Reidentifying Depositional, Solifluction, “String Lobe” Landforms As Erosional, Topographic, Steps & Risers Formed by Paleo-Snowdunes in Pennsylvania, USA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Landform Regions of Iowa — 2000
LANDFORM REGIONS OF IOWA LANDFORM REGIONS2000 OF IOWA — 2000 0 20 40 60 miles 0 20 40 60 miles 0 40 80 kilometers 0 40 80 kilometers 327 Trowbridge Hall Iowa Department of NaturalIowa City, Resources Iowa 52242-1319 Geological Survey Bureau 109 Trowbridge Hallwww.iowageologicalsurvey.org Iowa City, Iowa 52242-1319 319-335-1575 Hydroscience & Engineering www.igsb.uiowa.edu Printed on recycled paper A landscape is a collection of shapes or landforms. LANDFORM REGIONS In Iowa, these shapes are composed of earth materials OF IOWA derived from glacial, wind, river, and marine environments of the geologic past. This map is a guide to seeing the state’s remarkably diverse landscapes and www.iowageologicalsurvey.org landform features. 319-335-1575 The Des Moines Lobe Southern Iowa Drift Plain Paleozoic Plateau The last glacier to enter Iowa advanced in a series of surges This region is dominated by glacial deposits left by ice Narrow valleys deeply carved into sedimentary rock beginning just 15,000 years ago and reached its southern sheets that extended south into Missouri over 500,000 of Paleozoic age and a near-absence of glacial deposits limit, the site of modern-day Des Moines, 14,000 years years ago. The deposits were carved by deepening define this scenic region. Fossil-bearing strata originated ago. By 12,000 years ago, the ice sheet was gone, leaving episodes of stream erosion so that only a horizon line as sediment on tropical sea floors between 300 and 550 behind a poorly drained landscape of pebbly deposits of hill summits marks the once-continuous glacial plain. -
a Pleistocene Ice Sheet in the .' Northern Boulder Mountains
, A Pleistocene Ice Sheet in the .' Northern Boulder Mountains .< Jefferson, Powell, and Lewis and Clark Counties, Montana By EDWARD T. RUPPEL CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY BULLETIN 1141-G A descriptive report of the glacial geology in the northern part of the Boulder Mountains, Montana UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract- _______-_-______-__-_--____--___________--____-_-_-______ G-1 Introduction. _ _____________________________________________________ 1 Summary of bedrock geology.___-___-____.____._-___._.__--__--_.___ 4 Surficial geology.._________________________________________________ 5 Northern Boulder Mountains ice sheet- ___-____-___.----_-_--_-__ 5 Glacial erosion.___________________________________________ 7 Glacial deposits.-______--_^______-________________________ 9 Age and regional relations of glaciation.___:______.____________ 11 Postglacial erosion.---___-_--________-___---___-_-------__---__ 13 Creep-and-solifluction deposits and stone-banked terrace deposits. 14 Frost-wedged rock waste and boulders of disintegration........ 15 Landslides._______________________________________________ 19 Bog and swamp deposits. _______________________________"___ 20 Age of mass-wasting deposits--....----...--___---__---_--_. 20 References cited..____________________________ _____________________ 21 ILLUSTRATIONS [Plates in pocket] PLATE 1. Ice coverage and flow, Basin quadrangle, Jefferson, Lewis and Clark, and Powell Counties, Mont. 2. Interpretations of Pleistocene and Recent history, Montana and adjacent areas. FIGURE 1. Inferred limits of northern Boulder Mountains ice sheet, G-2 2. Typical rounded topography along Continental Divide in northern part of Boulder Mountains---.-,-.------ ------- 3 3. -
An Evaluation of Ground Penetrating Radar for Investigation of Palsa Evolution, Macmillan Pass, Northwest Territories
University of Alberta An Evaluation of Ground Penetrating Radar for Investigation of Palsa Evolution, Macmillan Pass, Northwest Territories Celesa L y ra Ho rva t h . ....J.' A thesis submitted to the Faculty of Graduate Studies and Research in partial fùlfillment of the requirements for the degree of Master of Science Department of Earth and Atmospheric Sciences Edmonton, Alberta Spring 1998 National Library Bibliothèque nationale ($1 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Seivices seivices bibliographiques 395 Wellington Street 395, rue Wellington Ottawa ON KIA ON4 Ottawa ON KIA ON4 Canada Canada Your h& Votre reierenccl Our liC Notre mitirence The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant a la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou copies of ths thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la fonne de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in ths thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Dedicated, with love and gratitude, to my mother, Susan Horvath ABSTRACT The utiiity of ground penetrating radar (GPR) for investigation of pereiinially frozen peatlands is exarnined. -
Pleistocene Geology of Eastern South Dakota
Pleistocene Geology of Eastern South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Pleistocene Geology of Eastern South Dakota By RICHARD FOSTER FLINT GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Prepared as part of the program of the Department of the Interior *Jfor the development-L of*J the Missouri River basin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $3 (paper cover) CONTENTS Page Page Abstract_ _ _____-_-_________________--_--____---__ 1 Pre- Wisconsin nonglacial deposits, ______________ 41 Scope and purpose of study._________________________ 2 Stratigraphic sequence in Nebraska and Iowa_ 42 Field work and acknowledgments._______-_____-_----_ 3 Stream deposits. _____________________ 42 Earlier studies____________________________________ 4 Loess sheets _ _ ______________________ 43 Geography.________________________________________ 5 Weathering profiles. __________________ 44 Topography and drainage______________________ 5 Stream deposits in South Dakota ___________ 45 Minnesota River-Red River lowland. _________ 5 Sand and gravel- _____________________ 45 Coteau des Prairies.________________________ 6 Distribution and thickness. ________ 45 Surface expression._____________________ 6 Physical character. _______________ 45 General geology._______________________ 7 Description by localities ___________ 46 Subdivisions. ________-___--_-_-_-______ 9 Conditions of deposition ___________ 50 James River lowland.__________-__-___-_--__ 9 Age and correlation_______________ 51 General features._________-____--_-__-__ 9 Clayey silt. __________________________ 52 Lake Dakota plain____________________ 10 Loveland loess in South Dakota. ___________ 52 James River highlands...-------.-.---.- 11 Weathering profiles and buried soils. ________ 53 Coteau du Missouri..___________--_-_-__-___ 12 Synthesis of pre- Wisconsin stratigraphy. -
A Geomorphic Classification System
A Geomorphic Classification System U.S.D.A. Forest Service Geomorphology Working Group Haskins, Donald M.1, Correll, Cynthia S.2, Foster, Richard A.3, Chatoian, John M.4, Fincher, James M.5, Strenger, Steven 6, Keys, James E. Jr.7, Maxwell, James R.8 and King, Thomas 9 February 1998 Version 1.4 1 Forest Geologist, Shasta-Trinity National Forests, Pacific Southwest Region, Redding, CA; 2 Soil Scientist, Range Staff, Washington Office, Prineville, OR; 3 Area Soil Scientist, Chatham Area, Tongass National Forest, Alaska Region, Sitka, AK; 4 Regional Geologist, Pacific Southwest Region, San Francisco, CA; 5 Integrated Resource Inventory Program Manager, Alaska Region, Juneau, AK; 6 Supervisory Soil Scientist, Southwest Region, Albuquerque, NM; 7 Interagency Liaison for Washington Office ECOMAP Group, Southern Region, Atlanta, GA; 8 Water Program Leader, Rocky Mountain Region, Golden, CO; and 9 Geology Program Manager, Washington Office, Washington, DC. A Geomorphic Classification System 1 Table of Contents Abstract .......................................................................................................................................... 5 I. INTRODUCTION................................................................................................................. 6 History of Classification Efforts in the Forest Service ............................................................... 6 History of Development .............................................................................................................. 7 Goals -
The Mystery of the Paha: Constructive Landforms of Northeast Iowa
Iowa Science Teachers Journal Volume 29 Number 1 Article 3 1992 The Mystery of the Paha: Constructive Landforms of Northeast Iowa Georgia Quirk University of Northern Iowa Follow this and additional works at: https://scholarworks.uni.edu/istj Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ouy Copyright © Copyright 1992 by the Iowa Academy of Science Recommended Citation Quirk, Georgia (1992) "The Mystery of the Paha: Constructive Landforms of Northeast Iowa," Iowa Science Teachers Journal: Vol. 29 : No. 1 , Article 3. Available at: https://scholarworks.uni.edu/istj/vol29/iss1/3 This Article is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Iowa Science Teachers Journal by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. THE MYSTERY OF THE PAHA: CONSTRUCTIVE LANDFORMS OF NORTHEAST IOWA Georgia Quirk Instructor/Reference Lif!rarian Donald 0. Rod Library University ofNorthern Iowa Cedar Falls, Iowa 50614-3675 Paha are distinctive landforms oflowa which could provide the focus for a fascinating earth science instructional unit and even a field trip opportunity for teachers in the northeast part oflowa. Slides, transparen cies and text for a 15-minute introduction are available from the author. The landform map of Iowa (Figure 1) diagrams the geological areas ofthe state and indicates some ofthe paha that have been identified. They are found on the Iowan Erosion Surface ( often shortened to the Iowan Surface), which covers most of northeastern Iowa. -
Frozen Ground
Frozen Ground Th e News Bulletin of the International Permafrost Association Number 32, December 2008 INTERNATIONAL PERMAFROST ASSOCIATION Th e International Permafrost Association, founded in 1983, has as its objectives to foster the dissemination of knowledge concerning permafrost and to promote cooperation among persons and national or international organisations engaged in scientifi c investigation and engineering work on permafrost. Membership is through national Adhering Bodies and Associate Members. Th e IPA is governed by its offi cers and a Council consisting of representatives from 26 Adhering Bodies having interests in some aspect of theoretical, basic and applied frozen ground research, including permafrost, seasonal frost, artifi cial freezing and periglacial phenomena. Committees, Working Groups, and Task Forces organise and coordinate research activities and special projects. Th e IPA became an Affi liated Organisation of the International Union of Geological Sciences (IUGS) in July 1989. Beginning in 1995 the IPA and the International Geographical Union (IGU) developed an Agreement of Cooperation, thus making IPA an affi liate of the IGU. Th e Association’s primary responsibilities are convening International Permafrost Conferences, undertaking special projects such as preparing databases, maps, bibliographies, and glossaries, and coordinating international fi eld programmes and networks. Conferences were held in West Lafayette, Indiana, U.S.A., 1963; in Yakutsk, Siberia, 1973; in Edmonton, Canada, 1978; in Fairbanks, Alaska, 1983; in Trondheim, Norway, 1988; in Beijing, China, 1993; in Yellowknife, Canada, 1998, in Zurich, Switzerland, 2003, and in Fairbanks, Alaska, in 2008. Th e Tenth conference will be in Tyumen, Russia, in 2012.Field excursions are an integral part of each Conference, and are organised by the host Executive Committee 2008-2012 Council Members Professor Hans-W. -
MULTIMEDIA TEST Junior
Balkan International Geography Olympiad June 24 – 29, 2018, Iași - ROMANIA MULTIMEDIA TEST Junior Read the instructions on your worksheet carefully before answering the questions! Balkan International Geography Olympiad – Iași, Romania – Multimedia Test Q1 The city represented in this picture is located in: A. Germany B. Italy C. France D. Spain Balkan International Geography Olympiad – Iași, Romania – Multimedia Test Q2 1 These pictures represent three volcanoes from three continents. The fourth volcano that is also a decipoint can be depicted in picture: A. 1 2 B. 2 C. 3 D. 4 4 3 Balkan International Geography Olympiad – Iași, Romania – Multimedia Test Q3 The time of the day when this picture was taken is: A. in the morning B. at noon C. in the evening D. at sunset Balkan International Geography Olympiad – Iași, Romania – Multimedia Test Q4 This underwater museum is located: A. at the bottom of the Pacific Ocean B. at the bottom of the Atlantic Ocean C. at the bottom of the Indian Ocean D. at the bottom of the Mediterranean Sea Balkan International Geography Olympiad – Iași, Romania – Multimedia Test Q5 These pictures were taken in: A. Japan B. France C. Singapore D. Australia Balkan International Geography Olympiad – Iași, Romania – Multimedia Test Q6 The plant represented in this picture is: A. tea B. corn C. rice D. algae Balkan International Geography Olympiad – Iași, Romania – Multimedia Test Q7 A possible solution for the problem depicted in this picture is: A. dam construction B. slash and burn C. selective logging D. deforestation Balkan International Geography Olympiad – Iași, Romania – Multimedia Test Q8 The name of the capital cities on this map (marked with red dots) were replaced with the name of other cities representing which of the following? A. -
The First Consistent Inventory of Rock Glaciers and Their Hydrological Catchments of the Austrian Alps
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Austrian Journal of Earth Sciences Jahr/Year: 2020 Band/Volume: 113 Autor(en)/Author(s): Wagner Thomas, Pleschberger Roswitha, Kainz Simon, Ribis Markus, Kellerer-Pirklbauer Andreas, Krainer Karl, Philippitsch Rudolf, Winkler Gerfried Artikel/Article: The first consistent inventory of rock glaciers and their hydrological catchments of the Austrian Alps 1-23 Austrian Journal of Earth Sciences Vienna 2020 Volume 113/1 1 - 23 DOI: 10.17738/ajes.2020.0001 The first consistent inventory of rock glaciers and their hydrological catchments of the Austrian Alps Thomas Wagner1, Roswitha Pleschberger1,6, Simon Kainz1, Markus Ribis2, Andreas Kellerer-Pirklbauer3, Karl Krainer4, Rudolf Philippitsch5, Gerfried Winkler1* 1) Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, Heinrichstrasse 26, 8010 Graz, Austria; [email protected]; gerfried. [email protected]; [email protected] 2) geo.zt gmbh – poscher beratende geologen, Saline 17, 6060 Hall in Tirol, Austria; [email protected] 3) Department of Geography and Regional Science, Working Group on Alpine Landscape Dynamics (ALADYN), University of Graz, Heinrichstrasse 36, 8010 Graz, Austria; [email protected] 4) Institute of Geology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria; [email protected] 5) now retired; former Ministry of Sustainability and Tourism, Stubenring 1, 1010 Vienna, Austria; [email protected] 6) now at Geotechnik Team GmbH, Technikerstrasse 3, 6020 Innsbruck, Austria; [email protected] *) Corresponding author: [email protected]; phone +43 316 380 5585; fax +43 316 380 9870; ORCID ID https://orcid.org/0000-0003-1742-1242 KEYWORDS rock glacier inventory; periglacial landform; permafrost; hydrological catchment; Austrian Alps Abstract A first consistent and homogenized polygon-based inventory of rock glaciers of the Austrian Alps is presented. -
Monitoring of a Melting Ice Patch from Geomatic Techniques: the Jou Negro
MONITORING OF A MELTING ICE PATCH FROM GEOMATIC TECHNIQUES: THE JOU NEGRO Alan D.J. Atkinson [email protected] José Juan de Sanjosé Blasco [email protected] Departamento de Expresión Gráfica Escuela Politécnica de Cáceres Universidad de Extremadura Av. de la Universidad, s/n. 10071 Cáceres. España. Enrique Serrano Cañadas [email protected] Juan José González Trueba [email protected] Departamento de Geografía Facultad de Filosofía y Letras. Universidad de Valladolid Plaza del Campus, s/n. 47011 Valladolid. España. Abstract Introduction Glaciers are receding all over the world and the loss of ice mass is a common fact in all mountains of the Earth. Nowadays, glaciers suffer significant recession and they become an ice patch, that is to say, residual ice masses without motion but with melting mechanisms which imply adjustments and small movements. Ice patches can be found in the Pyrenees and in the Cantabrian Mountains, which are situated in the north of the Iberian Peninsula. The processes related to the definitive deglaciation of mountains and the study of small glaciers and marginal ice bodies is nowadays an open research field of burgeoning interest. The Jou Negro is a glaciokarstic cirque located in the north-west of the Central Massif , on the north face of Torre Cerredo (2648 m), the highest summit of the Cantabrian Mountains. Objectives The aim of the study was to use geomatic techniques (GPS, Topographical survey, terrestrial photogrammetry) in order to determine the main features and the annual changes on the ice mass and around it. This would provide information on possible changes in area, volume and melting in response to climate variations. -
Inventory of Rock Glaciers in the American West and Their Topography and Climate
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 12-30-2020 Inventory of Rock Glaciers in the American West and Their Topography and Climate Allison Reese Trcka Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Geomorphology Commons Let us know how access to this document benefits ou.y Recommended Citation Trcka, Allison Reese, "Inventory of Rock Glaciers in the American West and Their Topography and Climate" (2020). Dissertations and Theses. Paper 5637. https://doi.org/10.15760/etd.7509 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Inventory of Rock Glaciers in the American West and Their Topography and Climate by Allison Reese Trcka A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology Thesis Committee: Andrew G. Fountain Chair Adam Booth Martin Lafrenz Portland State University 2020 Abstract Rock glaciers are flowing geomorphic landforms composed of an ice/debris mixture. A uniform rock glacier classification scheme was created for the western continental US, based on internationally recognized criteria, to merge the various regional published inventories. A total of 2249 rock glaciers (1564 active, 685 inactive) and 7852 features of interest were identified in 10 states (WA, OR, CA, ID, NV, UT, ID, MT, WY, CO, NM). Sulfur Creek rock glacier in Wyoming is the largest active rock glacier (2.39 km2). -
Pre-Settlement Vegetation at Casey's Paha State Preserve, Iowa
Journal of the Iowa Academy of Science: JIAS Volume 115 Number 1-4 Article 4 2008 Pre-Settlement Vegetation at Casey's Paha State Preserve, Iowa Reid J. Leichty Simpson College Steven H. Emerman Utah Valley University Lyndon R. Hawkins Simpson College Michael J. Tiano Simpson College Let us know how access to this document benefits ouy Copyright © Copyright 2009 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/jias Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation Leichty, Reid J.; Emerman, Steven H.; Hawkins, Lyndon R.; and Tiano, Michael J. (2008) "Pre-Settlement Vegetation at Casey's Paha State Preserve, Iowa," Journal of the Iowa Academy of Science: JIAS, 115(1-4), 12-16. Available at: https://scholarworks.uni.edu/jias/vol115/iss1/4 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Jour. Iowa Acad. Sci. 115(1-4):12-16, 2008 Pre-Settlement Vegetation at Casey's Paha State Preserve, Iowa REID J. LEICHTY, STEVEN H. EMERMAN, LYNDON R. HAWKINS and MICHAEL J. TIANO Department of Biology and Environmental Science, Simpson College, Indianola, Iowa 50125 Paha are loess-capped ridges standing 10-30 m above the surrounding plain of the Iowan Surface. Although Iowa was almost entirely covered with prairie and wetlands just prior to Euro-American settlement, the paha are believed to have been forested based on soil types and on early vegetation maps.