Rock Glaciers on James Ross Island, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Rock Glaciers on James Ross Island, Antarctica ROCK GLACIERS ON JAMES ROSS ISLAND, ANTARCTICA Jorge A. Strelin1, Toshio Sone2 1. Instituto Ant‡rtico Argentino and Centro Austral de Investigaciones Cient’ficas, Av. Malvinas Argentinas s/n¼, (9410) Ushuaia, Tierra del Fuego, Argentina e-mail: [email protected] 2. Institute of Low Temperature Science, Hokkaido University, Sapporo 060, Japan e-mail: [email protected] Abstract Lack of glacier cover in north-western James Ross Island, favours the development of a number of periglacial landforms. Ice-cored rock glaciers, protalus lobes, and recently discovered protalus ramparts are some of the most conspicuous cryogenic features. The ice-cored rock glaciers appear in a complex and genetically related landform system. Besides their mor- phological characteristics, these landforms are also differentiated by their dynamic behaviour. Mechanisms of ice and debris flow and debris extrusion are discussed in order to ascertain the initial age of the main rock glac- ier formation. Protalus lobes and protalus ramparts, formed at the base of scree slopes and ephemeral snow patches with no relation to former glaciers, are also typical features of this environment. All these landforms were probably formed after the third Neoglacial, 1300-1000 years BP. Introduction Since 1990, the joint Argentine (Instituto Ant‡rtico Argentino) - Japanese (Institute of Low Temperature Science) Group ÒCriolog’aÓ has focused its research on cryological and geomorphological topics in the northern Antarctic Peninsula area. In this paper, we present results of a study in the NW part of James Ross Island (Figure 1). About 80% of James Ross Island is ice-covered, and most of this is due to the large Mount Haddington Ice Cap. This ice cap stretches over an area 40 km in dia- meter, reaching the highest point of the island at 1628 m (a.s.l.). Most of the ice-free land is located in the NW sector of the island, where it is isolated from the main ice cap. This area corresponds to a former glacial landscape carved in friable Mesozoic sedimentary rocks covered by Cenozoic volcanics. The latter, mainly basalt and pyroclastic breccias, are preserved as 300 to 900 m (a.s.l.) high remnant plateaus, separated by wide va- lleys. The steep slopes that surround the volcanic plateaus are affected by large landslides, glacier ero- sion, nivation, and snow-debris avalanches. Uninterrupted and intense frost shattering leads to rock fall, roll, slide, and creep. Figure 1. Location and geomorphological map of the NW sector of James Ross Island. Jorge A. Strelin, Toshio Sone 1027 The climatic conditions are polar arid to semiarid, and sorted patterned ground. Most of these cryogenic fea- the location of the island within the area of seasonal tures were morphologically described by Strelin and sea-ice results in maritime influences during the sum- Malagnino (1992). mer and a more continental winter season. In the study area, the mean annual air temperature at sea level is ca. The present work focuses on the morphological and -6.5¡C and the annual precipitation, mostly snow, is morphodynamic aspects of ice-cored rock glaciers estimated to be around 200 mm water equivalent. This (Potter, 1972), protalus lobes (Whalley and Martin, low annual accumulation results in large snow-free 1992) and protalus ramparts (Bryan, 1934; Ballantyne areas during much of the year. The area is affected by and Benn, 1994). The first are partially channelled in cold and wet southwesterly winds (Schwerdtfeger, short valleys and the last two are present at the foot of 1975) and warm and dry west to northwesterly valley slopes. winds (fšhn). The first description of rock glaciers in Antarctica was Small ice caps and glaciers develop respectively at the for southern Victoria Land (Mayewski and Hassinger, top and foot of the volcanic plateaus. The equilibrium 1980). On James Ross Island, close to the present study lines in this sector of the island are at a mean altitude of area, a similar landform was described and alternative- 200 m (a.s.l.). However, variation in factors such as ly called a debris-covered polar glacier and a rock gla- insolation, wind control on snow deposition, exposure cier (Chinn and Dillon, 1987). to fšhn, katabatic winds, orographic precipitation, etc., results in a remarkable equilibrium line variability Lachman II rock glacier (from 0 to 500 m). The environment described above favours the development of periglacial landforms and Six ice-cored rock glaciers develop at the east foot of deposits such as talus slopes, ice-cored rock glaciers, Lachman Crags (Figure 1). Among these, Lachman II protalus lobes, protalus ramparts, stone banked ter- rock glacier is analysed here in detail. This rock glacier races, nivation hollows, mixed snow and debris is a component of a complex geomorphic system that avalanche deposits and several types of sorted and non- has different temporal and spatial related parts. Two Figure 2. Geomorphological map of the south-east sector of Lachman Crags. 1028 The 7th International Permafrost Conference main zones are distinguished (Figure 2): accumulation The moraines comprise recessive ice-cored ridges that and ablation zones. become smoother in the direction of the front of the glacier. ACCUMULATION ZONE This zone is subdivided into a main and a secondary An active ice-cored rock glacier (Potter, 1972) extends accumulation zone. The first one involves ice and snow downvalley of the morainic sector and is obstructed by accumulation on a series of small ice caps situated on a rock glacier of a previous stage that is still active or in the top of Lachman Crags: Norte, Central and Sur ice a steady state. The moraines and rock glaciers, which caps. The second corresponds to a regenerated glacier, enclose this morphological system at its front, consti- principally nourished by ice and debris avalanches and tute the passive ablation zone. wind-drifted snow, situated at the foot of the crag along a 3 km wide front. MORPHOLOGY OF LACHMAN II ROCK GLACIER The following characteristics were observed in the ABLATION ZONE ablation zone of the ÒLachman II glacier-rock glacier Three ice lobes, partially separated by moraines, con- systemÓ (ice tongue, ice-cored moraines and rock gla- stitute the main ablation zone. The central glacier lobe ciers) (Figures 2, 3A and 3B). is the most extended, showing a frontal sector placed much lower than its surrounding moraines. In the main ablation zone, the glacier tongue surface has an average slope of 7 to 8¼. The ice foliation is Figure 3. (A) Vertical aerial photograph (November 1992), (B) topographic map, (C) morphodynamic map (interval 1992 - 1995), and (D) morphometric map of Lachman II rock glacier. Jorge A. Strelin, Toshio Sone 1029 Table 1. Parameters measured in the Lachman II rock glacier domain clearly marked, enabling its photointerpretation and The debris cover of the rock glacier is usually 0.60 to reconnaissance in the field. Sometimes the ice gives 0.80 m thick, but at the outer limit it exceeds 1 m in way to the emergence of till. The flow pattern of the thickness. Permafrost, rather than the ice core, was glacier can be traced through mapping this ice foliation. observed 1.10 m beneath the ground surface, close to E34 (Figure 3C). The central ice tongue is depressed at its front by 10 to 15 m relative to the enclosing ice-cored moraines. The characteristics of the sediments that cover the Downvalley, the moraines lose their shape while the rock glacier depend on their origin. Shattered volcanic debris cover increases. rocks are supplied from the crags and move downslope principally by supra- and intraglacial transport, where- Ridges and furrows develop where the debris on the as Cretaceous, sandy to clayey, loose sediments are glacier ice is at least 0.60 m thick. These flow-like fea- extruded from the glacier sole. This allows identifica- tures mark approximately the transition to the rock tion of the position of the deep shear zones on the rock glacier domain. The rock glacier stretches approximate- glacier surface. The biggest volcanic blocks, that cover ly 700 m downvalley and is roughly 500 m wide. The or crop out from the rock glacier front, reach tens of upper surface dips 4 to 5¼ in the flow direction and ends cubic metres in volume, but the average size does not at a steep talus apron of 24 to 42¼. During the summer, exceed 0.15 m in diameter. Where platy, mostly a stream originating at the front of the ice tongue, dis- basaltic, debris stretches over the surface, an open fab- charges water through a steep channel cut in the ric of strongly-imbricated clasts (dipping about 75¡ moraines and in the central part of the rock glacier. The upglacier) is recorded. The matrix appears approxi- release of additional meltwater is accomplished by two mately 0.20-0.30 m below the ground surface and con- ephemeral creeks that drain off the steep sides of the sists of unsorted gravel and sand. Where the rock gla- rock glacier. Conical holes, sometimes occupied by cier surface is principally nourished by finer material melt water, are spread out on the surface of the rock (sand or tuff), patterned ground (sorted nets and cir- glacier. cles) and gelifluction lobes develop. The inner fabric of these features shows imbricated gravel, suspended in a Sporadic outcrops of glacier ice are visible at steep finer, homogenous sandy matrix. slopes developed in the central channel, in some of the bigger conical holes, and at the marginal talus. The ice MORPHODYNAMICS OF THE ROCK GLACIER core has a marked foliation, steeply dipping up-valley, Flow and ablation rates measured between January with ÒblackÓ regelated ice layers, including till, alternat- 1992 and January 1995, allow four zones to be identi- ing with prevailing white glacier ice.
Recommended publications
  • High-Mountain Permafrost in the Austrian Alps (Europe)
    HIGH-MOUNTAIN PERMAFROST IN THE AUSTRIAN ALPS (EUROPE) Gerhard Karl Lieb Institute of Geography University of Graz Heinrichstrasse 36 A-8010 Graz e-mail: [email protected] Abstract Permafrost research in the Austrian Alps (Eastern Alps) is based on a variety of methods, including at large scales, the measurement of the temperature of springs and of the base of winter snow cover, and at small scales, mainly an inventory of some 1450 rock glaciers. Taking all the information available into consideration, the lower limit of discontinuous permafrost is situated near 2500 m in most of the Austrian Alps. These results can be used for modelling the permafrost distribution within a geographical information system. Detailed investi- gations were carried out in the Doesen Valley (Hohe Tauern range) using additional methods, including several geophysical soundings. In this way, realistic estimates of certain permafrost characteristics and the volume of a large active rock glacier (some 15x106m3) were possible. This rock glacier has been chosen as a monitoring site to observe the effects of past and future climatic change. Introduction snow cover (BTS) and geophysical soundings, such as seismic, geoelectric, electromagnetic and ground pene- Although mountain permafrost in the Austrian Alps trating radar surveys have been published (survey and has caused construction problems and damage to buil- references in Lieb, 1996). The best results for mapping dings at several high-altitude locations, specific investi- the mere existence of permafrost were obtained by mea- gations of permafrost did not start until 1980. Since suring spring temperatures and BTS, both procedures then, studies of the distribution and certain characteris- being easily applicable and providing quite accurate tics of permafrost have been carried out at a number of interpretation.
    [Show full text]
  • Late Wisconsin Climate Inferences from Rock Glaciers in South-Central
    LateWisconsin climatic inlerences from rock glaciers in south-centraland west-central New Mexico andeast-central Arizona byJohn W. Blagbrough, P0 Box8063, Albuquerque, NewMexico 87198 Abstract Inactive rock glaciersof late Wisconsin age occur at seven sites in south-central and west-central New Mexico and in east-centralArizona. They are at the base of steep talus in the heads of canyons and ravines and have surfacefeatures indicating they are ice-cemented (permafrost) forms that moved by the flow of interstitial ice. The rock glaciersindicate zones of alpine permafrost with lower levels that rise from approximately 2,400m in the east region to 2,950 m in the west. Within the zones the mean annual temperaturewas below freezing, and the climatewas marked by much diurnal freezing and thawing resulting in the production of large volumes of talus in favorableterrain. The snow cover was thin and of short duration, which fa- vored ground freezing and cryofraction. The rock glaciers in the east region occur near the late Wisconsin 0'C air isotherm and implv that the mean annual temperature was depressedapproximately 7 to 8'C during a periglacial episodein the late Wisconsin.A dry continental climate with a seasonaldistribution of precipitation similar to that of the present probably prevailed, and timberline former timberlines. may have been depresseda minimum of 1,240m. The rise in elevation of the rock glaciersfrom east to west acrossthe region is attributed to greater snowfall in west-centralNew Mexico and east-centralArizona, which reducedthe inten- sity and depth of ground freezing near the late Wisconsin 0"C air isotherm.
    [Show full text]
  • Cold-Climate Landform Patterns in the Sudetes. Effects of Lithology, Relief and Glacial History
    ACTA UNIVERSITATIS CAROLINAE 2000 GEOGRAPHICA, XXXV, SUPPLEMENTUM, PAG. 185–210 Cold-climate landform patterns in the Sudetes. Effects of lithology, relief and glacial history ANDRZEJ TRACZYK, PIOTR MIGOŃ University of Wrocław, Department of Geography, Wrocław, Poland ABSTRACT The Sudetes have the whole range of landforms and deposits, traditionally described as periglacial. These include blockfields and blockslopes, frost-riven cliffs, tors and cryoplanation terraces, solifluction mantles, rock glaciers, talus slopes and patterned ground and loess covers. This paper examines the influence, which lithology and structure, inherited relief and time may have had on their development. It appears that different rock types support different associations of cold climate landforms. Rock glaciers, blockfields and blockstreams develop on massive, well-jointed rocks. Cryogenic terraces, rock steps, patterned ground and heterogenic solifluction mantles are typical for most metamorphic rocks. No distinctive landforms occur on rocks breaking down through microgelivation. The variety of slope form is largely inherited from pre- Pleistocene times and includes convex-concave, stepped, pediment-like, gravitational rectilinear and concave free face-talus slopes. In spite of ubiquitous solifluction and permafrost creep no uniform characteristic ‘periglacial’ slope profile has been created. Mid-Pleistocene trimline has been identified on nunataks in the formerly glaciated part of the Sudetes and in their foreland. Hence it is proposed that rock-cut periglacial relief of the Sudetes is the cumulative effect of many successive cold periods during the Pleistocene and the last glacial period alone was of relatively minor importance. By contrast, slope cover deposits are usually of the Last Glacial age. Key words: cold-climate landforms, the Sudetes 1.
    [Show full text]
  • a Pleistocene Ice Sheet in the .' Northern Boulder Mountains
    , A Pleistocene Ice Sheet in the .' Northern Boulder Mountains .< Jefferson, Powell, and Lewis and Clark Counties, Montana By EDWARD T. RUPPEL CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY BULLETIN 1141-G A descriptive report of the glacial geology in the northern part of the Boulder Mountains, Montana UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract- _______-_-______-__-_--____--___________--____-_-_-______ G-1 Introduction. _ _____________________________________________________ 1 Summary of bedrock geology.___-___-____.____._-___._.__--__--_.___ 4 Surficial geology.._________________________________________________ 5 Northern Boulder Mountains ice sheet- ___-____-___.----_-_--_-__ 5 Glacial erosion.___________________________________________ 7 Glacial deposits.-______--_^______-________________________ 9 Age and regional relations of glaciation.___:______.____________ 11 Postglacial erosion.---___-_--________-___---___-_-------__---__ 13 Creep-and-solifluction deposits and stone-banked terrace deposits. 14 Frost-wedged rock waste and boulders of disintegration........ 15 Landslides._______________________________________________ 19 Bog and swamp deposits. _______________________________"___ 20 Age of mass-wasting deposits--....----...--___---__---_--_. 20 References cited..____________________________ _____________________ 21 ILLUSTRATIONS [Plates in pocket] PLATE 1. Ice coverage and flow, Basin quadrangle, Jefferson, Lewis and Clark, and Powell Counties, Mont. 2. Interpretations of Pleistocene and Recent history, Montana and adjacent areas. FIGURE 1. Inferred limits of northern Boulder Mountains ice sheet, G-2 2. Typical rounded topography along Continental Divide in northern part of Boulder Mountains---.-,-.------ ------- 3 3.
    [Show full text]
  • Chapter 7 Seasonal Snow Cover, Ice and Permafrost
    I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change.
    [Show full text]
  • Periglacial Processes, Features & Landscape Development 3.1.4.3/4
    Periglacial processes, features & landscape development 3.1.4.3/4 Glacial Systems and landscapes What you need to know Where periglacial landscapes are found and what their key characteristics are The range of processes operating in a periglacial landscape How a range of periglacial landforms develop and what their characteristics are The relationship between process, time, landforms and landscapes in periglacial settings Introduction A periglacial environment used to refer to places which were near to or at the edge of ice sheets and glaciers. However, this has now been changed and refers to areas with permafrost that also experience a seasonal change in temperature, occasionally rising above 0 degrees Celsius. But they are characterised by permanently low temperatures. Location of periglacial areas Due to periglacial environments now referring to places with permafrost as well as edges of glaciers, this can account for one third of the Earth’s surface. Far northern and southern hemisphere regions are classed as containing periglacial areas, particularly in the countries of Canada, USA (Alaska) and Russia. Permafrost is where the soil, rock and moisture content below the surface remains permanently frozen throughout the entire year. It can be subdivided into the following: • Continuous (unbroken stretches of permafrost) • extensive discontinuous (predominantly permafrost with localised melts) • sporadic discontinuous (largely thawed ground with permafrost zones) • isolated (discrete pockets of permafrost) • subsea (permafrost occupying sea bed) Whilst permafrost is not needed in the development of all periglacial landforms, most periglacial regions have permafrost beneath them and it can influence the processes that create the landforms. Many locations within SAMPLEextensive discontinuous and sporadic discontinuous permafrost will thaw in the summer months.
    [Show full text]
  • Permafrost Soils and Carbon Cycling
    SOIL, 1, 147–171, 2015 www.soil-journal.net/1/147/2015/ doi:10.5194/soil-1-147-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Permafrost soils and carbon cycling C. L. Ping1, J. D. Jastrow2, M. T. Jorgenson3, G. J. Michaelson1, and Y. L. Shur4 1Agricultural and Forestry Experiment Station, Palmer Research Center, University of Alaska Fairbanks, 1509 South Georgeson Road, Palmer, AK 99645, USA 2Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA 3Alaska Ecoscience, Fairbanks, AK 99775, USA 4Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA Correspondence to: C. L. Ping ([email protected]) Received: 4 October 2014 – Published in SOIL Discuss.: 30 October 2014 Revised: – – Accepted: 24 December 2014 – Published: 5 February 2015 Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environ- ment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enor- mous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region’s soil or- ganic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile.
    [Show full text]
  • Frozen Ground
    Frozen Ground Th e News Bulletin of the International Permafrost Association Number 32, December 2008 INTERNATIONAL PERMAFROST ASSOCIATION Th e International Permafrost Association, founded in 1983, has as its objectives to foster the dissemination of knowledge concerning permafrost and to promote cooperation among persons and national or international organisations engaged in scientifi c investigation and engineering work on permafrost. Membership is through national Adhering Bodies and Associate Members. Th e IPA is governed by its offi cers and a Council consisting of representatives from 26 Adhering Bodies having interests in some aspect of theoretical, basic and applied frozen ground research, including permafrost, seasonal frost, artifi cial freezing and periglacial phenomena. Committees, Working Groups, and Task Forces organise and coordinate research activities and special projects. Th e IPA became an Affi liated Organisation of the International Union of Geological Sciences (IUGS) in July 1989. Beginning in 1995 the IPA and the International Geographical Union (IGU) developed an Agreement of Cooperation, thus making IPA an affi liate of the IGU. Th e Association’s primary responsibilities are convening International Permafrost Conferences, undertaking special projects such as preparing databases, maps, bibliographies, and glossaries, and coordinating international fi eld programmes and networks. Conferences were held in West Lafayette, Indiana, U.S.A., 1963; in Yakutsk, Siberia, 1973; in Edmonton, Canada, 1978; in Fairbanks, Alaska, 1983; in Trondheim, Norway, 1988; in Beijing, China, 1993; in Yellowknife, Canada, 1998, in Zurich, Switzerland, 2003, and in Fairbanks, Alaska, in 2008. Th e Tenth conference will be in Tyumen, Russia, in 2012.Field excursions are an integral part of each Conference, and are organised by the host Executive Committee 2008-2012 Council Members Professor Hans-W.
    [Show full text]
  • Inventory and Distribution of Rock Glaciers in Northeastern Yakutia
    land Article Inventory and Distribution of Rock Glaciers in Northeastern Yakutia Vasylii Lytkin Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677010, Russia; [email protected] Received: 2 September 2020; Accepted: 8 October 2020; Published: 10 October 2020 Abstract: Rock glaciers are common forms of relief of the periglacial belt of many mountain structures in the world. They are potential sources of water in arid and semi-arid regions, and therefore their analysis is important in assessing water reserves. Mountain structures in the north-east of Yakutia have optimal conditions for the formation of rock glaciers, but they have not yet been studied in this regard. In this article, for the first time, we present a detailed list of rock glaciers in this region. Based on geoinformation mapping using remote sensing data and field studies within the Chersky, Verkhoyansk, Momsky and Suntar-Khayata ranges, 4503 rock glaciers with a total area of 224.6 km2 were discovered. They are located within absolute altitudes, from 503 to 2496 m. Their average minimum altitude was at 1456 m above sea level, and the maximum at 1527 m. Most of these formations are located on the sides of the trough valleys, and form extended sloping types of rock glaciers. An assessment of the exposure of the slopes where the rock glaciers are located showed that most of the rock glaciers are facing north and south. Keywords: rock glacier; permafrost; inventory; northeastern Yakutia; remote sensing 1. Introduction The geography of distribution of rock glaciers is quite extensive. They are found in many mountainous regions of Europe, North and South America and Asia, including some circumpolar regions [1–18].
    [Show full text]
  • Reidentifying Depositional, Solifluction, “String Lobe” Landforms As Erosional, Topographic, Steps & Risers Formed by Paleo-Snowdunes in Pennsylvania, USA
    Earth Sciences 2021; 10(3): 136-144 http://www.sciencepublishinggroup.com/j/earth doi: 10.11648/j.earth.20211003.19 ISSN: 2328-5974 (Print); ISSN: 2328-5982 (Online) Reidentifying Depositional, Solifluction, “String Lobe” Landforms as Erosional, Topographic, Steps & Risers Formed by Paleo-Snowdunes in Pennsylvania, USA Michael Iannicelli Brooklyn College (C. U. N. Y.), Department of Earth and Environmental Sciences, Brooklyn, N. Y., USA Email address: To cite this article: Michael Iannicelli. Reidentifying Depositional, Solifluction, “String Lobe” Landforms as Erosional, Topographic, Steps & Risers Formed by Paleo-Snowdunes in Pennsylvania, USA. Earth Sciences. Vol. 10, No. 3, 2021, pp. 136-144. doi: 10.11648/j.earth.20211003.19 Received: May 13, 2021; Accepted: June 9, 2021; Published: June 30, 2021 Abstract: A controversy arises concerning relict, ubiquitous, depositional, solifluction, “string lobe” landforms in the Ridge and Valley province of Pennsylvania, reported by other investigators. A distinguishment is made here by defending an original interpretation of the particular landforms which identified these as snowdune meltwater-eroded depressions formed within colluvium during cold phases of the Pleistocene Epoch. Hence, the landforms are reassessed as “steps & risers” in this study which is jargon associated with nival erosion. The reidentification is warranted in the study because of multiple lines of evidence including: the landforms’ detailed geomorphology and sedimentology; the landforms having a highly, unusual, very repetitive, NE-SW orientation; and the landforms incurring a striking, gravity-defying, characteristic of running-water erosion repeatedly occurring irrespective of the steepest part of the general slope. Besides the evidence offered here, the study also gives insight, resolutions and re-confirmations in order to establish absolute identification while differentiating between discussed, periglacial, relict landforms.
    [Show full text]
  • Tundra Polygons. Photographic Interpretation and Field Studies in North-Norwegian Polygon Areas
    Tundra polygons. Photographic interpretation and field studies in North-Norwegian polygon areas. By Harald Svensson Introduction. When working with aerial photos, the interpreter very soon realizes that the vegetation adjusts itself very well to differences in the ground conditions, which is in this way registered in photography. This fact constituted one of the starting points when the author, with the help of aerial photos, began the search for large-scale patterned ground of the tundra polygon shape, which earlier had not been identified in Scandinavia.1 In Arctic regions, recent tundra polygons can be clearly distinguished on aerial photographs which is a well-known fact derived from numerous investigations (amongst others, Troll 1944, Washburn 1950, Black 1952, Andreev 1955, Hopkins, Karlstrom et al 1955). The fact that there are considerable changes in the soil caused by the frost (cf. Figs. 1, 2 and 3) supports the hypothesis that, if a polygonal pattern of the tundra type developed in an area and this, at a later date in a milder climate, came to lic outside the tundra zone, it should be possible to trace fossil polygons or fragments of such with the help of the adjustment of the vegetation to the ground conditions. This idea has been followed up in order to in vestigate the correctness of the hypothesis and in order to check the possibility of this method. 1) In vertical sections and gravel-pits, however, fossil periglacial formations have been observed and studied particularly in Denmark and Southern Sweden (Norvang and Johnsson). As regards Swedish investigations of patterned ground reference is made to the surveys by Rapp and Rudberg (1960) and J.
    [Show full text]
  • Glossary of Landscape and Vegetation Ecology for Alaska
    U. S. Department of the Interior BLM-Alaska Technical Report to Bureau of Land Management BLM/AK/TR-84/1 O December' 1984 reprinted October.·2001 Alaska State Office 222 West 7th Avenue, #13 Anchorage, Alaska 99513 Glossary of Landscape and Vegetation Ecology for Alaska Herman W. Gabriel and Stephen S. Talbot The Authors HERMAN w. GABRIEL is an ecologist with the USDI Bureau of Land Management, Alaska State Office in Anchorage, Alaskao He holds a B.S. degree from Virginia Polytechnic Institute and a Ph.D from the University of Montanao From 1956 to 1961 he was a forest inventory specialist with the USDA Forest Service, Intermountain Regiono In 1966-67 he served as an inventory expert with UN-FAO in Ecuador. Dra Gabriel moved to Alaska in 1971 where his interest in the description and classification of vegetation has continued. STEPHEN Sa TALBOT was, when work began on this glossary, an ecologist with the USDI Bureau of Land Management, Alaska State Office. He holds a B.A. degree from Bates College, an M.Ao from the University of Massachusetts, and a Ph.D from the University of Alberta. His experience with northern vegetation includes three years as a research scientist with the Canadian Forestry Service in the Northwest Territories before moving to Alaska in 1978 as a botanist with the U.S. Army Corps of Engineers. or. Talbot is now a general biologist with the USDI Fish and Wildlife Service, Refuge Division, Anchorage, where he is conducting baseline studies of the vegetation of national wildlife refuges. ' . Glossary of Landscape and Vegetation Ecology for Alaska Herman W.
    [Show full text]