, and for trusting my capacities to work with his students. En fran¸cais, un merci `aStavros d'avoir pr´esid´emon jury, en esp´erant que les ann´ees`avenir en tant que directeur seront fructueuses. Merci `aPierre Bin´etruypour les deux ans `ala t^etede l'APC. Je tiens beaucoup `aremercier JC, qui m'a permis de conna^ıtrel'APC, qui, avec son carisme, m'a toujours motiv´e`ala recherche, qui m'a conduit pendant les premiers mois de th`ese.Merci beaucoup Jim, d'avoir transmis toute ta passion par la cosmologie et ton savoir depuis les cours NPAC jusqu’`aaujourd'hui. Merci d'^etrel`aquand Nicolas ´etaitloin. Je remercie Yannick, pour qui j'ai beaucoup de respect et qui a toujours trouv´edu temps dans son agenda de directeur de groupe, pour nous aider et nous motiver. Merci `aC´ecile,Jean Kaplan pour le suivi, Ken pour la bonne humeur, Pierre pour les cours de Python (d´esol´e,je suis plut^otChrome que Firefox). Si ces ann´ees`al'APC ont ´et´esi agr´eableset inoubliables, c'est gr^aceaux th´esards. Merci aux conseils et `ala sagesse des vieux: Mariana (o mejor, gracias), Seb pour le sourire et les d´ebats foot, Ga¨elpour les ragots, George et Florian pour leur humour noir, Marie-Anne pour avoir mis un peu de gr^acedans ce monde masculin, Lo¨ıcpour les d´ebatscosmologiques sans fin, Alex, Giulio (campeur), Castex (ton royaume n'a pas dur´e),Josquin, Joseph et Guigui. La g´en´eration suivant la n^otrea apport´eencore plus d'ambiance `al'APC: merci Alexis, pour la PHD, pour l'union des th´esardset pour l'ambiance quoi (popopopo-popo-popo-popo-po), Jibril pour les discussions sur les filles qui nous font du bien et du mal, Maxime pour les galettes maison, Henri (casse-toi au FACE), `aAaahhh-lelek-Ileyk-Ileyk-Ileyk, `aJulien Peloton pour ^etrel'Obama des th´esards,`aJulien Treguer pour les d´ebatsLyman-α. Merci et bons vents aux tout jeunes Camille, L´ea,Mikhail et Davide. Cependant notre g´en´eration´etaitla meilleure, et m´eritele plus grand merci. Je pourrais ´ecrire des tonnes de mots et de souvenirs qui ont fait ces trois ans passer vite, mais restons succinct. Je commence par ceux qui sont grav´esdans mon coeur depuis l'´epoque du Master, et pour toujours. Ben, merci d'avoir toujours ´et´ela meilleure compagnie dans le bureau, d'^etrele meilleur prof de culture fran¸caise(parisienne) du monde. Mamatt, merci pour mettre l'ambiance dans les soir´eesCaf´eoztiqueset de m'avoir accueilli en temps de gal`eredans ton appart'. Romain, l'exemple de copain id´eal,qui nous a fait les meilleures cr^epes flamb´eesdu monde. Julien, pour le style original et contagieux, toujours dispo pour partager une bonne binch. Flavious, une ^ame Lebowskienne de sourire indestructible, merci pour les meilleures blagues et d'avoir partag´etes savoirs en musique. Je remercie Ma¨ıca,pour nous avoir montr´ele professionnalisme n´ecessaire ix pour publier en Nature. Merci aux autres NPACs, Pierre, Agn`es,Guillaume, As´enath,Alice, entre autres pour les inombrables soir´eesde tout type. Je remercie Marchou, Hippo, Doudou, Chichou, Grani et L^e, sans qui les matchs de foot n'auraient pas ´et´eles m^emes,ainsi que Guitou, pour la confiance. E´ hora de agradecer pessoas em portugu^es!Adivinha quem? Nunca poderia deixar de agradecer minha fam´ılia brasileira na Fran¸ca. Ao Papaizinho, que sempre estava l´apra me escutar e me aconselhar, pra jogar bola, pra dan¸car,ver jogo, melhor companhia pra tudo que eu fazia, obrigado por tudo. A` Sofia, por toda a energia e amor que voc^etransmete `atodo mundo (em especial ao Papaizinho). Ao Mila, que sempre responde meus chamados pra tomar um caf´e ou uma cerveja e conversar durante horas, sobre tudo. Ao Tikago, por ser um exemplo de for¸cade vontade, que se transformou nesses tr^esanos: de f´ısicot´ımido`aconsultor e dan¸carino professional. Ao Louzada, pelas v´ariasfrases cult. A` Karina, por cuidar desse povo e de mim quando eu vinha! Obrigado, fam´ılia. En castellano (por favor!), quiero agradecer a mi jefe, Nicol´as.Gracias por ser un jefe genial, por haberme ense~nadotantas cosas, por mostrarme como se trabaja, por haberme ayudado siempre, de cerca o de lejos. Gracias por haberme dado la oportunidad de hacer una tesis con vos, de poder practicar el castellano. Sin vos, esta tesis no existir´ıa,y yo no estar´ıaahora donde estoy. Abra¸cocara! Gracias mami, por el amor infinito con el cual siempre me cuidaste, de cerca o de lejos. Gracias papi, por ser mi h´eroe incansable y por mostrarme como el conocimiento y el trabajo te pueden llevar lejos, a veces demasiado lejos. Gracias Germ´an,por ser el mejor hermano que lucha hasta hoy por conseguir su lugar. Robinho, por ser irm~aoe um ´otimopapai.
Recommended publications
  • AST 541 Lecture Notes: Classical Cosmology Sep, 2018
    ClassicalCosmology | 1 AST 541 Lecture Notes: Classical Cosmology Sep, 2018 In the next two weeks, we will cover the basic classic cosmology. The material is covered in Longair Chap 5 - 8. We will start with discussions on the first basic assumptions of cosmology, that our universe obeys cosmological principles and is expanding. We will introduce the R-W metric, which describes how to measure distance in cosmology, and from there discuss the meaning of measurements in cosmology, such as redshift, size, distance, look-back time, etc. Then we will introduce the second basic assumption in cosmology, that the gravity in the universe is described by Einstein's GR. We will not discuss GR in any detail in this class. Instead, we will use a simple analogy to introduce the basic dynamical equation in cosmology, the Friedmann equations. We will look at the solutions of Friedmann equations, which will lead us to the definition of our basic cosmological parameters, the density parameters, Hubble constant, etc., and how are they related to each other. Finally, we will spend sometime discussing the measurements of these cosmological param- eters, how to arrive at our current so-called concordance cosmology, which is described as being geometrically flat, with low matter density and a dominant cosmological parameter term that gives the universe an acceleration in its expansion. These next few lectures are the foundations of our class. You might have learned some of it in your undergraduate astronomy class; now we are dealing with it in more detail and more rigorously. 1 Cosmological Principles The crucial principles guiding cosmology theory are homogeneity and expansion.
    [Show full text]
  • Mcwilliams Center for Cosmology
    McWilliams Center for Cosmology McWilliams Center for Cosmology McWilliams Center for Cosmology McWilliams Center for Cosmology ,CODQTGG Rachel Mandelbaum (+Optimus Prime) Observational cosmology: • how can we make the best use of large datasets? (+stats, ML connection) • dark energy • the galaxy-dark matter connection I measure this: for tens of millions of galaxies to (statistically) map dark matter and answer these questions Data I use now: Future surveys I’m involved in: Hung-Jin Huang 0.2 0.090 0.118 0.062 0.047 0.118 0.088 0.044 0.036 0.186 0.016 70 0.011 0.011 − 0.011 − 0.011 − 0.011 − 0.011 − 0.011 0.011 − 0.011 0.011 ± ± ± ± ± ± ± ± ± ± 50 η 0.1 30 ∆ Fraction 10 1 24 23 22 21 0.40.81.2 0.20.61.0 0.6 0.2 0.20.6 0.30.50.70.9 1.41.61.82.02.2 0.15 0.25 0.10.30.5 0.4 0.00.4 − − 0−.1 − − − − . 0.090 ∆log(cen. R )[kpc/h] P ∆ 0.011 0.3 cen. Mr cen. color cen. e eff cen log(richness) z cluster e R ± dom 1 0.2 . − cen 0.1 3 Fraction − 21 Research: − 0.118 0.622 0.3 0.011 0.009 Mr 22 1 . ± ± 0.2 0 − . 23 − 0.1 Fraction cen intrinsic alignments in 24 − 0.8 0.062 0.062 0.084 0.7 1.2 0.011 0.011 0.011 0.6 redMaPPer clusters − ± − ± − ± 0.5 color . 0.4 0.8 0.3 Fraction cen 0.2 0.4 0.1 1.0 0.047 0.048 0.052 0.111 0.3 Advisor : 0.011 0.011 0.011 0.011 e − ± − ± − ± − ± .
    [Show full text]
  • Baryogenesis in a CP Invariant Theory That Utilizes the Stochastic Movement of Light fields During Inflation
    Baryogenesis in a CP invariant theory Anson Hook School of Natural Sciences Institute for Advanced Study Princeton, NJ 08540 June 12, 2018 Abstract We consider baryogenesis in a model which has a CP invariant Lagrangian, CP invariant initial conditions and does not spontaneously break CP at any of the minima. We utilize the fact that tunneling processes between CP invariant minima can break CP to implement baryogenesis. CP invariance requires the presence of two tunneling processes with opposite CP breaking phases and equal probability of occurring. In order for the entire visible universe to see the same CP violating phase, we consider a model where the field doing the tunneling is the inflaton. arXiv:1508.05094v1 [hep-ph] 20 Aug 2015 1 1 Introduction The visible universe contains more matter than anti-matter [1]. The guiding principles for gener- ating this asymmetry have been Sakharov’s three conditions [2]. These three conditions are C/CP violation • Baryon number violation • Out of thermal equilibrium • Over the years, counter examples have been found for Sakharov’s conditions. One can avoid the need for number violating interactions in theories where the negative B L number is stored − in a sector decoupled from the standard model, e.g. in right handed neutrinos as in Dirac lep- togenesis [3, 4] or in dark matter [5]. The out of equilibrium condition can be avoided if one uses spontaneous baryogenesis [6], where a chemical potential is used to create a non-zero baryon number in thermal equilibrium. However, these models still require a C/CP violating phase or coupling in the Lagrangian.
    [Show full text]
  • Report from the Dark Energy Task Force (DETF)
    Fermi National Accelerator Laboratory Fermilab Particle Astrophysics Center P.O.Box 500 - MS209 Batavia, Il l i noi s • 60510 June 6, 2006 Dr. Garth Illingworth Chair, Astronomy and Astrophysics Advisory Committee Dr. Mel Shochet Chair, High Energy Physics Advisory Panel Dear Garth, Dear Mel, I am pleased to transmit to you the report of the Dark Energy Task Force. The report is a comprehensive study of the dark energy issue, perhaps the most compelling of all outstanding problems in physical science. In the Report, we outline the crucial need for a vigorous program to explore dark energy as fully as possible since it challenges our understanding of fundamental physical laws and the nature of the cosmos. We recommend that program elements include 1. Prompt critical evaluation of the benefits, costs, and risks of proposed long-term projects. 2. Commitment to a program combining observational techniques from one or more of these projects that will lead to a dramatic improvement in our understanding of dark energy. (A quantitative measure for that improvement is presented in the report.) 3. Immediately expanded support for long-term projects judged to be the most promising components of the long-term program. 4. Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors. 5. An immediate start for nearer term projects designed to advance our knowledge of dark energy and to develop the observational and analytical techniques that will be needed for the long-term program. Sincerely yours, on behalf of the Dark Energy Task Force, Edward Kolb Director, Particle Astrophysics Center Fermi National Accelerator Laboratory Professor of Astronomy and Astrophysics The University of Chicago REPORT OF THE DARK ENERGY TASK FORCE Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude.
    [Show full text]
  • Large Scale Structure Signals of Neutrino Decay
    Large Scale Structure Signals of Neutrino Decay Peizhi Du University of Maryland Phenomenology 2019 University of Pittsburgh based on the work with Zackaria Chacko, Abhish Dev, Vivian Poulin, Yuhsin Tsai (to appear) Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac • Mass ordering • Total mass 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac • Mass ordering D1 • Total mass ⌫ • Lifetime …… D2 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac probe them in cosmology • Mass ordering D1 • Total mass ⌫ • Lifetime …… D2 1 Why cosmology? Best constraints on (m⌫ , ⌧⌫ ) CMB LSS Planck SDSS Huge number of neutrinos Neutrinos are non-relativistic Cosmological time/length 2 Why cosmology? Best constraints on (m⌫ , ⌧⌫ ) Near future is exciting! CMB LSS CMB LSS Planck SDSS CMB-S4 Euclid Huge number of neutrinos Passing the threshold: Neutrinos are non-relativistic σ( m⌫ ) . 0.02 eV < 0.06 eV “Guaranteed”X evidence for ( m , ⌧ ) Cosmological time/length ⌫ ⌫ or new physics 2 Massive neutrinos in structure formation δ ⇢ /⇢ cdm ⌘ cdm cdm 1 ∆t H− ⇠ Dark matter/baryon 3 Massive neutrinos in structure formation δ ⇢ /⇢ cdm ⌘ cdm cdm 1 ∆t H− ⇠ Dark matter/baryon
    [Show full text]
  • Dm2gal: Mapping Dark Matter to Galaxies with Neural Networks
    dm2gal: Mapping Dark Matter to Galaxies with Neural Networks Noah Kasmanoff Francisco Villaescusa-Navarro Center for Data Science Department of Astrophysical Sciences New York University Princeton University New York, NY 10011 Princeton NJ 08544 [email protected] [email protected] Jeremy Tinker Shirley Ho Center for Cosmology and Particle Physics Center for Computational Astrophysics New York University Flatiron Institute New York, NY 10011 New York, NY 10010 [email protected] [email protected] Abstract Maps of cosmic structure produced by galaxy surveys are one of the key tools for answering fundamental questions about the Universe. Accurate theoretical predictions for these quantities are needed to maximize the scientific return of these programs. Simulating the Universe by including gravity and hydrodynamics is one of the most powerful techniques to accomplish this; unfortunately, these simulations are very expensive computationally. Alternatively, gravity-only simulations are cheaper, but do not predict the locations and properties of galaxies in the cosmic web. In this work, we use convolutional neural networks to paint galaxy stellar masses on top of the dark matter field generated by gravity-only simulations. Stellar mass of galaxies are important for galaxy selection in surveys and thus an important quantity that needs to be predicted. Our model outperforms the state-of-the-art benchmark model and allows the generation of fast and accurate models of the observed galaxy distribution. 1 Introduction Galaxies are not randomly distributed in the sky, but follow a particular pattern known as the cosmic web. Galaxies concentrate in high-density regions composed of dark matter halos, and galaxy clusters usually lie within these dark matter halos and they are connected via thin and long filaments.
    [Show full text]
  • How to Learn to Love the BOSS Baryon Oscillations Spectroscopic Survey
    How to learn to Love the BOSS Baryon Oscillations Spectroscopic Survey Shirley Ho Anthony Pullen, Shadab Alam, Mariana Vargas, Yen-Chi Chen + Sloan Digital Sky Survey III-BOSS collaboration Carnegie Mellon University SpaceTime Odyssey 2015 Stockholm, 2015 What is BOSS ? Shirley Ho, Sapetime Odyssey, Stockholm 2015 What is BOSS ? Shirley Ho, Sapetime Odyssey, Stockholm 2015 BOSS may be … Shirley Ho, Sapetime Odyssey, Stockholm 2015 SDSS III - BOSS Sloan Digital Sky Survey III - Baryon Oscillations Spectroscopic Survey What is it ? What does it do ? What is SDSS III - BOSS ? • A 2.5m telescope in New Mexico • Collected • 1 million spectra of galaxies , • 400,000 spectra of supermassive blackholes (quasars), • 400,000 spectra of stars • images of 20 millions of stars, galaxies and quasars. Shirley Ho, Sapetime Odyssey, Stockholm 2015 What is SDSS III - BOSS ? • A 2.5m telescope in New Mexico • Collected • 1 million spectra of galaxies , • 400,000 spectra of supermassive blackholes (quasars), • 400,000 spectra of stars • images of 20 millions of stars, galaxies and quasars. Shirley Ho, Sapetime Odyssey, Stockholm 2015 SDSS III - BOSS Sloan Digital Sky Survey III - Baryon Oscillations Spectroscopic Survey What is it ? What does it do ? SDSS III - BOSS Sloan Digital Sky Survey III - Baryon Oscillations Spectroscopic Survey BAO: Baryon Acoustic Oscillations AND Many others! What can we do with BOSS? • Probing Modified gravity with Growth of Structures • Probing initial conditions, neutrino masses using full shape of the correlation function •
    [Show full text]
  • Neutrino Decoupling Beyond the Standard Model: CMB Constraints on the Dark Matter Mass with a Fast and Precise Neff Evaluation
    KCL-2018-76 Prepared for submission to JCAP Neutrino decoupling beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise Neff evaluation Miguel Escudero Theoretical Particle Physics and Cosmology Group Department of Physics, King's College London, Strand, London WC2R 2LS, UK E-mail: [email protected] Abstract. The number of effective relativistic neutrino species represents a fundamental probe of the thermal history of the early Universe, and as such of the Standard Model of Particle Physics. Traditional approaches to the process of neutrino decoupling are either very technical and computationally expensive, or assume that neutrinos decouple instantaneously. In this work, we aim to fill the gap between these two approaches by modeling neutrino decoupling in terms of two simple coupled differential equations for the electromagnetic and neutrino sector temperatures, in which all the relevant interactions are taken into account and which allows for a straightforward implementation of BSM species. Upon including finite temperature QED corrections we reach an accuracy on Neff in the SM of 0:01. We illustrate the usefulness of this approach to neutrino decoupling by considering, in a model independent manner, the impact of MeV thermal dark matter on Neff . We show that Planck rules out electrophilic and neutrinophilic thermal dark matter particles of m < 3:0 MeV at 95% CL regardless of their spin, and of their annihilation being s-wave or p-wave. We point out arXiv:1812.05605v4 [hep-ph] 6 Sep 2019 that thermal dark matter particles with non-negligible interactions with both electrons and neutrinos are more elusive to CMB observations than purely electrophilic or neutrinophilic ones.
    [Show full text]
  • Professor Peter Goldreich Member of the Board of Adjudicators Chairman of the Selection Committee for the Prize in Astronomy
    The Shaw Prize The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have recently achieved distinguished and significant advances, who have made outstanding contributions in academic and scientific research or applications, or who in other domains have achieved excellence. The award is dedicated to furthering societal progress, enhancing quality of life, and enriching humanity’s spiritual civilization. Preference is to be given to individuals whose significant work was recently achieved and who are currently active in their respective fields. Founder's Biographical Note The Shaw Prize was established under the auspices of Mr Run Run Shaw. Mr Shaw, born in China in 1907, was a native of Ningbo County, Zhejiang Province. He joined his brother’s film company in China in the 1920s. During the 1950s he founded the film company Shaw Brothers (HK) Limited in Hong Kong. He was one of the founding members of Television Broadcasts Limited launched in Hong Kong in 1967. Mr Shaw also founded two charities, The Shaw Foundation Hong Kong and The Sir Run Run Shaw Charitable Trust, both dedicated to the promotion of education, scientific and technological research, medical and welfare services, and culture and the arts. ~ 1 ~ Message from the Chief Executive I warmly congratulate the six Shaw Laureates of 2014. Established in 2002 under the auspices of Mr Run Run Shaw, the Shaw Prize is a highly prestigious recognition of the role that scientists play in shaping the development of a modern world. Since the first award in 2004, 54 leading international scientists have been honoured for their ground-breaking discoveries which have expanded the frontiers of human knowledge and made significant contributions to humankind.
    [Show full text]
  • Majorana Neutrino Magnetic Moment and Neutrino Decoupling in Big Bang Nucleosynthesis
    PHYSICAL REVIEW D 92, 125020 (2015) Majorana neutrino magnetic moment and neutrino decoupling in big bang nucleosynthesis † ‡ N. Vassh,1,* E. Grohs,2, A. B. Balantekin,1, and G. M. Fuller3,§ 1Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA 2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA 3Department of Physics, University of California, San Diego, La Jolla, California 92093, USA (Received 1 October 2015; published 22 December 2015) We examine the physics of the early universe when Majorana neutrinos (νe, νμ, ντ) possess transition magnetic moments. These extra couplings beyond the usual weak interaction couplings alter the way neutrinos decouple from the plasma of electrons/positrons and photons. We calculate how transition magnetic moment couplings modify neutrino decoupling temperatures, and then use a full weak, strong, and electromagnetic reaction network to compute corresponding changes in big bang nucleosynthesis abundance yields. We find that light element abundances and other cosmological parameters are sensitive to −10 magnetic couplings on the order of 10 μB. Given the recent analysis of sub-MeV Borexino data which −11 constrains Majorana moments to the order of 10 μB or less, we find that changes in cosmological parameters from magnetic contributions to neutrino decoupling temperatures are below the level of upcoming precision observations. DOI: 10.1103/PhysRevD.92.125020 PACS numbers: 13.15.+g, 26.35.+c, 14.60.St, 14.60.Lm I. INTRODUCTION Such processes alter the primordial abundance yields which can be used to constrain the allowed sterile neutrino mass In this paper we explore how the early universe, and the and magnetic moment parameter space [4].
    [Show full text]
  • Cosmography of the Local Universe SDSS-III Map of the Universe
    Cosmography of the Local Universe SDSS-III map of the universe Color = density (red=high) Tools of the Future: roBotic/piezo fiBer positioners AstroBot FiBer Positioners Collision-avoidance testing Echidna (for SuBaru FMOS) Las Campanas Redshift Survey The first survey to reach the quasi-homogeneous regime Large-scale structure within z<0.05, sliced in Galactic plane declination “Zone of Avoidance” 6dF Galaxy Survey, Jones et al. 2009 Large-scale structure within z<0.1, sliced in Galactic plane declination “Zone of Avoidance” 6dF Galaxy Survey, Jones et al. 2009 Southern Hemisphere, colored By redshift 6dF Galaxy Survey, Jones et al. 2009 SDSS-BOSS map of the universe Image credit: Jeremy Tinker and the SDSS-III collaBoration SDSS-III map of the universe Color = density (red=high) Millenium Simulation (2005) vs Galaxy Redshift Surveys Image Credit: Nina McCurdy and Joel Primack/University of California, Santa Cruz; Ralf Kaehler and Risa Wechsler/Stanford University; Klypin et al. 2011 Sloan Digital Sky Survey; Michael Busha/University of Zurich Trujillo-Gomez et al. 2011 Redshift-space distortion in the 2D correlation function of 6dFGS along line of sight on the sky Beutler et al. 2012 Matter power spectrum oBserved by SDSS (Tegmark et al. 2006) k-3 Solid red lines: linear theory (WMAP) Dashed red lines: nonlinear corrections Note we can push linear approx to a Bit further than k~0.02 h/Mpc Baryon acoustic peaks (analogous to CMB acoustic peaks; standard rulers) keq SDSS-BOSS map of the universe Color = distance (purple=far) Image credit:
    [Show full text]
  • Dark Energy and CMB
    Dark Energy and CMB Conveners: S. Dodelson and K. Honscheid Topical Conveners: K. Abazajian, J. Carlstrom, D. Huterer, B. Jain, A. Kim, D. Kirkby, A. Lee, N. Padmanabhan, J. Rhodes, D. Weinberg Abstract The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group \Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv. arXiv:1309.5386v2 [astro-ph.CO] 24 Sep 2013 2 1 Cosmology and New Physics Maps of the Universe when it was 400,000 years old from observations of the cosmic microwave background and over the last ten billion years from galaxy surveys point to a compelling cosmological model. This model requires a very early epoch of accelerated expansion, inflation, during which the seeds of structure were planted via quantum mechanical fluctuations. These seeds began to grow via gravitational instability during the epoch in which dark matter dominated the energy density of the universe, transforming small perturbations laid down during inflation into nonlinear structures such as million light-year sized clusters, galaxies, stars, planets, and people. Over the past few billion years, we have entered a new phase, during which the expansion of the Universe is accelerating presumably driven by yet another substance, dark energy. Cosmologists have historically turned to fundamental physics to understand the early Universe, successfully explaining phenomena as diverse as the formation of the light elements, the process of electron-positron annihilation, and the production of cosmic neutrinos.
    [Show full text]