Cosmological Structure Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neutrino Decoupling Beyond the Standard Model: CMB Constraints on the Dark Matter Mass with a Fast and Precise Neff Evaluation
KCL-2018-76 Prepared for submission to JCAP Neutrino decoupling beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise Neff evaluation Miguel Escudero Theoretical Particle Physics and Cosmology Group Department of Physics, King's College London, Strand, London WC2R 2LS, UK E-mail: [email protected] Abstract. The number of effective relativistic neutrino species represents a fundamental probe of the thermal history of the early Universe, and as such of the Standard Model of Particle Physics. Traditional approaches to the process of neutrino decoupling are either very technical and computationally expensive, or assume that neutrinos decouple instantaneously. In this work, we aim to fill the gap between these two approaches by modeling neutrino decoupling in terms of two simple coupled differential equations for the electromagnetic and neutrino sector temperatures, in which all the relevant interactions are taken into account and which allows for a straightforward implementation of BSM species. Upon including finite temperature QED corrections we reach an accuracy on Neff in the SM of 0:01. We illustrate the usefulness of this approach to neutrino decoupling by considering, in a model independent manner, the impact of MeV thermal dark matter on Neff . We show that Planck rules out electrophilic and neutrinophilic thermal dark matter particles of m < 3:0 MeV at 95% CL regardless of their spin, and of their annihilation being s-wave or p-wave. We point out arXiv:1812.05605v4 [hep-ph] 6 Sep 2019 that thermal dark matter particles with non-negligible interactions with both electrons and neutrinos are more elusive to CMB observations than purely electrophilic or neutrinophilic ones. -
Inflationary Cosmology: from Theory to Observations
Inflationary Cosmology: From Theory to Observations J. Alberto V´azquez1, 2, Luis, E. Padilla2, and Tonatiuh Matos2 1Instituto de Ciencias F´ısicas,Universidad Nacional Aut´onomade Mexico, Apdo. Postal 48-3, 62251 Cuernavaca, Morelos, M´exico. 2Departamento de F´ısica,Centro de Investigaci´ony de Estudios Avanzados del IPN, M´exico. February 10, 2020 Abstract The main aim of this paper is to provide a qualitative introduction to the cosmological inflation theory and its relationship with current cosmological observations. The inflationary model solves many of the fundamental problems that challenge the Standard Big Bang cosmology, such as the Flatness, Horizon, and the magnetic Monopole problems. Additionally, it provides an explanation for the initial conditions observed throughout the Large-Scale Structure of the Universe, such as galaxies. In this review, we describe general solutions to the problems in the Big Bang cosmology carry out by a single scalar field. Then, with the use of current surveys, we show the constraints imposed on the inflationary parameters (ns; r), which allow us to make the connection between theoretical and observational cosmology. In this way, with the latest results, it is possible to select, or at least to constrain, the right inflationary model, parameterized by a single scalar field potential V (φ). Abstract El objetivo principal de este art´ıculoes ofrecer una introducci´oncualitativa a la teor´ıade la inflaci´onc´osmica y su relaci´oncon observaciones actuales. El modelo inflacionario resuelve algunos problemas fundamentales que desaf´ıanal modelo est´andarcosmol´ogico,denominado modelo del Big Bang caliente, como el problema de la Planicidad, el Horizonte y la inexistencia de Monopolos magn´eticos.Adicionalmente, provee una explicaci´onal origen de la estructura a gran escala del Universo, como son las galaxias. -
Majorana Neutrino Magnetic Moment and Neutrino Decoupling in Big Bang Nucleosynthesis
PHYSICAL REVIEW D 92, 125020 (2015) Majorana neutrino magnetic moment and neutrino decoupling in big bang nucleosynthesis † ‡ N. Vassh,1,* E. Grohs,2, A. B. Balantekin,1, and G. M. Fuller3,§ 1Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA 2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA 3Department of Physics, University of California, San Diego, La Jolla, California 92093, USA (Received 1 October 2015; published 22 December 2015) We examine the physics of the early universe when Majorana neutrinos (νe, νμ, ντ) possess transition magnetic moments. These extra couplings beyond the usual weak interaction couplings alter the way neutrinos decouple from the plasma of electrons/positrons and photons. We calculate how transition magnetic moment couplings modify neutrino decoupling temperatures, and then use a full weak, strong, and electromagnetic reaction network to compute corresponding changes in big bang nucleosynthesis abundance yields. We find that light element abundances and other cosmological parameters are sensitive to −10 magnetic couplings on the order of 10 μB. Given the recent analysis of sub-MeV Borexino data which −11 constrains Majorana moments to the order of 10 μB or less, we find that changes in cosmological parameters from magnetic contributions to neutrino decoupling temperatures are below the level of upcoming precision observations. DOI: 10.1103/PhysRevD.92.125020 PACS numbers: 13.15.+g, 26.35.+c, 14.60.St, 14.60.Lm I. INTRODUCTION Such processes alter the primordial abundance yields which can be used to constrain the allowed sterile neutrino mass In this paper we explore how the early universe, and the and magnetic moment parameter space [4]. -
Phy306 Introduction to Cosmology Homework 3 Notes
PHY306 INTRODUCTION TO COSMOLOGY HOMEWORK 3 NOTES 1. Show that, for a universe which is not flat, 1 − Ω 1 − Ω = , where Ω = Ω r + Ω m + Ω Λ and the subscript 0 refers to the present time. [2] This was generally quite well done, although rather lacking in explanation. You should really define the Ωs, and you need to explain that you divide the expression for t by that for t0. 2. Suppose that inflation takes place around 10 −35 s after the Big Bang. Assume the following simplified properties of the universe: ● it is matter dominated from the end of inflation to the present day; ● at the present day 0.9 ≤ Ω ≤ 1.1; ● the universe is currently 10 10 years old; ● inflation is driven by a cosmological constant. Using these assumptions, calculate the minimum amount of inflation needed to resolve the flatness problem, and hence determine the value of the cosmological constant required if the inflation period ends at t = 10 −34 s. [4] This was not well done at all, although it is not really a complicated calculation. I think the principal problem was that people simply did not think it through—not only do you not explain what you’re doing to the marker, you frequently don’t explain it to yourself! Some people therefore got hopelessly confused between the two time periods involved—the matter-dominated epoch from 10 −34 s to 10 10 years, and the inflationary period from 10 −35 to 10 −34 s. The most common error—in fact, considerably more common than the right answer—was simply assuming that during the post-inflationary epoch 1 − . -
The High Redshift Universe: Galaxies and the Intergalactic Medium
The High Redshift Universe: Galaxies and the Intergalactic Medium Koki Kakiichi M¨unchen2016 The High Redshift Universe: Galaxies and the Intergalactic Medium Koki Kakiichi Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Koki Kakiichi aus Komono, Mie, Japan M¨unchen, den 15 Juni 2016 Erstgutachter: Prof. Dr. Simon White Zweitgutachter: Prof. Dr. Jochen Weller Tag der m¨undlichen Pr¨ufung:Juli 2016 Contents Summary xiii 1 Extragalactic Astrophysics and Cosmology 1 1.1 Prologue . 1 1.2 Briefly Story about Reionization . 3 1.3 Foundation of Observational Cosmology . 3 1.4 Hierarchical Structure Formation . 5 1.5 Cosmological probes . 8 1.5.1 H0 measurement and the extragalactic distance scale . 8 1.5.2 Cosmic Microwave Background (CMB) . 10 1.5.3 Large-Scale Structure: galaxy surveys and Lyα forests . 11 1.6 Astrophysics of Galaxies and the IGM . 13 1.6.1 Physical processes in galaxies . 14 1.6.2 Physical processes in the IGM . 17 1.6.3 Radiation Hydrodynamics of Galaxies and the IGM . 20 1.7 Bridging theory and observations . 23 1.8 Observations of the High-Redshift Universe . 23 1.8.1 General demographics of galaxies . 23 1.8.2 Lyman-break galaxies, Lyα emitters, Lyα emitting galaxies . 26 1.8.3 Luminosity functions of LBGs and LAEs . 26 1.8.4 Lyα emission and absorption in LBGs: the physical state of high-z star forming galaxies . 27 1.8.5 Clustering properties of LBGs and LAEs: host dark matter haloes and galaxy environment . 30 1.8.6 Circum-/intergalactic gas environment of LBGs and LAEs . -
Week 3: Thermal History of the Universe
Week 3: Thermal History of the Universe Cosmology, Ay127, Spring 2008 April 21, 2008 1 Brief Overview Before moving on, let’s review some of the high points in the history of the Universe: T 10−4 eV, t 1010 yr: today; baryons and the CMB are entirely decoupled, stars and • ∼ ∼ galaxies have been around a long time, and clusters of galaxies (gravitationally bound systems of 1000s of galaxies) are becoming common. ∼ T 10−3 eV, t 109 yr; the first stars and (small) galaxies begin to form. • ∼ ∼ T 10−1−2 eV, t millions of years: baryon drag ends; at earlier times, the baryons are still • ∼ ∼ coupled to the CMB photons, and so perturbations in the baryon cannot grow; before this time, the gas distribution in the Universe remains smooth. T eV, t 400, 000 yr: electrons and protons combine to form hydrogen atoms, and CMB • ∼ ∼ photons decouple; at earlier times, photons are tightly coupled to the baryon fluid through rapid Thomson scattering from free electrons. T 3 eV, t 10−(4−5) yrs: matter-radiation equality; at earlier times, the energy den- • ∼ ∼ sity of the Universe is dominated by radiation. Nothing really spectacular happens at this time, although perturbations in the dark-matter density can begin to grow, providing seed gravitational-potential wells for what will later become the dark-matter halos that house galaxies and clusters of galaxies. T keV, t 105 sec; photons fall out of chemical equilibrium. At earlier times, interac- • ∼ ∼ tions that can change the photon number occur rapidly compared with the expansion rate; afterwards, these reactions freeze out and CMB photons are neither created nor destroyed. -
The Big Bang Cosmological Model: Theory and Observations
THE BIG BANG COSMOLOGICAL MODEL: THEORY AND OBSERVATIONS MARTINA GERBINO INFN, sezione di Ferrara ISAPP 2021 Valencia July 22st, 2021 1 Structure formation Maps of CMB anisotropies show the Universe as it was at the time of recombination. The CMB field is isotropic and !" the rms fluctuations (in total intensity) are very small, < | |# > ~10$% (even smaller in polarization). Density " perturbations � ≡ ��/� are proportional to CMB fluctuations. It is possible to show that, at recombination, perturbations could be from a few (for baryons) to at most 100 times (for CDM) larger than CMB fluctuations. We need a theory of structure formation that allows to link the tiny perturbations at z~1100 to the large scale structure of the Universe we observe today (from galaxies to clusters and beyond). General picture: small density perturbations grow via gravitational instability (Jeans mechanism). The growth is suppressed during radiation-domination and eventually kicks-off after the time of equality (z~3000). When inside the horizon, perturbations grow proportional to the scale factor as long as they are in MD and remain in the linear regime (� ≪ 1). M. GERBINO 2 ISAPP-VALENCIA, 22 JULY 2021 Preliminaries & (⃗ $&) Density contrast �(�⃗) ≡ and its Fourier expansion � = ∫ �+� �(�⃗) exp(��. �⃗) &) * Credits: Kolb&Turner 2� � � ≡ ; � = ; � = ��; � ,-./ � ,-./ � � �+, �� � ≡ �+ �; � � = �(�)$+� ∝ 6 ,-./ -01 6 �+/#, �� �+ �(�) ≈ �3 -01 2� The amplitude of perturbations as they re-enter the horizon is given by the primordial power spectrum. Once perturbations re-enter the horizon, micro-physics processes modify the primordial spectrum Scale factor M. GERBINO 3 ISAPP-VALENCIA, 22 JULY 2021 Jeans mechanism (non-expanding) The Newtonian motion of a perfect fluid is decribed via the Eulerian equations. -
Neutrino Cosmology
International Workshop on Astroparticle and High Energy Physics PROCEEDINGS Neutrino cosmology Julien Lesgourgues∗† LAPTH Annecy E-mail: [email protected] Abstract: I will briefly summarize the main effects of neutrinos in cosmology – in particular, on the Cosmic Microwave Background anisotropies and on the Large Scale Structure power spectrum. Then, I will present the constraints on neutrino parameters following from current experiments. 1. A powerful tool: cosmological perturbations The theory of cosmological perturbations has been developed mainly in the 70’s and 80’s, in order to explain the clustering of matter observed in the Large Scale Structure (LSS) of the Universe, and to predict the anisotropy distribution in the Cosmic Microwave Background (CMB). This theory has been confronted with observations with great success, and accounts perfectly for the most recent CMB data (the WMAP satellite, see Spergel et al. 2003 [1]) and LSS observations (the 2dF redshift survey, see Percival et al. 2003 [2]). LSS data gives a measurement of the two-point correlation function of matter pertur- bations in our Universe, which is related to the linear power spectrum predicted by the theory of cosmological perturbations on scales between 40 Mega-parsecs (smaller scales cor- respond to non-linear perturbations, because they were enhanced by gravitational collapse) and 600 Mega-parsecs (larger scales are difficult to observe because galaxies are too faint). On should keep in mind that the reconstruction of the power spectrum starting from a red- shift survey is complicated by many technical issues, like the correction of redshift–space distortions, and relies on strong assumptions concerning the light–to–mass biasing factor. -
AST4220: Cosmology I
AST4220: Cosmology I Øystein Elgarøy 2 Contents 1 Cosmological models 1 1.1 Special relativity: space and time as a unity . 1 1.2 Curvedspacetime......................... 3 1.3 Curved spaces: the surface of a sphere . 4 1.4 The Robertson-Walker line element . 6 1.5 Redshifts and cosmological distances . 9 1.5.1 Thecosmicredshift . 9 1.5.2 Properdistance. 11 1.5.3 The luminosity distance . 13 1.5.4 The angular diameter distance . 14 1.5.5 The comoving coordinate r ............... 15 1.6 TheFriedmannequations . 15 1.6.1 Timetomemorize! . 20 1.7 Equationsofstate ........................ 21 1.7.1 Dust: non-relativistic matter . 21 1.7.2 Radiation: relativistic matter . 22 1.8 The evolution of the energy density . 22 1.9 The cosmological constant . 24 1.10 Some classic cosmological models . 26 1.10.1 Spatially flat, dust- or radiation-only models . 27 1.10.2 Spatially flat, empty universe with a cosmological con- stant............................ 29 1.10.3 Open and closed dust models with no cosmological constant.......................... 31 1.10.4 Models with more than one component . 34 1.10.5 Models with matter and radiation . 35 1.10.6 TheflatΛCDMmodel. 37 1.10.7 Models with matter, curvature and a cosmological con- stant............................ 40 1.11Horizons.............................. 42 1.11.1 Theeventhorizon . 44 1.11.2 Theparticlehorizon . 45 1.11.3 Examples ......................... 46 I II CONTENTS 1.12 The Steady State model . 48 1.13 Some observable quantities and how to calculate them . 50 1.14 Closingcomments . 52 1.15Exercises ............................. 53 2 The early, hot universe 61 2.1 Radiation temperature in the early universe . -
Arxiv:0910.5224V1 [Astro-Ph.CO] 27 Oct 2009
Baryon Acoustic Oscillations Bruce A. Bassett 1,2,a & Ren´ee Hlozek1,2,3,b 1 South African Astronomical Observatory, Observatory, Cape Town, South Africa 7700 2 Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, South Africa 7700 3 Department of Astrophysics, University of Oxford Keble Road, Oxford, OX1 3RH, UK a [email protected] b [email protected] Abstract Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling universe. They are the standard rulers of choice for 21st century cosmology, provid- ing distance estimates that are, for the first time, firmly rooted in well-understood, linear physics. This review synthesises current understanding regarding all aspects of BAO cosmology, from the theoretical and statistical to the observational, and includes a map of the future landscape of BAO surveys, both spectroscopic and photometric . † 1.1 Introduction Whilst often phrased in terms of the quest to uncover the nature of dark energy, a more general rubric for cosmology in the early part of the 21st century might also be the “the distance revolution”. With new knowledge of the extra-galactic distance arXiv:0910.5224v1 [astro-ph.CO] 27 Oct 2009 ladder we are, for the first time, beginning to accurately probe the cosmic expansion history beyond the local universe. While standard candles – most notably Type Ia supernovae (SNIa) – kicked off the revolution, it is clear that Statistical Standard Rulers, and the Baryon Acoustic Oscillations (BAO) in particular, will play an increasingly important role. In this review we cover the theoretical, observational and statistical aspects of the BAO as standard rulers and examine the impact BAO will have on our understand- † This review is an extended version of a chapter in the book Dark Energy Ed. -
Baryon Acoustic Oscillations Under the Hood
Baryon acoustic oscillations! under the hood Martin White UC Berkeley/LBNL Santa Fe, NM July 2010 Acoustic oscillations seen! First “compression”, at kcstls=π. Density maxm, velocity null. Velocity maximum First “rarefaction” peak at kcstls=2π Acoustic scale is set by the sound horizon at last scattering: s = cstls CMB calibration • Not coincidentally the sound horizon is extremely well determined by the structure of the acoustic peaks in the CMB. WMAP 5th yr data Dominated by uncertainty in ρm from poor constraints near 3rd peak in CMB spectrum. (Planck will nail this!) Baryon oscillations in P(k) • Since the baryons contribute ~15% of the total matter density, the total gravitational potential is affected by the acoustic oscillations with scale set by s. • This leads to small oscillations in the matter power spectrum P(k). – No longer order unity, like in the CMB – Now suppressed by Ωb/Ωm ~ 0.1 • Note: all of the matter sees the acoustic oscillations, not just the baryons. Baryon (acoustic) oscillations RMS fluctuation Wavenumber Divide out the gross trend … A damped, almost harmonic sequence of “wiggles” in the power spectrum of the mass perturbations of amplitude O(10%). Higher order effects • The matter and radiation oscillations are not in phase, and the phase shift depends on k. • There is a subtle shift in the oscillations with k due to the fact that the universe is expanding and becoming more matter dominated. • The finite duration of decoupling and rapid change in mfp means the damping of the oscillations on small scales is not a simple Gaussian shape. -
Big Bang Nucleosynthesis Finally, Relative Abundances Are Sensitive to Density of Normal (Baryonic Matter)
Big Bang Nucleosynthesis Finally, relative abundances are sensitive to density of normal (baryonic matter) Thus Ωb,0 ~ 4%. So our universe Ωtotal ~1 with 70% in Dark Energy, 30% in matter but only 4% baryonic! Case for the Hot Big Bang • The Cosmic Microwave Background has an isotropic blackbody spectrum – it is extremely difficult to generate a blackbody background in other models • The observed abundances of the light isotopes are reasonably consistent with predictions – again, a hot initial state is the natural way to generate these • Many astrophysical populations (e.g. quasars) show strong evolution with redshift – this certainly argues against any Steady State models The Accelerating Universe Distant SNe appear too faint, must be further away than in a non-accelerating universe. Perlmutter et al. 2003 Riese 2000 Outstanding problems • Why is the CMB so isotropic? – horizon distance at last scattering << horizon distance now – why would causally disconnected regions have the same temperature to 1 part in 105? • Why is universe so flat? – if Ω is not 1, Ω evolves rapidly away from 1 in radiation or matter dominated universe – but CMB analysis shows Ω = 1 to high accuracy – so either Ω=1 (why?) or Ω is fine tuned to very nearly 1 • How do structures form? – if early universe is so very nearly uniform Astronomy 422 Lecture 22: Early Universe Key concepts: Problems with Hot Big Bang Inflation Announcements: April 26: Exam 3 April 28: Presentations begin Astro 422 Presentations: Thursday April 28: 9:30 – 9:50 _Isaiah Santistevan__________ 9:50 – 10:10 _Cameron Trapp____________ 10:10 – 10:30 _Jessica Lopez____________ Tuesday May 3: 9:30 – 9:50 __Chris Quintana____________ 9:50 – 10:10 __Austin Vaitkus___________ 10:10 – 10:30 __Kathryn Jackson__________ Thursday May 5: 9:30 – 9:50 _Montie Avery_______________ 9:50 – 10:10 _Andrea Tallbrother_________ 10:10 – 10:30 _Veronica Dike_____________ 10:30 – 10:50 _Kirtus Leyba________________________ Send me your preference.